
Design and Maintenance of

Java Server Pages

James Baldo Jr.

SWE 432

Design and Implementation of Software for the Web

JSP Maintenance Problems

• Presentation and content are not always well separated

– Java mixed with the HTML can be very hard to understand

• Most developers are not yet good at establishing levels of

abstraction in JSP pages

8/24/2008 © Offutt 2

• Books, articles, and web resources focus on JSP syntax,

not style and design

First Rule of Formatting JSP

• JSP is somewhat messy (like JavaScripts)

– Hard to read

– Hard to debug

– Hard to get right

– Hard to maintain

• Strategy:

8/24/2008 © Offutt 3

• Strategy:

Keep a minimum of Java in the JSP, do most of the programming
with separate Java:

• Servlets

• Beans

This allows separation of concerns – good OO design

JSP: Readable HTML

• Make JSP look like HTML with Java calls,

not Java with some HTML

• Move all of the business logic out of the JSP

• Java that generates HTML is hard to maintain:

– Humans have trouble viewing HTML as “normal text”

8/24/2008 © Offutt 4

– The quotes (“\””) are very hard to read

• Let HTML developers write HTML, and Java developers

write Java

The system design must support these goals

J2EE Assumptions about Data

• Data values: The contents of memory

• Data structure: Types, organization and relationships of

different data elements

• Data presentation: How the data is shown to humans

8/24/2008 © Offutt 5

• J2EE assumes that data:

– values change very frequently (during execution)

– structure changes very infrequently

– presentation changes occasionally

JSPs in a Multi-Tier Architecture

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

8/24/2008 © Offutt 6

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

Each software layer

only communicates

with adjacent layers

JSPs in a Multi-Tier Architecture (2)

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

8/24/2008 © Offutt 7

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

Beans and Java classes

that are used directly by

the JSPs.

JSPs in a Multi-Tier Architecture (3)

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

8/24/2008 © Offutt 8

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

Parsing, cookie handling,

… library classes that are

used by web software

JSPs in a Multi-Tier Architecture (4)

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

8/24/2008 © Offutt 9

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

Presentation logic in

Swing that produces

output that is independent

of the UI.

JSPs in a Multi-Tier Architecture (5)

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

8/24/2008 © Offutt 10

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

Presentation logic that

produces output that is

independent of UI.

(An alternative to Swing)

JSPs in a Multi-Tier Architecture (6)

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

8/24/2008 © Offutt 11

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

Business logic processing

not concerned with

presentation or data

storage

JSPs in a Multi-Tier Architecture (7)

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

8/24/2008 © Offutt 12

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

Classes used to interface

with the resources level.

EJBs are often used.

JSPs in a Multi-Tier Architecture (8)

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

8/24/2008 © Offutt 13

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

Non-java resources for

data storage, including

databases

JSPs in a Multi-Tier Architecture (9)

JSPs

JSP resources

JSP beans

Tag extensions

Non UI-specific presentation layer

Swing
Web-specific

library classes

If the system is designed

well, there is little code here.

8/24/2008 © Offutt 14

Non UI-specific presentation layer

Models

Library classes

Business logic layer

(Session EJBs)

Enterprise resource abstraction layer

(Entity EJBs)

Enterprise resources

Databases

Legacy systems

JSPs in a Multi-Tier Architecture (10)

• This model allows very clean separation of the software

that handles the data values, structure, presentation, and

storage

• In small applications, some levels can be skipped

8/24/2008 © Offutt 15

• Indeed, the need for this separation is hard to see with

small applications – maintenance is only hard when

systems get big

Design Styles

1. Page-centric (client-server) : Requests are made to JSP
pages, and the JSP pages respond to clients

2. Dispatcher (N-tier) : Requests are sent to JSPs or
servlets that then forward the requests to another JSP or

8/24/2008 © Offutt 16

servlets that then forward the requests to another JSP or
servlet

In both cases, the goal is to separate logic

from presentation and to separate as many

concerns in the logic as possible

1) Page-centric Design

Browser on a client

Server

Request

8/24/2008 © Offutt 17

Browser on a client

Browser on a client

Database
JSP or servlets

Client requests are

intercepted here

EJB

Java Beans

Uses or instantiates

Request

Response

1. Page-centric Design (2)

• This is a simple design to implement

• The JSP author can generate pages easily

• Two variants:

– Page-View

– Page-View with a Bean

8/24/2008 © Offutt 18

– Page-View with a Bean

• Does not scale up very well to large web sites

• Often results in a lot of Java code in the JSP

– JSP authors must be Java programmers

– Design is hard to see

– Hard to maintain

2. Dispatcher Design

• A “dispatcher” accepts requests and routes them to the correct

place

• In a dispatcher design, a front-end JSP (or servlet) looks at some

portion of the request, and then chooses the correct place to

forward it

8/24/2008 © Offutt 19

• This is more sophisticated than the page-centric:

– More flexible and scalable

– More overhead that is wasteful with small applications

• Three versions

– Mediator-View

– Mediator-Composite View

– Service to Workers

2-A. Mediator-View Design

• The Mediating JSP sends requests to a JSP

• The JSP sets and gets beans and creates a page

Request

Mediating Presentation Worker

8/24/2008 © Offutt 20

Mediating

JSP

Business

Processing

Response

Presentation

JSP

Presentation

JSP

Presentation

JSP

Worker

Beans

Worker

Beans

Delegate

