
An Overview of Java

Jeff Offutt
Roger Alexander

http://www.ise.gmu.edu/~offutt/

SWE 432
Design and Implementation of Software for the

Web

© Alexander & Offutt, 1999-2003 2

Java Introduction

• Developed by Sun Microsystems

• Originally intended for development of embedded
software for consumer electronics

• Re-designed for programming on the Internet

• Based on Objective C

© Alexander & Offutt, 1999-2003 3

Part I - Java Design Goals

© Alexander & Offutt, 1999-2003 4

Java Design Goals

• Object-oriented
• Architecture neutral
• Portable
• Robust
• Multi-threaded
• Distributed

© Alexander & Offutt, 1999-2003 5

Java vs. C++

• Java is interpreted, not compiled like C++
– Not quite! The Java VM interprets byte-code, not Java
– Java is compiled directly to byte-code

• Memory allocation in Java
• No direct multiple inheritance

– Achieved through interfaces

• Type parameterization simulated with inheritance and
objects

• Java pointers are typed and restricted
– Called references

© Alexander & Offutt, 1999-2003 6

Major Language Features

• Classes and Interfaces
• Inheritance and Polymorphism
• Exceptions
• Garbage Collection
• Multi-threading

© Alexander & Offutt, 1999-2003 7

Missing Language Features

• Multiple inheritance
• Assertions
• Enumerated types
• Call-by-reference parameter passing
• Default parameter passing

© Alexander & Offutt, 1999-2003 8

Part II - Java Basics

© Alexander & Offutt, 1999-2003 9

Lexical Elements

• Identifiers: Sequence of letters (Unicode), numbers,
underscore (“_”) and Dollar Sign (“$”).
– First character must be a letter, $, or _
– Case is significant

• Reserved Words: Keywords cannot be redefined by
programmer

• Operators: Tokens that perform operations upon
operands of various types

© Alexander & Offutt, 1999-2003 10

49 Java Reserved Words

nativeifelsechar

longfordoublecatch

interfacefloatdocase

intfinallydefaultbyte

instanceoffinalcontinuebreak

importfalseconstboolean

implementsextendsclassabstract

© Alexander & Offutt, 1999-2003 11

49 Java Reserved Words (cont’d)

whilethrowreturn

volatilethispublic

voidsynchronizedprotected

tryswitchprivate

truesuperpackage

transientstaticnull

throwsshortnew

© Alexander & Offutt, 1999-2003 12

Java Operator Precedence

< > >= <= instanceofRelational

<< >> >>>Shift

+ -Additive

* / %Multiplicative

new (type) exprCreation or cast

++expr --expr –expr +expr -expr ~ !Unary operators

[] . (params) expr++ expr--Postfix operators

© Alexander & Offutt, 1999-2003 13

Java Operator Precedence (cont’d)

>>= <<= >>>= &= ^= |=

= += -= *= /= %=Assignment

?:Conditional

||Logical OR

&&Logical AND

|Bitwise Inclusive OR

^Bitwise Exclusive XOR

&Bitwise AND

== !=Equality

© Alexander & Offutt, 1999-2003 14

Variables, Methods, and Classes

• All variables must be declared before use

• They must be used in a manner consistent with their
type

• Classes combine data objects and functions to provide
Abstract Data Types

© Alexander & Offutt, 1999-2003 15

Definitions and Declarations

• Definitions: Places where a variable or function is
created or assigned storage

• Declarations: Places where the nature of a variable is
stated, but no storage is allocated

• Allocations: Places where storage is allocated

• Variables and functions must be declared for each
function that wishes to access them

© Alexander & Offutt, 1999-2003 16

Statements

• Every statement ends in a ‘;’
• A compound statement is a sequence of statements

enclosed by braces:

‘{‘
[decl-list]
[stmt-list]

‘}’

© Alexander & Offutt, 1999-2003 17

Comments

Java supports three different comment styles

• Single-line comments:
// This comment starts with // and ends at the end of the line.

• Traditional C bracketed comments:
/*

This is a multi-line Java comment.
No nesting allowed!

*/
• JavaDoc comments (later)

A well commented program is a sign of a good programmer

© Alexander & Offutt, 1999-2003 18

Boolean Expressions

nAll logical expressions are of type boolean
nJava uses short circuit evaluation

Examples

X < 10 Z <= X+10 Y > 20
Y = (-5) X >= X+Y

(X < Y) && (Z == 10) (Z == 10) || (Y >= 5)

! (X > 0)

© Alexander & Offutt, 1999-2003 19

Short-Circuit Evaluation

• Java uses short circuit evaluation: evaluation stops as soon as the
final result can be determined.

• A && B
If A is false, produce false.
Otherwise, evaluate B.

• A || B
If A is true, produce true.
Otherwise, evaluate B.

• (X != 0 && Y/X > 2) // Avoid division by zero.

• (X > 100) || IsPrime (X)) // Avoid expensive function call.

© Alexander & Offutt, 1999-2003 20

Conditional Branching

n if/else: General method for selecting an action

nswitch: Allows efficient selection among a finite set of
alternatives

© Alexander & Offutt, 1999-2003 21

if Statement

if (<cond>)

<stmt1>
[else

<stmt>]

if (isalpha (c))
{

if (isupper (c)
return UPPER;

else
return LOWER;

}
else if (isdigit (c))

return DIGIT;
else if (isprint (c)

return PRINTABLE;
else

return UNPRINTABLE;

© Alexander & Offutt, 1999-2003 22

switch Statement

nGeneral form:
switch (<expr>) { <cases> }

n switch only works for constants and scalar variables
(integers and characters)

nJava uses “fall-through semantics’’
must use a break to terminate each case

© Alexander & Offutt, 1999-2003 23

switch Statement

int symbol;

switch (symbol)
{

case CONST : print (“constant”); break;
case SCALAR : print (“scalar”); break;
case RECORD : print (“record”); break;
default : print (“array or string”); break;

}

© Alexander & Offutt, 1999-2003 24

Iteration Statements

Java has four iteration constructs:

– for: test at loop top

– while: test at loop top

– do/while: test at loop bottom

– Recursion

© Alexander & Offutt, 1999-2003 25

for Loop

nGeneral form:
for (<initialize>; <exit test>; <increment>)

<stmt>
n Initialization, exit test, and increment are all in one

construct
nAll three loop header sections are optional, and may

contain arbitrary expressions
nVariables may be declared in the <initialize> section

© Alexander & Offutt, 1999-2003 26

for Loop (cont’d)

Examples:
// standard for loop
for (int i=a; i <= b; i++)

// infinite loop
for (; ;)

// compute n!
for (int i = n; n > 1 ; n--)

i = i*(n-1);

© Alexander & Offutt, 1999-2003 27

while Loop

nGeneral form:
while (<condition>)

<stmt>

nRepeats stmt as long as condition is TRUE.

© Alexander & Offutt, 1999-2003 28

while loop (cont’d)

Examples:

// standard while loop
while (X != 0)

// infinite loop
while (true)

// compute n!
i = n;
while (n >= 0)
{

n--;
i = i*n;

}

© Alexander & Offutt, 1999-2003 29

do .. while Loop

nGeneral form:
do <stmt> while (<condition>);

nAlways executes body at least once.

nTest is at the bottom.

nLess common than for and while.

© Alexander & Offutt, 1999-2003 30

break Statement

nCan be used to exit any code block

nAllows early termination of loops

nSyntax:
labelname:
… loop body …
break [label];

n Label allows you to terminate an arbitrary block of code

© Alexander & Offutt, 1999-2003 31

break Statement (cont’d)

public boolean workOnFlag (float flag, int[][] Matrix)
{

int x, y;
boolean found = false;

search:
for (y = 0; y < Matrix.length; y++)

for (x = 0; x < Matrix[y].length; ++x)
{

if (Matrix[y][x] == flag)
{

found = true;
break search;

}
}

return (found);
}

© Alexander & Offutt, 1999-2003 32

continue Statement

nSkips to next iteration of loops

nCan specify a label of an enclosing loop

nSyntax:

while (true)
{

… loop body …
if (<expr>)

continue;
}

© Alexander & Offutt, 1999-2003 33

Exception Handling

© Alexander & Offutt, 1999-2003 34

Errors and Exceptions

• During execution, “stuff” happens

• Many kinds of errors

• Many kinds of exceptional situations

• Varying degrees of severity

• Code to handle errors adds complexity
– Often, more code required to handle errors than the original

function

© Alexander & Offutt, 1999-2003 35

Java Exceptions

• Language feature provides clean check for exceptions

• Mechanism to signal errors directly

• Define new exceptional conditions for methods

• Automatically checked by run-time system

© Alexander & Offutt, 1999-2003 36

Java Exceptions (cont’d)

• Thrown when an unexpected condition occurs

• Caught by a method who can handle exception

• Default exception handler handles those not caught by
a programmer-supplied method

© Alexander & Offutt, 1999-2003 37

Handling Built-in Exceptions
try
{ in_str = in.readLine ();

answer = Integer.parseInt (in_str);
}
catch (IOException e)
{ // JDK requires this exception to be caught.

System.err.println (“Could not read input.”);
answer = 0;

} catch (NumberFormatException e)
{ System.err.println (“Entry must be numeric”);

answer = 0;
}

More later . . .

© Alexander & Offutt, 1999-2003 38

Example Java Program

/**
* A class for reading a sequence of numbers and report:
* - count of positive numbers
* - count of negative numbers
* - count of zeroes
* - sum of positive numbers
* - sum of negative numbers
*
* @author Jeff Offutt
*/

import java.io.*;
public class Count
{ // User enters the length of sequence followed by numbers
public static void main (String args[]) throws IOException, NumberFormatException
{

int num_pos = 0, num_neg = 0, num_zero = 0;
int sum_pos = 0, sum_neg = 0;
int length, cur_num;
BufferedReader in = new BufferedReader (new InputStreamReader

(System.in));

© Alexander & Offutt, 1999-2003 39

Example Java Program (cont’d)

String in_str;

System.out.print (“How many numbers? ”);
in_str = in.readLine ();
length = Integer.parseInt (in_str);

// Loop to read and count

for (int i=1; i <= length; i++) // i is declared in for loop
{

System.out.print (“Enter value: ”);
in_str = in.readLine ();
cur_num = Integer.parseInt (in_str);
if (cur_num > 0)
{

num_pos = num_pos+1;
sum_pos = sum_pos + cur_num;

}

© Alexander & Offutt, 1999-2003 40

Example Java Program (cont’d)

else if (cur_num < 0)
{ // Shorthand operators

num_pos++;
sum_pos += cur_num;

}
else // cur_num==0

num_zero++;
} // end for loop

// Now print the results.

System.out.println (“Count of positive numbers: “ + num_pos);
System.out.println (“Count of negative numbers: “ + num_neg);
System.out.println (“Count of zeroes: “ + num_pos);
System.out.println (“Sum of positive numbers: “ + sum_pos);
System.out.println (“Sum of negative numbers: “ + sum_neg);

} // end of main
} // end of Count

© Alexander & Offutt, 1999-2003 41

Primitive Types

• boolean - either true or false
• char - 16-bit Unicode
• byte - 8-bit signed, -128..127
• short - 16-bit signed, -32,768..32,767
• int - 32-bit signed
• long - 64-bit
• float - 32-bit, 6 or 7 significant bits
• double - 64-bit, 15 significant bits

© Alexander & Offutt, 1999-2003 42

Initial Values

• A variable (sometimes called a field) can be initialized
in its declaration:

double pi = 3.14159;

• Java only assigns default values to class instance
variables (more later)

© Alexander & Offutt, 1999-2003 43

Constants

• Variables can be declared as constant using static and
final keywords:

static final double pi = 3.14159
• Examples

– 37
– 045 // Octal, base 8
– 0x25 // Hex, base 16
– ‘5’
– “Steffi”

© Alexander & Offutt, 1999-2003 44

Type Casting

Expressions can be “cast” or converted to a different
type:

int int_var;
double doub_var;
int_var = doub_var; // Error!

int_var = (int) doub_var; // Correct!
doub_var = (double) int_var * 37;

Checked at compile-time and run-time

© Alexander & Offutt, 1999-2003 45

Java Pointers

• Java pointers are strongly typed and called references
• They are much more like Ada pointers than C/C++

pointers
• They are based on C++ references
• Typed pointers help programmers avoid many

problems

Pointers? Not really …

© Alexander & Offutt, 1999-2003 46

Java Pointer References

• No math operations
• Assignment (=), equality testing (==, !=)
• null – does not point to anything
• No dereferencing necessary (*p, p->)
• Access elements with the dot operator

– Variables
– Methods
– p.x

© Alexander & Offutt, 1999-2003 47

Java References (Cont’d)

• An object is a non-primitive type
• A reference variable is a name for an object
• Reference variables hold the memory locations of the

object
• Objects have:

– Variables (fields)
– Methods (functions)

© Alexander & Offutt, 1999-2003 48

Dot Operator

The “dot operator” is used to select variables and
methods within an object:

theCircle.area(); // Call a method
theCircle.radius; // Access a variable

© Alexander & Offutt, 1999-2003 49

Using References

Watch w; // declares w to be a reference to
// objects of type Watch

w = new Watch (); // Allocates space for w
w.SetTime (5, 15, PM); // Calls method SetTime

When we call “w.SetTime ()”, we say
“The method SetTime executes in the context of the

Watch instance w”.
In C, this would be:

SetTime (w, 5, 15, PM);

© Alexander & Offutt, 1999-2003 50

Garbage Collection

• Java automatically recovers space that is not referenced

• This is convenient, but it does add hidden execution time

© Alexander & Offutt, 1999-2003 51

Reference Assignments

Watch w1, w2;

w1 = new Watch();
w2 = new Watch();

w1 = w2;

The Watch object should provide a copy operation,
called “clone ()” in Java

w1

w2

w1

w2
hh mm ss mode

w1 (Old w1 information is lost)

© Alexander & Offutt, 1999-2003 52

Reference Comparison

Watch w1, w2, w3;

w1 = new Watch();
w2 = new Watch();

w1.SetTime (10, 41, AM);
w2.SetTime (10, 41, AM);
w3 = w1;
(w1 == w3) is True
(w1 == w2) is False

To compare two objects, the convention is to define a method
called “equals ()”

© Alexander & Offutt, 1999-2003 53

Recursive Data Structures (Lists)

class Node
{ int Value;

Node Next;
}

Node list, cur;
list = new Node ();
list.Value = 1;
cur = list;
for (int i = 2; i <= 5, i++)
{ // Initialize list of 5 integers.

cur.Next = new Node ();
cur = cur.Next;
cur.Value = i;

}

© Alexander & Offutt, 1999-2003 54

Subprograms - Methods

• Parameters are call-by-value
• To get call-by-reference, pass a reference

– Does not work with scalar variables
• References to objects are also passed by value, not the object itself
• Example:

Access Type Name (params)

public static int Max (int a, int b)
{

if (a >= b)
return (a);

else
return (b);

}

© Alexander & Offutt, 1999-2003 55

Methods - Parameters

Caller
M (Ob, X);

Ob
X 42

space for data

Callee

A
B 42

M (MyObj A, int B)

copied

© Alexander & Offutt, 1999-2003 56

Method Name Overloading

public static int Max (int a, int b);
public static int Max (int a, int b, int c);

max1 = Max (m, n, o);
max2 = Max (x, y);

Overloading is an abstraction mechanism
that allows the same method name to be
used with different parameter lists

They are differentiated by their signatures,
or parameter lists

© Alexander & Offutt, 1999-2003 57

Strings

• Strings are provided by a standard object, not as a
built-in type

• Example:
String Name = “Steffi”;

• String variables (“Name”) are references to objects

© Alexander & Offutt, 1999-2003 58

String Operations

• Concatenation: “+”
String kid = “Steffi” + “ Offutt”;

• Length:
int NameLength = kid.length();

• Comparison:
string1.equals (string2);

© Alexander & Offutt, 1999-2003 59

What’s an Object?

• An object is a set of data members (i.e. variables, called
“fields”) and operations on those data members
(“methods”)

• Objects are implemented with the Class construct

• More later ...

© Alexander & Offutt, 1999-2003 60

Arrays
Java arrays are objects with operators, but they
look very much like C or Pascal arrays

int [] my_array; // declaration, no memory
my_array = new int [10]; // 10 elements

• Java arrays always start at 0!
new int [3]

• Declaration, allocation, and initialization can be
done at once:

int [] primes = {1, 3, 5, 7, 11, 13, 17, 19};

0 1 2
A [3] is an error.

© Alexander & Offutt, 1999-2003 61

Using Arrays

// “length” operator gives number of elements
for (int i = 0; i < primes.length; i++)

System.out.println (primes [i]);

pnew = primes; // Does not copy!

• Arrays are indexed by integers

• Java includes bounds checking on arrays

© Alexander & Offutt, 1999-2003 62

Making Arrays Bigger

int [] temp;

temp = primes;
primes = new int [temp.length*2]; // double size
for (int i=0; i < temp.length; i++) // copy

primes [i] = temp[i];

© Alexander & Offutt, 1999-2003 63

Multi-Dimensional Arrays

int [] [] Chess;

Chess = new int [8][8];

for (int i=0; i < 8; i++)
for (int j=0; j < 8; j++)

Chess [i][j] = 0;

© Alexander & Offutt, 1999-2003 64

Handling Command Line Arguments

• Command line arguments : inputs provided to the
program when the program is run

• Passed as an array of strings to main
• Example:

java WhoIsHe Michael Jordan

public static void main (String [] args)
{

for (int i=0; i < args.length; i++)
System.out.print (args [i]);

}
args [0] == “Michael”
args [1] == “Jordan”

© Alexander & Offutt, 1999-2003 65

Using Command Line Arguments

• Assume: java TCGen -d infile

• Use -d to set a “debug” flag for printing debugging
information

• infile is the name of the file to open

© Alexander & Offutt, 1999-2003 66

Input / Output

• Input and output is performed with a standard
package - java.io

import java.io.*;

• There are three standard I/O “streams”:
– Standard input: System.in
– Standard output: System.out
– Standard error: System.err

© Alexander & Offutt, 1999-2003 67

Input / Output Examples

System.out.println (“output message”);
System.out.println (37); // numbers converted to strings

• Reading an integer:
BufferedReader in = new BufferedReader (new

InputStreamReader (System.in));
int x;
String in_line;
in_line = in.ReadLine ();
x = Integer.parseInt (in_line);

© Alexander & Offutt, 1999-2003 68

Input / Output Examples

Reading multiple integers per line
E.g.: 37 36 7 4
Use StringTokenizer:

Buffered Reader in = new BufferedReader (new InputStreamReader
(System.in));

int x;
String in_line;
StringTokenizer in_str;
int age_dad, age_mom, age_kid1, age_kid2;
in_line = in.readLine();
in_str = new StringTokenizer (in_line);
age_dad = Integer.ParseInt (in_str.NextToken());
age_mom = Integer.ParseInt (in_str.NextToken());
age_kid1 = Integer.ParseInt (in_str.NextToken());
age_kid2 = Integer.ParseInt (in_str.NextToken());

© Alexander & Offutt, 1999-2003 69

Input / Output Examples

Reading from files:

String fname, in_line;
FileReader my_file;
BufferedReader in_file = null;

fname = args [0];
my_file = new FileReader (fname);
in_file = new BufferedReader (my_file);
while ((in_line = in_file.readLine()) != null)

System.out.println (in_line);

my_file.close ();

