

PROGRAM 02

CS310

DILLES, JACOB
3/31/08

NOTE TO T.A.:

The structure of my program may differ significantly in some ways
from the assignment. These internal enhancements were made with the
express permission of Prof. Nordstrom. Externally the program is
indistinguishable from the less efficient methodology. Please do not
hesitate to contact me with any questions or concerns at:

JDILLES@GMU.EDU

Program 2 Dilles, Jacob

2 / 11

Table Of Contents

External Documentation (this document) 11 Pages

Program 2 Assignment 5 Pages

Terminal Session Output 9 Pages

MountPrompt.java - 179 lines 3 Pages

DirectFile.java - 337 lines 5 Pages

Disk.java - 134 lines 2 Pages

Sector.java - 422 lines 6 Pages

Hash.java - 131 lines 3 Pages

Record.java - 171 lines 3 Pages

Record.java (interface) - 41 lines 1 Page

Total 48 Pages

Program 2 Dilles, Jacob

3 / 11

Abstract

Program 02 demonstrates the relationship between a virtualized

“physical” hardware layer and a direct access file implemented using

hash-code bucketed sectors holding a number of data records, in this

case information on mountain names, locations, and elevations.

Interaction between each real “piece” is simulated by limiting

component interfaces to their physical counterparts.

Note

My implementation of overflow sectors is substantially

different then the method outlined in the assignment. These changes

were specifically approved by Prof. Nordstrom on 2008-03-18.

Reasoning and methodology for said modifications follow.

Introduction

There are four primary classes in Program 02, plus one

additional for the terminal interface. The objective of this project

is simulation of a physical hard disk; as such the class responsible

is thusly named Disk. The classes Sector and Record are object-

oriented data abstractions, and do not represent their physical

counterparts of the same name. The class DirectFile is the only one

that interacts with the concept of mountains, besides the

MountPrompt class - which manipulates a DirectFile. A minor but

important class is Hash, which is used by DirectFile to determine

which bucket a record should fall in. Although it may appear to

consist of a rather large code base of 1,242 lines (45,407 bytes)

the majority of it is inline comments and compiled is only 20,620

bytes. The project took approximately 19 hours to complete, and has

no external data structure dependencies.

Program 2 Dilles, Jacob

4 / 11

Functionality

Starting from the user’s terminal, the first encounter is with

MountPrompt. This simple, procedural class prompts the user with

several options: help, open, insert, find, remove, and quit.

Although all of these operations are self explanatory, at any time

the “help” command will bring up sort explanations of each command.

Command processing is implemented through simple string

manipulation. When the user enters a line of text followed by a LF

(\n) the Main() method breaks the line into two parts separated by

the first space. The first part is switched as the command, while

the second part is passed to the command (if not null) as the

argument. Thus “find Everest” at the terminal would internally call

find(“Everest”). All sub-methods are named according to their

function. NOTE: Due to my modified overflow implementation, I was

able to easily implement a Remove() operation, although it was not

called for in the assignment, I felt that it was an appropriate

function of a file, thus was included. All terminal input is regex

checked and validated as much as possible to prevent the user from

passing invalid commands to the DirectFile.

At startup, MountPrompt creates a Disk, which represents a

physical hard disk in that it’s operations are limited to reading

and writing fixed sectors of data. In the case of our disk, there

are 2000 sectors, each holding 512 chars of data. In Java, the char

is a primitive type that represents a positive number from 0 to

65,535 – that is 16 bits of data. Thus each sector can hold 8KB or

8,192 bits, and making our disk a whopping 16MB.

To further the analogy, Disk reads to and writes from a disk buffer,

although it is not used in the same way that one would with a

physical disk (Java would more likely use a InputStream and

OutputStream) Internally Disk holds each sector as a char[], and

addresses the sectors in an array of char arrays, or char[][]. Disk

will unquestionably read from or write to any sector so long as it

is in its valid range.

Program 2 Dilles, Jacob

5 / 11

DirectFile makes read and write operations on Disk. NOTE: This

is where my implementation begins to differ from the original

approach. Rather then dealing with each record char by char in one

big file, I chose to delegate responsibility in an object-oriented

fashion, such that the physical sector is now represented by class

Sector, and the physical record now class Record. This allows

wonderful encapsulation in that atomically distinct records can be

batched in a sector without the sectors knowledge of the internals

of the record. Thus DirectFile will work with any record (See

interface Record) so long as it meets the interface criteria:

A Record must have a key that is accessible

A Record must represent itself as a 60 char array

A Record must be able to reconstruct itself from said 60 char array

Any data Record stores is immaterial to Sector, so long as it

returns a char[60] and when constructed as new Record(char[]) it

produces the same key. The data oriented constructor for Record is

implementation dependent. In the mountainous configuration, Record

stores it’s data as plain text in the char[] as follows:

NAME: 0 - 27
COUNTRY: 27 - 54
ALTITUDE: 54 – 60

Sector is significantly more complex, but has only one

constructor: new Sector(char[512]). Thus regardless of intention,

you must read a sector off the disk to create a sector object.

Complete details are documented inline with the class, but in

summery a sector is composed of 11 “blocks” of data which have

defined positions within the 512 characters. These are as follows:

Program 2 Dilles, Jacob

6 / 11

CHESUM: 0 - 12
SECNUM: 12 - 22
REFNUM: 22 - 32
RECORD0: 32 - 92
RECORD1: 92 - 152
RECORD2: 152 - 273
RECORD3: 212 - 272
RECORD4: 272 - 332
RECORD5: 332 - 392
RECORD6: 392 - 452
RECORD7: 452 - 512

The RECORD0 – RECORD7 are 60 char blocks which each holds a

record. On instantiation, the Sector chops up these into 8 arrays

and creates 8 Record objects. Because each Record (by interface

spec.) has a key, the Sector class can easily determine if it has a

Record with key X, simply by checking with each Record object for a

match. Because it returns the object rather then a char[], it is

MUCH more flexible in that the record object can be smart, encode

data however it wants, or do any special operation it wishes without

any modification of the Sector object. For instance, in an

implementation where only 7 bit ASCII data was stored in a record, a

special Record class could hold a 136-character string in only 60

chars, achieving a much higher data density.

Since a sector is 512 chars and a record is 60, that lets us

hold eight records per sector. This leaves 32 extra chars (6%) that

would, as per assignment, go to waste. This is a shame, as 1MB of

our 16MB disk would be unused. NOTE: The composition of Sector is

the PRIMARY deviation from the assignment. Where as originally

sector buckets that overflowed were to be dumped randomly in

overflow Sectors, I have used part of the unused 32 char sector to

hold an address which points to the next sector which holds records

from the same bucket. I chose the address to be stored as a ten

digit, plain text int, thus capping addressable sectors at

9,999,999,999. As each sector can hold 7,680 bits of data, that

imposes a limit of approximately 69.84TB per DirectFile. This could

be increased to 7.68x10^19 bytes by using ten digits of hexadecimal

instead. For comparison, the modern NTFS file system has a maximum

file size of 1.84x10^19 bytes.

Program 2 Dilles, Jacob

7 / 11

If the REFNUM is “0”, the Sector has not overflowed.

Otherwise, for simplicity sake, the REFNUM is the integer value of

the next sector of the same hash bucket on the Disk. The last two

values are SECNUM, which simply holds the bucket number, and CHKSUM

stores an int value. CHKSUM is a 12 char ADLER32 checksum of the

data in the Sector. NOTE: This again was not part of the assignment,

but there was all that extra room not being used... It is computed

on the 500 chars (not including the sum space) after all the data

has been formatted. Although the Adler algorithm cannot prevent

malicious tampering, it does quite effectively detect data

corruption, much more so then a typical CRC. When a new Sector

object is created, the same algorithm is run, and warns the user of

data corruption should CHKSUM not match the data in the sector.

DirectFile is very simple thanks to Sector and Record. The

important value in DirectFile is bucketsAllocated. This is not only

the number of sectors initially written to disk, but also the limit

of the hash function (see below). The first step in writing a record

is hashing it’s key. In the case of the assignment, this will

produce a number between 0 and 599 which represents the disk address

of the FIRST sector holding data for that hash bucket. In practice

it is slightly more complicated, DirectFile may offset the original

hash buckets for one reason or another. However the offset is

maintained in both reads and writes and does not affect the results.

Next, a Sector object is created when said sector address is read

off of the Disk. If there is room in the Sector, the record is added

there. If the Sector is full, an overflow sector, adds the overflow

address to the former Sector, and writes the data to the overflow

Sector. Reading is similar, DirectFile recursively follows REFNUM

pointers, creating Sector objects and polling them for their keys.

For example, hash bucket #323 is originally stored in sector

#323. If a ninth record needs to be inserted in hash bucket #323,

the next available sector on the disk gets allocated as an overflow

– say #634. The value 0000002000 is written to sector #323 REFNUM,

and the record is inserted into sector #634. This allows very

efficient overflow allocation because the first overflow sector is

Program 2 Dilles, Jacob

8 / 11

accessed almost as fast as the original (only one additional read)

and the next is still N time where N is records, not sectors. To

access the newest record, the key is once again hashed into #323.

The sector at that address is read into a Sector object, which the

DirectFile asks if it has the desired key. It does not (since the

record is not there) but it DOES have an overflow sector, so it

simply recuses: checking the sector, following the overflow, etc.

until the record is found or the REFNUM is 0.

NOTE: Writing a hash function was not part of the assignment.

The Hash class was statically encapsulated purely for testing

convenience. While the assignment recommended using

java.lang.String.hashCode() as the base hash function, I decided

that it would be interesting to evaluate the distribution of said

function rather then accepting it outright. I wrote a tester class

that could evaluate a hash function with a 27 char key (as per

assignment) generated randomly to match anticipated input data:

[UPPER]{1} + [lower]{2,10} + [" ",", ","'s "," - "]{1} + [UPPER]{1} +

[lower]{2,10} (MAX27)

or read directly from a file. The output of my test program produced

results in the format:

i=2940,max=599,min=0,range=599,usd=596,miss=0%,maxB=11,avrB=5,score=45%

i=2940,max=599,min=0,range=599,usd=593,miss=1%,maxB=11,avrB=5,score=45%

Where i=number of trials, max=largest bucket#, min=smallest bucket#,

usd=number of used buckets, miss=number of buckets not used,

maxB=maximum keys hashed in any bucket, avrB=average number of

records per bucket, and score=avrB/maxB% for easy analysis (the only

thing that matters in distribution is score). As it turns out, the

two hashes are very similar run on the actual data provided for the

assignment. However throw some random data at it and there are a

significant number of collisions. I wrote my own hash function

designed specifically to deal with short length, printing letter

only keys. It works by using a lookup table of 255 randomly

Program 2 Dilles, Jacob

9 / 11

generated 32-bit numbers. Thus for each input table[in] from 0-255

(ASCII char) there is an arbitrary, statistically random function

that relates f(in) = out. The function, loosely based on a Universal

Hash operates as follows. The hash is a char (0 - 65,535) number

that starts at 0. Char was chosen over int or short to prevent

rollovers from creating negative values. Each character in the input

key is processed sequentially, first by looking its ASCII value up

in the table. Note that the actual input value is never directly

added to the hash code. Eight iterations of eight consecutive values

taken from the table form a rolling window that performs a cascade

of XOR operations on the hash value. The prime number shift XOR

avalanche after the window loop further assists the function in

providing a very well distributed hash code. After all characters

have been processed, the value is modulus maximum value and

returned.

File I/O

 To read in the “mountains.txt” file provided with the

assignment, MountPrompt creates a BufferedReader from an

InputStreamReader, which is in turn created from a FileInputStream

that is passed a File that the user specifies. Since the mountain-

specific Record class has a constructor that deals directly with the

“name#country#altitude” format, a Record object is created from each

line. If there is invalid data Record throws a runtime exception

that is caught in the try-catch, and simply alerts the user that the

input file is invalid. This record is then added to DirectFile.

Also, all data handling classes (Disk, DirectFile, Sector, and

Record) have dumping methods that can be used to print or write out

a char-by-char copy of their contents. This proved to be very useful

in debugging. Care must be taken when dumping the Disk class though;

it takes around 10 seconds to write the entire disk to a file. Here

is an example of a sector dump:

Program 2 Dilles, Jacob

10 / 11

Sector number: 323

Overflow addy: 634

Population: 8

Checksum: 1571311202

--Data Dump--

..1571311202.......323.......634

Clark Mountain.............United States................8602

Faschaunereck..............Austria......................8569

Hochgall / Collalto........Austria/Italy...............11272

Manaslu....................Nepal.......................26758

Peak E.....................United States...............13230

Red Lake Peak..............United States...............10063

Snowy Peak.................United States................3899

Three Fingers..............United States................6870

--End Dump--

From this you can see the char[] structure of all 512 bytes in

the sector. Note the overflow address 634, which dumps to:

Sector number: 634

Overflow addy: 0

Population: 1

Checksum: -1606874103

--Data Dump--

.-1606874103.......323.........0

White Princess.............United States................9850

..

..

..

..

..

..

..

--End Dump—

Note here that the overflow address is set to 0, indicating that

there are no more overflow sectors after this one.

Efficiency

A single set of unorganized overflow sectors is very

inefficient for access since if a record is not found in the primary

bucket sector, all overflow sectors must be scanned. This requires

Program 2 Dilles, Jacob

11 / 11

many disk reads (very expensive) and makes deletion very difficult

because once the main sector is full no records may be removed from

it. The above system requires only one read per eight records,

regardless of how many overflow sectors exist. Moreover, deletions

are easy and efficient; you may remove records at will so long as

the overflow pointer remains set. If a great many deletions occur, a

file can be compacted by reading all records from a given bucket

into an array of Record objects, wiping the records from all Sectors

from said bucket, then filling in Record objects starting in the

original Sector. A simple population and overflow counter maintained

for each bucket could aid in determining when compacting was

necessary. After all sectors are compacted one may create a map of

the overflow area, deleting any empty sectors, and moving those

farthest away to the front. Since any overflow Sector is aware of

its bucket number, this can be carried out with minimal disk I/O.

 While vastly more efficient in access time, this system does

use more space then a mass-overflow implementation. Specifically

because each overflow sector is tied to a specific bucket, there are

often overflow sectors that are not full, some having only one or

two records. With the data provided, this translates to 37 overflow

sectors holding 62 records. In a mass overflow system, said records

would occupy only 8 sectors. It is a direct tradeoff between

performance and space: a given overflow sector in my system is

directly accessed, while all 8 sectors otherwise must be scanned on

every overflow access. Though ultimately the entire purpose of a

hash based direct file is performance over space; technically the

entirety of the sample data could be stored on 368 (as opposed to

637) unordered sectors, but to find a given record would take 368

disk reads. My implementation of overflow records is an extension of

this philosophy.

(2008-03)

JSD

