
Equivariance and Invariance

Statistical decisions or actions based on data should not be af-

fected by simple transformations on the data or by reordering

of the data, so long as these changes on the data are reflected

in the statement of the decision; that is, the actions should be

invariant.

If the action is a yes-no decision, such as in hypothesis testing,

it should be completely invariant.

If a decision is a point estimate, its value is not unaffected,

but it should be equivariant, in the sense that it reflects the

transformations in a meaningful way.

We can formalize this principle by defining appropriate classes of

transformations, and then specifying rules that statistical deci-

sion functions must satisfy.



The Principle of Equivariance under

Transformations

We identify “reasonable” classes of transformations on the sam-

ple space and the corresponding transformations on other com-

ponents of the statistical decision problem.

We will limit consideration to transformations that are one-to-

one and onto.

Such transformations can easily be identified as members of a

group.



Transformations

We will consider only parametric distributions PX|θ for θ ∈ Θ.

We are interested in what happens under a transformation of the

random variable g(X).

We seek a transformation of the parameter ḡ(θ) such that Pg(X)|ḡ(θ)
is a member of the same distributional family, and will the same

optimal methods of inference for PX|θ remain optimal for Pg(X)|ḡ(θ).

We want to identify optimal methods of inference for PX|θ that

will remain optimal for Pg(X)|ḡ(θ).



Transformation Groups

Definition. A group G is a nonempty set G together with a binary
operation ◦ such that

• g1, g2 ∈ G ⇒ g1 ◦ g2 ∈ G (closure);

• ∃ e ∈ G 3 ∀ g ∈ G, e ◦ g = g (identity);

• ∀ g ∈ G ∃ g−1 ∈ G 3 g−1 ◦ g = e (inverse);

• g1, g2, g3 ∈ G ⇒ g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 (associativity).

Notice that the binary operation need not be commutative, but
from these defining properties, we can easily see that g ◦ e = e◦ g

and g ◦ g−1 = g−1 ◦ g.



Groups

A group G is a structure of the form (G, ◦).

Sometimes the same symbol that is used to refer to the set is

used to refer to the group. The expression g ∈ G is interpreted

to mean g ∈ G.

Any subset of the set on which the group is defined that is closed

and contains the identity and all inverses forms a group with the

same operation as the original group.

This subset together with the operation is called a subgroup.

We use the standard terminology of set operations for operations

on groups.



Groups

A set G1 together with an operation ◦ defined on G1 generates

a group G that is the smallest group (G, ◦) such that G1 ⊂ G.

If G1 and G2 are groups over G1 and G2 with a common operation

◦, the group generated by G1 and G2 is (G, ◦), where G is the

smallest set containing G1 and G2 so that (G, ◦) is a group.

Notice that the G may contain elements that are in neither G1

nor G2.



Transformation Groups

If the elements of a set are transformations, function composition

is a binary operation.

A set of one-to-one and onto functions with common domain

together with the operation of function composition is a group,

referred to as a transformation group.

A transformation group has an associated set that is the common

domain of the transformations. This is called the domain of the

transformation group.

Both function composition and a function-argument pair are of-

ten indicated by juxtaposition with no symbol for the operator

or operation.



Transformation Groups

The expression g∗Tg−1X means function composition on the ar-

gument X.

We can write

g∗(T (g−1(X̃))) = g∗(T (X))

= g∗(a)

= ã.



Location-Scale Families

If the conditional distribution of X − θ, given θ = θ0, is the same

for all θ0 ∈ Θ, then θ is called a location parameter.

The family of distributions PX|θ is called a location family.

If Θ ⊂ IR+, and if the conditional distribution of X/θ, given

θ = θ0, is the same for all θ0 ∈ Θ, then θ is called a scale

parameter.

The family of distributions PX|θ is called a scale family.

We can write the PDF of a member of a location-scale family

as
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Other Group Families

More generally, given a distribution with parameter θ, that dis-

tribution together with a group of transformations on θ forms a

“group family” of distributions.



Invariant and Equivariant Functions

A function f is said to be invariant under the transformation

group G with domain X if for all x ∈ X and g ∈ G,

f(g(x)) = f(x).

We also use the phrases “invariant over ...” and “invariant with

respect to ...” to denote this kind of invariance.

A function f is said to be equivariant under the transformation

group G with domain X if for all x ∈ X and g ∈ G,

f(g(x)) = |∂g/∂x|f(x).



Transformation Groups

A transformation group G defines an equivalence relation (iden-

tity, symmetry, and transitivity) for elements in its domain, X .

If x1, x2 ∈ X and there exists a g in G such that g(x1) = x2, then

we say x1 and x2 are equivalent under G, and we write

x1 ≡ x2 modG.

Sets of equivalent points are called orbits of G.

It is clear that a function that is invariant under the transforma-

tion group G must be constant over the orbits of G.

A transformation group G is said to be transitive over the set X
if for any x1, x2 ∈ X , there exists a g in G such that g(x1) = x2.



Maximal Invariance

An invariant function M over G is called maximal invariant over

G if

M(x1) = M(x2) ⇒ ∃ g ∈ G 3 g(x1) = x2.

Maximal invariance can be used to characterize invariance.

If M is maximal invariant under G, then the function f is invariant

under G if and only if it depends on x only through M ; that

is, if and only if there exists a function h such that for all x,

f(x) = h(M(x)).

Any invariant function with respect to a transitive group is max-

imal invariant.



Maximal Invariance

The underlying concept of maximal invariance is similar to the

concept of sufficiency.

A sufficient statistic may reduce the sample space; a maximal

invariant statistic may reduce the parameter space.

Maximal invariant statistics have some technical issues regarding

measurability, however; X being measurable does not guarantee

M(X) is measurable under the same measure.



Equivariant Functions

A function f is said to be equivariant under the transformation

group G with domain X if for all x ∈ X and g ∈ G,

f(g(x)) = g(f(x)).

We also use the phrases “equivariant over ...” and “equivariant

with respect to ...” to denote this kind of equivariance.



Invariant and Equivariant Statistical Procedures

We will denote a general statistical decision function by T .

This is a function from the sample space (actually from the range

X of the random variable X) to the decision space A (which can
be considered a subset of the reals); that is, T : X 7→ A ⊆ IR.

We write

T (X) = a.

We are interested in the invariance or equivariance of T (x) in the

context of certain transformations.

The context in which this has meaning is somewhat limited.

It has meaning in group families when the loss function is of an

appropriate type.



Invariant and Equivariant Statistical Procedures

An estimator that changes appropriately (in ways that we will

specify more precisely below) so that the risk is invariant under

changes in the random variable is said to be equivariant.

In testing statistical hypotheses, we often denote the statistical

decision function by φ, and define the decision space as [0,1].

We interpret φ(x) as the probability of rejecting the hypothesis

for a given x ∈ X .

A test that does not change under changes in the random variable

is said to be invariant.



Invariant and Equivariant Statistical Procedures

We must emphasize that invariance or equivariance has meaning

only in special contexts; both the family of distributions and the

form of the loss function must have properties that are similar

in certain ways.

The invariance or equivariance of interest is with respect to a

given class of transformations.

The most common class of interest is the group of linear trans-

formations of the form x̃ = Ax + c.

A family of distributions whose probability measures accommo-

date a group of transformations in a natural way is called a group

family.



Location-Scale Families

The group families of interest have a certain invariance with

respect to a group of linear transformations on the random vari-

able.

Formally, let P be a a probability measure on (IRk,Bk), let V ⊂
IRk, and let Mk be a collection of k×k symmetric positive definite

matrices.

The family

{P(µ,Σ) : P(µ,Σ)(B) = P(Σ1/2(B−µ)), for µ ∈ V, Σ ∈ Mk, B ∈ Bk}

is called a location-scale family.

Some standard parametric families that are group families: nor-

mal, double exponential, exponential and uniform (even with

parametric ranges), and Cauchy.



Location-Scale Families

A location-scale family of distributions can be defined in terms

of a given distribution on (IRk,Bk) as all distributions for which

the probability measure is invariant under linear transformations.

Whatever parameter θ may characterize the distribution, we of-

ten focus on just µ and Σ, as above, or in the univariate case, µ

and σ.

In most other cases our object of interest has been a transfor-

mation on the parameter space, g(θ).

In the following, we will often denote a basic transformation of

the probability space as g(·), and we may denote a corresponding

transformation on the parameter space, as ḡ(·).



Transformations on the Sample Space, the

Parameter Space, and the Decision Space

To study invariance of statistical procedures we will now identify

three groups of transformations G, G, and G∗, and the relation-

ships among the groups.

This notation is widely used in mathematical statistics, maybe

with some slight modifications.



• Let G be a group of transformations that map the probability

space onto itself. We write

g(X) = X̃.

Note that X and X̃ are random variables, so the domain and

the range of the mapping are subsets of probability spaces;

the random variables are based on the same underlying mea-

sure, so the probability spaces are the same; the transforma-

tion is a member of a transformation group, so the domain

and the range are equal and the transformations are one-to-

one.

g : X 7→ X , 1 : 1 and onto



• For given g ∈ G above, let ḡ be a 1:1 function that maps the

parameter space onto itself, ḡ : Θ 7→ Θ, in such a way that

for any set A,

Prθ(g(X) ∈ A) = Prḡ(θ)(X ∈ A).

If this is the case we say g preserves Θ. Any two functions

that preserve the parameter space form a group of functions

that preserve the parameter space. The set of all such ḡ

together with the induced structure is a group, Ḡ. We write

ḡ(θ) = θ̃.

ḡ : Θ 7→ Θ, 1 : 1 and onto

We may refer to Ḡ as the induced group under G.



• For each g ∈ G above, there is a 1:1 function g∗ that maps

the decision space onto itself, g∗ : A 7→ A. The set of all

such g∗ together with the induced structure is a group, G∗.
We write

g∗(a) = ã.

g∗ : A 7→ A, 1 : 1 and onto.

The relationship between G and G∗ is a homomorphism; that

is, for g ∈ G and g∗ ∈ G∗, if g∗ = k(g), then k(g1 ◦ g2) =

k(g1) ◦ k(g2).



We are interested in a probability space, (Ω,F ,PΘ), that is in-

variant to a class of transformations G; that is, one in which PΘ

is a group family with respect to G.

The induced groups Ḡ and G∗ determine the transformations to

be applied to the parameter space and the action space.



Invariance of the Loss Function

In most statistical decision problems, we assume a symmetry or

invariance or equivariance of the problem before application of

any of these transformations, and the problem that results from

applying all of the transformations.

For given classes of transformations, we consider loss functions

that are invariant to those transformations; that is, we require

that the loss function have the property

L(θ̃, ã) = L(ḡ(θ), g∗(a))

= L(θ, a).

This means that a good statistical procedure, T , for the original

problem is good for the transformed problem.



Note that this is an assumption about the class of meaningful

loss functions for this kind of statistical problem.

From this assumption about the loss function, we have the risk

property

Eθ(g(X)) = Eg̃(θ)(X).

We have seen cases in which, for a univariate function of the

parameter, the loss function is a function only of a − g(θ) or of

a/g(θ); that is, we may have L(θ, a) = Ll(a − g(θ)), or L(θ, a) =

Ls(a/g(θ)).

In order to develop equivariant procedures for a general location-

scale family P(µ,Σ) we need a loss function of the form

L((µ, Σ), a) = Lls(Σ
1/2(a − µ)).



Invariance of Statistical Procedures

The basic idea underlying invariance of statistical procedures nat-
urally is invariance of the risk under the given transformations.

We seek a statistical procedure T (x) that is an invariant function
under the transformations.

Because if there is a maximal invariant function M all invariant
functions are dependent on M , our search for optimal invariant
procedures can use M .

A probability model may be defined in different ways.

There may be an equivalence between two different models that
is essentially a result of a reparametrization: θ̃ = ḡ(θ).

A random variable in the one model may be a function of the
random variable in the other model: X̃ = g(X).



There are two ways of thinking of estimation under a reparame-

trization, both in the context of an estimator T (X) of h(θ), and

with the transformations defined above:

• functional, g∗(T (X)) estimates g∗(h(θ));

• formal, T (g(X)) estimates g∗(h(θ)).

Functional equivariance is trivial.

This is the equivariance we expect under a simple change of

units, for example.



Functional Equivariance

If X is a random variable that models physical temperatures in

some application, it should not make any real difference whether

the temperatures are always measured in degrees Celsius or de-

grees Fahrenheit.

The random variable itself does not include units, of course (it

is a real number).

If the measurements are made in degrees Celsius at a time when

X is the random variable used to model the distribution of the

data and the estimator T (X) and the estimand h(θ) relates to

X in a linear fashion (if h(θ) is the mean of X, for example),

and later in a similar application the measurements are made in

degrees Fahrenheit, applying g∗(t) = 9t/5+32 to both T (X) and

h(θ) preserves the interpretation of the model.



Formal Equivariance

Formal equivariance, however, is not meaningful unless the prob-

lem itself has fundamentally symmetric properties; the family of

probability distributions is closed under some group of transfor-

mations on the sample space one on the parameter space.

In this case, we need a corresponding transformation on the

decision space.

The statistical procedure is equivariant it the functional equivari-

ance is the same as the formal equivariance; that is,

T (g(X)) = g∗(T (X)).



Optimality

Equivariance can be combined with other properties such as min-

imum risk or most powerfulness.

As we have seen, there are situations where we cannot obtain

these properties uniformly.

By restricting attention to procedures with properties such as

equivariance or unbiasedness, we may be able to achieve uni-

formly best procedures.

With unbiasedness, we seek UMVU estimators and UMPU tests.

Within a collection of equivariant estimators, we would choose

the one with some optimality property such as minimum risk.



The simplest and most interesting transformations are transla-

tions and scalings, and the combinations of these two, that is

linear transformations.

Consequently, the two most common types of invariant inference

problems are those that are location invariant (or equivariant)

and those that are scale invariant (or equivariant).

A location invariant procedure is not invariant to scale transfor-

mations, but a scale invariant procedure is invariant to location

transformations.



Equivariant Confidence Sets

The connection we have seen between a 1−α confidence region

S(x), and the acceptance region of a α-level test, A(θ), that is

S(x) 3 θ ⇔ x ∈ A(θ),

can often be used to relate UMP invariant tests to best equivari-

ant confidence sets.

Equivariance for confidence sets is defined similarly to equivari-

ance in other settings.



For the group of transformations G and the induced transforma-
tion groups G∗ and G, a confidence set S(x) is equivariant if for
all x ∈ X and g ∈ G,

g∗(S(x)) = S(g(x)).

The uniformly most powerful property of the test corresponds to
uniformly minimizing the probability that the confidence set con-
tains incorrect values, and the invariance corresponds to equivari-
ance.

An equivariant set that is Θ̃-uniformly more accurate (“more”
is defined similarly to “most”) than any other equivariant set is
said to be a uniformly most accurate equivariant (UMAE) set.

There are situations in which there do not exist confidence sets
that have uniformly minimum probability of including incorrect
values.

In such cases, we may retain the requirement for equivariance,
but impose some other criterion, such as expected smallest size
(w.r.t. Lebesgue measure) of the confidence interval.


