Welcome to CSI 972 / IT 972
Mathematical Statistics I
Fall, 2005
Wednesday, 7:20-10:00pm, Innovation Hall, room 203
Instructor:
James Gentle
If you send email to the instructor,
please put "CSI 972" in the subject line.
This course is part of a two-course sequence.
The general description of the two courses is available at
mason.gmu.edu/~jgentle/csi9723/
This course is primarily on the theory of estimation.
It begins with a brief discussion of probability theory, and then covers
fundamentals of statistical inference.
The principles of estimation are then
explored systematically.
Minimum
variance unbiased estimation is covered in detail. Topics include
sufficiency and completeness of statistics, Fisher information,
bounds on variances, consistency and other asymptotic properties.
Other topics and approaches in parametric estimation are covered in detail.
Topics include the general formulation of statistical decision theory and optimal
decision rules.
The text is Jun Shao (2003), Mathematical Statistics,
second edition, Springer.
Be sure to get the corrections at the
author's website
I plan to cover the material through Section 4.3 in 972.
I plan to cover the remainder in 973.
Student work in the course (and the relative weighting of this work
in the overall grade) will consist of
homework assignments (25)
a midterm consisting of an in-class component and a
take-home component (30)
a final exam consisting of an in-class component and a
take-home component (45)
For in-class exams, one sheet of notes will be allowed.
An approximate schedule is shown below. As the semester progresses,
more details will be provided, and there may be some slight adjustments.
Week 1, August 31
Course overview; notation; etc.
How to learn mathematical statistics (working problems and remembering
the big picture); "easy pieces".
Basic math operations, methods of proving statements.
Fundamentals of measure theory: sigma-fields, measures, integration
and differentiation.
Fundamentals of probability theory: random variables and
probability distributions, and expectation; important inequalities.
(Shao, Sections 1.1 and 1.3)
Reading assignment: Read Shao, Sections 1.1 through 1.3.
Exercises assignment for discussion: In Exercises 1.6: problems
4, 8, 31, 36, 51, 63, 85
Assignment 1a, due September 21: In Exercises 1.6: problems
12, 14, 30, 38, 53, 55, 60
Solutions, comments.
Assignment 1b, due September 28: In Exercises 1.6: problems
70, 78, 91, 97, 128, 161
Solutions, comments.
Week 2, September 7
Review material in Sections 1.1 and 1.3.
Discuss integration and differentiation.
Discuss and work problems from Chapter 1.
Reading assignment: Read Shao, Sections 1.4 and 1.5.
Week 3, September 14
Continue discussion of problems from previous week.
Sequences of sets; intervals on the reals
Continue discussion of fundamentals of probability theory:
special stochastic processes, asymptotics. (Shao, through Chapter 1)
Reading assignment: Read Shao, Sections 2.1 and 2.2.
Week 4, September 21
Fundamentals of statistics: distributional models, parametric
classes. (Shao, through Section 2.2)
Reading assignment: Read Shao, Sections 2.3 and 2.4.
Assignment 2, due October 12 (but to be turned in October 19): In Exercises 2.6: problems
3, 4, 9, 19. 30, 44, 56, 66, 74, 84, 93, 101, 121
Hints, comments.
Week 5, September 28
Inference. (Shao, through Section 2.4)
Reading assignment: Read Shao, Section 2.5.
Week 6, October 5
Asymptotic inference. (Shao, through Chapter 2)
Handout
takehome portion of midterm
(remember the username and password).
Due October 19.
Sample from a previous year.
Solution/comments. Once you look at this, you destroy the value in the sample.
Week 7, October 12
Finish Chapter 2; review.
Week 8, October 19
Midterm exam.
Sample from a previous year.
Closed book and closed notes except for one sheet (front and back) of prewritten notes.
Reading assignment: Read Shao, Sections 3.1 and 3.2.
Assignment 3, due November 16 (or by noon November 22):
In Exercises 3.6: problems
3, 6, 19, 32(a)(b)(c), 35(a)(b)(c), 44 (note U_n should be nU_n), 52, 60, 91, 106.
Comments.
Week 9, October 26
Discuss
inclass portion and
takehome portion of midterm.
UMVU estimation.
Reading assignment: Read Shao, Sections 3.3 and 3.4.
Week 10, November 2
U statistics; least squares estimation.
Reading assignment: Read Shao, Section 3.5.
Week 11, November 9
LSE in linear models.
Some basic facts about matrices and vectors
More information about matrices and vectors
Reading assignment: Read Shao, Sections 4.1 and 4.2.
Assignment 4, due December 7 (but not to turn in): In Exercises 4.6: problems
1(a), 1(b), 2(a), 2(b), 13, 14, 15, 17, 18, 19(b), 27, 30, 47, 52, 89, 91
Week 12, November 16
Finite population sampling; miscellaneous topics in unbiased estimation.
Bayesian methods.
Reading assignment: Read Shao, Section 4.3.
(No Class November 23)
Week 13, November 30
Bayesian methods; invariance.
Week 14, December 7
Invariance; admissibility.
Review.
Handout takehome portion of final (due December 14).
December 14
7:30pm - 10:15pm Final Exam.
Closed book and closed notes except for one sheet of prewritten notes.
Sample from a previous year.