
Introduction to Java Servlets

James Baldo Jr.James Baldo Jr.

SWE 432

Design and Implementation of Software for the Web

Web Applications

• A web application uses enabling technologies to

1. make web site contents dynamic

2. allow users of the system to implement business logic on the

server

• Web applications allow users to affect state on the server

• Search engines, though complicated, do not really affect

8/24/2008 © Offutt 2

• Search engines, though complicated, do not really affect

the server’s state

An enabling technology is a mechanism that makes

web pages interactive and responsive to user input

Traditional Computing UseTraditional Computing Use

A user is working with software on her computer

8/24/2008 © Offutt 3

Client Client –– Server ComputingServer Computing

Client requests data

A user is working with software or data on a

separate computer called a server

8/24/2008 © Offutt 4

Client PC

Compute or

DB Server

Server returns data

Web ApplicationsWeb Applications

Many users work with servers and databases that

can be reached through the Internet with the

HyperText Transfer Protocol

SQL

Records

8/24/2008 © Offutt 5

Client

Browser

Internet

HTTP RequestHTML

Records

Client

Browser

Client

Browser

NN--Tier Web ArchitectureTier Web Architecture

network
middleware

Large web applications run on many computers

that have to coordinate with each other.

Amazon and Netflix have thousands of servers.

8/24/2008 © Offutt 6

Client Web

Servers

Application

Servers

DB

Servers

Browser

Javascripts

HTML

PHP

ASP

JSP, etc

Java

C#

network
middleware

How the Software WorksHow the Software Works

Name :

Age :

Email :

George

23

BrowserBrowser

<html><html><html><html>
<body><body><body><body>

<form method=post action=<form method=post action=<form method=post action=<form method=post action=idProgramidProgramidProgramidProgram Name=Name=Name=Name=idFormidFormidFormidForm>>>>
NameNameNameName: <input type=text name=: <input type=text name=: <input type=text name=: <input type=text name=userNameuserNameuserNameuserName>>>>
AgeAgeAgeAge: <input type=text name=: <input type=text name=: <input type=text name=: <input type=text name=ageageageage>>>>
EmailEmailEmailEmail: <input type=text name=: <input type=text name=: <input type=text name=: <input type=text name=EmailEmailEmailEmail>>>>

</form></form></form></form>
</body></body></body></body>
</html></html></html></html>

HTMLHTML

8/24/2008 © Offutt 7

BrowserBrowser HTMLHTML

out.printlnout.printlnout.printlnout.println (“<html>(“<html>(“<html>(“<html>\\\\n”);n”);n”);n”);
out.printlnout.printlnout.printlnout.println (“<body>(“<body>(“<body>(“<body>\\\\n”);n”);n”);n”);
out.printlnout.printlnout.printlnout.println (“<p>Your name is “);(“<p>Your name is “);(“<p>Your name is “);(“<p>Your name is “);
out.printlnout.printlnout.printlnout.println ((((req.getParameterreq.getParameterreq.getParameterreq.getParameter ((((userNameuserNameuserNameuserName));));));));
out.printlnout.printlnout.printlnout.println (“(“(“(“\\\\n<p>Your age is “);n<p>Your age is “);n<p>Your age is “);n<p>Your age is “);
out.printlnout.printlnout.printlnout.println ((((req.getParameterreq.getParameterreq.getParameterreq.getParameter ((((ageageageage));));));));
out.printlnout.printlnout.printlnout.println (“(“(“(“\\\\n<p>Your email is “);n<p>Your email is “);n<p>Your email is “);n<p>Your email is “);
out.printlnout.printlnout.printlnout.println ((((req.getParameterreq.getParameterreq.getParameterreq.getParameter ((((EmailEmailEmailEmail));));));));
out.printlnout.printlnout.printlnout.println (“</body>”);(“</body>”);(“</body>”);(“</body>”);
out.printlnout.printlnout.printlnout.println (“</html>”);(“</html>”);(“</html>”);(“</html>”);

Java Java ServletServlet

Your name is George

Your age is 23

Your email is

BrowserBrowser

to serverto server

to clientto client

Server Side Processing

HTTP Request

browser

web server

servlet

data

8/24/2008 © Offutt 8

HTTP Response

Client Server

servlet

container

HTML

Session Management

• HTTP client server communication is connectionless

– as soon as the request is made and fulfilled, the connection is terminated

– communication is more simple and resistant to network problems

• But how can a server keep track of state of different clients?

1. Session: A single coherent use of the system by the same user

– Example: shopping carts

8/24/2008 © Offutt 9

– Example: shopping carts

2. Cookies: A string of characters that a web server places on a browser’s

client to keep track of a session

– usually used as an index into a table (dictionary) on the server

– most dictionaries expire after a reasonable time (15 to 30 minutes)

We’ll come back to this later …

Enabling Technologies - CGI

• CGI: Common Gateway Interface allows clients to
execute applications on the server

• CGI applications usually reside in a special “safe”
directory

• Can be written in any language; PERL is most common

• CGI apps typically:

8/24/2008 © Offutt 10

• CGI apps typically:

1. process data

2. modify server state

3. return information (usually an HTML page)

Enabling Technologies

Problems with CGI

• CGI does not automatically provide session management

services

• Each and every execution of a CGI module requires a new

process on the web server

8/24/2008 © Offutt 11

process on the web server

Solution: Plug-ins on the Web server

Enabling Technologies

Web Server Plug-ins

• A plug-in is an extension to a web server that allows a

different program to handle certain types of requests

– images, sound, video

– compiled module applications

– scripted page applications

8/24/2008 © Offutt 12

– scripted page applications

• Plug-ins typically keep an active process as long as the

web server is active

Enabling Technologies - Plug-ins

Compiled Modules

• Compiled modules are executable programs that the server
uses

• Common compiled module application plug-ins:

– Microsoft’s Internet Server API (ISAPI) ASP

– Netscape Server API (NSAPI)

– Java servlets

8/24/2008 © Offutt 13

– Java servlets

• Compiled modules are efficient and very effective

• They provide clear separation of the front-end from the
back-end, which aids design but complicates
implementation

Enabling Technologies - Plug-ins

Scripted Pages

• Scripted pages look like HTML pages that happen to

process business logic

• Execution is server-side, not client (unlike JavaScripts)

• They are HTML pages that access software on the server

to get and process data

8/24/2008 © Offutt 14

to get and process data

• JSPs are compiled and run as servlets (very clean and

efficient)

• PHP scripts are interpreted within the server

Enabling Technologies - Plug-ins

Scripted Pages (2)

• Common scripted pages:

– Allaire’s Cold Fusion

– Microsoft’s Active Server Pages (ASP)

– PHP

– Java Server Pages (JSP)

8/24/2008 © Offutt 15

– Java Server Pages (JSP)

• Scripted pages are generally easy to develop, and deploy

• They mix logic with HTML, so can be difficult to read

and maintain

• Not effective for heavy-duty engineering

Servlets

• Servlets are small Java classes that perform a service

• Servlet container or engine

– connects to network

– catches requests

8/24/2008 © Offutt 16

– produces responses

– requests are handled by objects

• Programmers use a servlet API

Servlet Container (or Engine)

• Servlet container is a plug-in for handling Java servlets

• A servlet container has five jobs:

1. Creates servlet instance

2. Calls init()

3. Calls service() whenever a request is made

4. Calls destroy() before killing servlet

8/24/2008 © Offutt 17

4. Calls destroy() before killing servlet

5. Destroys instance

• Really a mini operating system

Servlet Container (2)

1. If there is no active object for the servlet, the container instantiates

a new object of that class, and the object handles the request

When a request comes to a servlet, the servlet

container does one of two things:

8/24/2008 © Offutt 18

a new object of that class, and the object handles the request

2. If there is an active object, the container creates a Java thread to

handle the request

Servlet Container (3)

• When it gets destroyed is not specified by the servlet

rules

A servlet instance runs until the container decides to

destroy it:

8/24/2008 © Offutt 19

rules

• Most servlet containers destroy the object N minutes

after the last request

• N is usually 15 or 30, and can be set by the system

administrator

Servlet Container (4)

• What if the same servlet gets multiple requests?

• More than one execution thread may be running at the

same time, using the same memory

8/24/2008 © Offutt 20

Server container

servlet thread 1

servlet thread 2

Risky …Risky …

Client 1

Client 2

Shared

memory

space

Servlet Container (5)

• By default, there is only one instance of a servlet class per

servlet definition in the servlet container

• Distributable : If the application is distributable, there is

one instance of a servlet class per virtual machine

8/24/2008 © Offutt 21

one instance of a servlet class per virtual machine

(typically, each VM is on a different computer in the

cluster)

Allowing Concurrency (SingleThreadModel)

• Container may send multiple service requests to a single

instance, using Java threads

– Simply put, threads are Java’s concurrency mechanism

• Thus, your service methods (doGet, doPost, etc.) should

be thread-safe

8/24/2008 © Offutt 22

be thread-safe

– Loosely speaking, “thread-safe” means that if two or more

requests are operating at the same time, they will not interfere

with each other.

• If the service methods are not thread-safe, use the
SingleThreadModel

SingleThreadModel (2)

• The SingleThreadModel ensures that only one thread

may execute the service() method at a time

• Containers may implement this in two ways:

1. Instance Pooling : A “pool” of several servlet instances are

available that do not share memory

8/24/2008 © Offutt 23

available that do not share memory

2. Request Serialization : Only one request is handled at a time

3. Combination : A pool is used, and if there more requests than

servlets in the pool, they are serialized

• This is resource intensive and can be slow

• Better to synchronize only the statements that might

interfere with each other

Servlet Lifecycle
UML State Diagram

Does not exist Instantiated
instantiation based on

a request or at

container startup

initiation failed

initialization

8/24/2008 © Offutt 24

Unavailable
Initialized and/or

ready for requests

Destroyed Service

initiation failed

temporary or

permanent failure

timeout or a container shutdown

release

reference

back to service in case of

temporary unavailability

(optional)

HTTP requests

from clients

end of service

thread

Common Servlet Containers

• Tomcat (installed on Hermes apps cluster)

• BEA’s WebLogic

• Jrun

8/24/2008 © Offutt 25

• Jrun

• IBM Websphere (uses Apache / Tomcat)

Servlet API

• javax.servlet – primarily containers

• javax.servlet.http – methods to service requests

GenericServlet
Abstract class (not all

methods are implemented)

8/24/2008 © Offutt 26

HttpServlet

MyServlet

methods are implemented)

All methods are

implemented

Servlet written by a

programmer

Generic Servlet & HTTP Servlet

Servlets have five principal methods:

1. init() – called when servlet starts

2. service() – called to process requests

3. destroy() – called before servlet process ends

4. getServletConfig() – servlet can access information about

8/24/2008 © Offutt 27

4. getServletConfig() – servlet can access information about

servlet container

5. getServletInfo() – servlet container can access info about

servlet

Generic Servlet & HTTP Servlet (2)

• These methods are defined by the library classes

GenericServlet and HttpServlet

• We write servlets by extending (inheriting from) them

• GenericServlet does not implement service()

(it is abstract)

8/24/2008 © Offutt 28

(it is abstract)

• HttpServlet extends GenericServlet with:
service (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

1. init ()

• Read configuration data

• Read initialization parameters

(javax.servlet.ServletConfig)

• Initialize services:

– Database driver

8/24/2008 © Offutt 29

– Connection pool

– Logging service

• Seldom used in simple applications

2. service ()

• The entry point for the servlet – this is the method that is

called from the servlet container

• Called after the initialization (init ())

• Primary purpose is to decide what type of request is

8/24/2008 © Offutt 30

• Primary purpose is to decide what type of request is

coming in and then call the appropriate method

– doGet ()

– doPost ()

Types of HTTP Requests

• GET

• POST

• HEAD

• OPTIONS

doGet ()

doPost ()

doHead ()

doOptions ()
same signatures

8/24/2008 © Offutt 31

• OPTIONS

• DELETE

• PUT

• TRACE

doOptions ()

doDelete ()

doPut ()

doTrace()

as service()

Types of HTTP Requests (2)

• HttpServlet implements these methods as “stubs” that

print error messages

doGet () …

{ print ("Error, doGet() not implemented"); }

8/24/2008 © Offutt 32

• Programmers implement services by overriding these

methods

(most commonly doGet() and doPost())

3) destroy ()

• Called by container when the servlet instance is killed

• The threads from the service() method are given time to

terminate before destroy() is called

• Can be used for clean up tasks:

– Un-registering a database driver

8/24/2008 © Offutt 33

– Closing a connection pool

– Informing another application the servlet is stopping

– Saving state from the servlet

4) getServletConfig ()

• Returns a ServletConfig object, which stores information

about the servlet’s configuration

• The ServletConfig object was passed into init()

8/24/2008 © Offutt 34

5) getServletInfo ()

• Returns a String object that stores information about the

servlet:

– Author

– Creation date

– Description

– Usage

8/24/2008 © Offutt 35

– Usage

– …

• This string should be formatted for human readability

Simple Servlet Example

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class JOHello extends HttpServlet

{

public void doGet (HttpServletRequest req,

8/24/2008 © Offutt 36

public void doGet (HttpServletRequest req,

HttpServletResponse res)

throws servletException, IOException

{

res.setContentType (“text/html”);

PrintWriter out = res.getWriter ();

out.println (“<HTML>”);

Simple Servlet (2)

out.println (“<HEAD>”);

out.println (“<TITLE>Servlet example</TITLE>”);

out.println (“</HEAD>”);

out.println (“<BODY>”);

out.println (“<P>My first servlet.”);

out.println (“</BODY>”);

8/24/2008 © Offutt 37

out.println (“</BODY>”);

out.println (“</HTML>”);

out.close ();

} // end doGet()

} // end JOHello

http://apps-swe432.ite.gmu.edu:8080/swe432/servlet/offutt.Hello

Servlet Parameters — requests

Parameters are conveniently stored in objects

– String req.getParameter (String KEY)

Returns value of field with the name = KEY

– String[] req.getParameterValues (String KEY)

Returns all values of KEY (eg, checkboxes)

8/24/2008 © Offutt 38

Returns all values of KEY (eg, checkboxes)

– Enumeration req.getParameterNames ()

Returns an Enumeration object with a list of all parameter names

Servlet Output – responses

Standard output is sent directly back to the client browser

– res.setContentType (String type)

“text/html” is an HTML page

– PrintWriter res.getWriter()

Use print() and println() to write HTML to browser

8/24/2008 © Offutt 39

Use print() and println() to write HTML to browser

Servlet Performance

• Some servlets will run a lot

• Servlets run as lightweight threads, so are fast

• The network speeds usually dominate, but:

– avoid concatenation (“+”)

– out.flush() – Sends current output to user’s screen while servlet

8/24/2008 © Offutt 40

– out.flush() – Sends current output to user’s screen while servlet

continues processing

GET and POST Requests
• A GET request is generated when the URL is entered

directly

– doGet () is called

• An HTML form can generate either a GET or a POST
request

– “… Method=POST” or “… Method=GET”

8/24/2008 © Offutt 41

– “… Method=POST” or “… Method=GET”

• GET requests put form data on the URL as parameters

– http://www … /RunForm?NAME=Jeff&TITLE=prof

• GET parameters are limited to 1024 bytes

• POST requests put form data in body of request

GET and POST Requests (2)

• Textbooks say:

– Use GET to retrieve data

– Use POST to change “state” on server (update file or DB)

– Use POST when there are a lot of data items

8/24/2008 © Offutt 42

• My usual strategy:

– Use POST when sending data to server

– Use GET when no data is sent

GET and POST Requests (3)

• If my servlet is primarily based on processing data and I
use POST, implement a simple doGet() method as a filler:

. . .

8/24/2008 © Offutt 43

<BODY>

<CENTER>A Title …</CENTER>

<HR>

<P>

You should run this from

 http://… .html

</BODY>

Sending Mail Messages from Servlets

• Import mail utilities:

– import sun.net.smtp.SmtpClient;

• Setup mail header:

– send = new SmtpClient (“gmu.edu”);

Common job is to gather data from form and send through email

8/24/2008 © Offutt 44

– send.from (“offutt@gmu.edu”);

– send.to (“offutt@gmu.edu”);

• Send message:

– out = send.startMessage ();

– out.println (“… message header and body …”);

– out.flush ();

– out.close ();

– out.closeServer ();

Sending Mail Messages (2)

• This is the simplest mechanism for sending email, but is

not very powerful

• JavaMail is a collection of abstract library classes for

handling mail with a number of different protocols

8/24/2008 © Offutt 45

Redirecting to Another URL from

Servlets

Servlets usually generate an HTML file as a

response, but sometimes you may want to send

the client to a different URL.

• res.sendRedirect (“http://www.ise.gmu.edu/”);

• Do not need to set content type (setContentType())

8/24/2008 © Offutt 46

• Do not need to set content type (setContentType())

• The client will be “sent” to the specified URL

• Precisely:

– Server tells the client to generate another request to the new

URL

– Handled by browser, but invisible to the user

Writing to files from Servlets

• File must be in a publically writeable directory:

– cd // File under your home directory

– mkdir Data // Subdirectory named "Data/"

– chmod 777 Data // Write permission for everyone

• Open a file, write to it, and close it:

Common job is to save data into a file

8/24/2008 © Offutt 47

– FileWriter outfile = new FileWriter (“/home/offutt/Data/info-file”);

– outfile.write (... the data to save ...);

– outfile.close ();

• Open a file in append mode:

– FileWriter outfile = new FileWriter (“/home/offutt/Data/info-file”, true);

• Remember Unix / Windows path differences!!

– “info-file” does NOT equal “INFO-FILE” !!!

Deployment Testing

• Development and deployment computers often differ

• Web apps must be tested on final deployment platform

– Must test just as real users use it

• Issues to check for:

– Different platforms (DOS / Unix / Linux / Mac …)

8/24/2008 © Offutt 48

– Different platforms (DOS / Unix / Linux / Mac …)

• File names and path names (local/nonlocal, DOS/Unix)

• Upper case dependencies

– Incomplete deployment

– Compiler and runtime system version

– Permissions (data and DB)

Examples

1. Hello: Prints lots of hellos

2. Name: Accepts and prints a name from a form

3. FormHandler: Processes data from any form

4. ChoosAbs: Processes form data and sends through email

5. LoanCalculater: Compute time to pay off a loan

6. Convert: Convert values

http://www.ise.gmu.edu/~offutt/classes/432/Examples/Servlets/

8/24/2008 © Offutt 49

6. Convert: Convert values

7. Convert2: Better value conversion

8. FileLoad: Uploading files from client

9. StudInfoSys432: Processes data from students

10. Coupling Demo: Demos a tool

11. SessionLifeCycle: Demonstrates session data

12. Attribute Servlet: Prints values in session data

13. Shop: Simple shopping cart

