Welcome to CSI 972 / STAT 972
Mathematical Statistics I
Fall, 2011
Instructor:
James Gentle
Lectures: Tuesday, 4:30-7:10pm, Robinson Hall, room B203
Some of the lectures will be based on the instructor's notes posted on this
website. The lectures themselves will not be posted.
Some lectures will be accompanied only by notes written on the board.
Course Description
This course is part of a two-course sequence.
The general description of the two courses is available at
mason.gmu.edu/~jgentle/csi9723/
This course begins with a brief discussion of measure theory and probability theory.
Next, it covers fundamentals of statistical inference.
The principles of estimation are then
explored systematically, beginning with a general formulation of
statistical decision theory and optimal decision rules.
Bayesian decision rules are then considered in some detail.
Minimum
variance unbiased estimation is covered in detail. Topics include
sufficiency and completeness of statistics, Fisher information,
bounds on variances, consistency and other asymptotic properties.
Other topics and approaches in parametric estimation are addressed.
Prerequisites
The prerequisites for the first course include a course in mathematical statistics
at the advanced calculus level, for example, at George Mason, CSI 672 / STAT 652,
"Statistical Inference", and a measure-theory-based course in probability, for example,
at George Mason, CSI 971 / STAT 971, "Probability Theory".
Text and other reading materials
The text is Jun Shao (2003), Mathematical Statistics,
second edition, Springer.
Be sure to get the corrections at the
author's website
A useful supplement is Jun Shao (2005), Mathematical Statistics:
Exercises and Solutions,
Springer. My assigned "exercises for practice and discussion" are all
solved (or at least partially solved) in this book.
I plan to cover most of the material in the first four chapters in
Shao during 972 in
the fall semester, and
I plan to cover the most of the remainder in 973.
At the level of this course, no single text can cover "everything". The
student is encouraged to study other texts on the various topics; see,
for example, the references listed in the
general description of the course.
My evolving
Companion notes may also be useful.
These notes, which include an index and a bibliography,
are not complete, and are not meant to be. Their purpose is to provide a few additional
examples, and some more detailed discussion of some things.
I will add to them frequently, so I do not recommend printing them.
One learns mathematical theory primarily by individual work; that is, by supplying the
successive steps in solving a problem or proving a theorem.
Some mathematical theory is learned and reinforced by passive activities such as
reading or listening to lectures and discussions, and the assigned readings and
weekly lectures are meant to serve this purpose.
The reading assignments listed in the schedule below should be carried out with
a pencil and paper in hand. The readings should be iterated as necessary to achieve
a complete understanding of the material.
Email Communication
The primary means of communication outside of class will be by email.
Students must use their Mason email accounts to receive important University
information, including messages related to this class.
(You may, of course, foward email from
your Mason email account to one that you check regularly.)
If you send email to the instructor,
please put "CSI 972" or "STAT 972" in the subject line.
Grading
Student work in the course (and the relative weighting of this work
in the overall grade) will consist of
homework assignments (25)
a midterm consisting of an in-class component and a
take-home component (20 each)
a final in-class exam (35)
For in-class exams, one sheet of notes will be allowed. The preparation of that
sheet is one of the most important learning activities.
Homework
Each homework will be graded based on 100 points, and 5 points will be deducted
for each day that the homework is late.
The homework assignments are long, so
they should be begun well before they are due.
Start each problem on a new sheet of paper and label it clearly.
The problems do not need to be worked sequentially
(some are much harder than others);
when you are stuck on one problem, go on to the next one.
Homework will not be accepted as computer files; it must be submitted on
paper.
Academic honor
Each student enrolled in this course must assume the
responsibilities of an active participant in GMU's scholarly
community in which everyone's academic work and behavior are
held to the highest standards of honesty. The GMU policy on
academic conduct will be followed in this course.
Collaborative work
Except during a period in which a take-home exam is being worked on,
students are free to discuss homework problems or other topics
with each other or anyone else, and are
free to use any reference sources. Group work and discussion outside of
class is encouraged, but of course explicit copying of homework solutions
should not be done.
Students are not to communicate concerning exams with each other or with any person other than
the instructor. On take-home exams, any passive reference
is permissible (that is, the student
cannot ask someone for information, but the student may use any existing information from
whatever source).
Schedule
An approximate schedule is shown below. As the semester progresses,
more details may be provided, and there may be some slight adjustments.
Students are expected to read the relevant material in the text prior to each class
(after the first one).
Students are strongly encouraged to solve the "exercises for practice and discussion",
especially those marked with an asterisk.
Week 1, August 30
Course overview; notation; etc.
How to learn mathematical statistics (working problems and remembering
the big picture); "easy pieces".
Fundamentals of measure theory:
sigma-fields, measures, integration
and differentiation.
Reading assignments:
Companion notes, Sections 0.0 and 0.1 and Chapter 1, and
Shao, Chapter 1.
Exercises for practice and discussion: In Shao Exercises 1.6: problems
12, 14, 30, 31, 36, 38, 51, 53, 55, 60, 70, 85, 91, 97, 128, 161.
Assignment 1, due September 6:
In Shao Exercises 1.6: problems 2 (this is just the definition that I give -- but
you should use Shao's informal definition as the "smallest", and also
you must prove that it is nonempty), 6, 17.
In Companion, Exercises 0.0.14, 0.1.1, 0.1.4, 0.1.8, 0.1.10, 0.1.13, 0.1.25.
Week 2, September 6
Fundamentals of probability theory:
random variables and probability distributions, and expectation; important
inequalities.
Assignment 2, due September 13:
In Shao Exercises 1.6: problems 41, 58, 63.
In Companion, Exercises 1.8, 1.12, 1.24, 1.29, 1.39, 1.46, 1.56(a).
Week 3, September 13
Probability theory and families of probability distributions.
Assignment 3, due September 20:
In Shao Exercises 1.6: problems 78, 99, 102, 105, 127, 159.
In Companion, Exercises 1.67, 1.69, 1.73, 1.74
Week 4, September 20
Families of probability distributions useful in statistical applications.
Basic statistical concepts: Sufficiency and completeness.
Reading assignments:
Companion notes, Chapter 2, and
Shao, Chapter 2.
Exercises for practice and discussion: In Shao Exercises 2.6: problems
9, 13, 19, 23, 25, 30, 44, 56, 66, 74, 84, 93, 101, 115, 121.
Assignment 4, due September 27:
In Shao Exercises 2.6: problems 3, 5, 7, 20, 27.
Week 5, September 27
Basic statistical concepts: Decision theory, confidence sets, and hypothesis testing.
Week 6, October 4
In class midterm exam.
Closed book and closed notes except for one sheet (front and back) of
prewritten notes.
Due October 18
Between now and the end of class on October 18, students are not to discuss
homework or other aspects of the course (including the takehome of course!)
with anyone other than the instructor.
October 11
Class does not meet this week
Week 7, October 18
Takehome midterm exam due.
Review inclass exam.
Decision theory.
Assignment 5, due October 25:
In Shao Exercises 2.6: problems 28, 33, 63, 81, 98, 116, 123, 127.
Week 8, October 25
Decision theory and general review of Shao Chapter 2.
Bayesian inference
Reading assignment:
Companion notes, Chapter 3.
Assignment 6, due November 1:
In Shao problems 4.1(a)(b), 4.17, 4.18, 4.31, 4.32(a), 4.38(a)(b).
Week 9, November 1
Bayesian inference
Assignment 7, due November 8:
In Companion, Exercises 3.7, 3.9, 3.11, 3.12, 3.14, 3.15
(Exercises 3.2, 3.3, 3.5, 3.7, 3.8, 3.9 in version of Companion
dated prior to November 8)
Week 10, November 8
Bayesian inference
Assignment 8, due November 15:
In Companion, Exercises 3.16, 3.20, 3.21, 3.23, 3.24
(Exercises 3.12, 3.14, 3.15, 3.17, 3.18 in version of Companion
dated between November 8 and November 18)
Week 11, November 15
Unbiased estimation.
Assignment 9, due November 22:
In Shao problems 3.9, 3.15, 3.32(a)(c)(g), 3.35(a)(b)(c).
Week 12, November 22
Unbiased estimation.
U statistics.
Linear models.
Finite population sampling.
Assignment 10, due December 7:
In Shao problems 3.43, 3.45, 3.46, 3.52, 3.61, 3.91.
Week 13, November 29
Unbiased estimation.
Asymptotically unbiased estimators.
Assignment 11, due December 7:
In Shao problems 3.106, 3.107, 3.109, 3.111, 3.114.
Week 14, December 7
Miscellaneous topics in estimation.
December 13
4:30pm - 7:15pm Final Exam.
Closed book and closed notes except for one sheet of prewritten notes.