
PHYSICAL REVIEW B 100, 205204 (2019)

Impact of biaxial and uniaxial strain on V2O3
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Using first-principles calculations, we determine the role of compressive and tensile uniaxial and equibiaxial
strain on the structural, electronic, and magnetic properties of V2O3. We find that compressive strain increases
the energy to transition from the high-temperature paramagnetic metallic phase to the low-temperature anti-
ferromagnetic insulating phase. This shift in the energy difference can be explained by changes in the V-V
bond lengths that are antiferromagnetically aligned in the low-temperature structure. The insights that we have
obtained provide a microscopic explanation for the shifts in the metal-insulator transition temperature that have
been observed in experiments of V2O3 films grown on different substrates.
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I. INTRODUCTION

The metal-to-insulator transition (MIT) in V2O3 [1] has
been the subject of intense investigations, due in part to the
coupled structural, electronic, and magnetic phase transitions
that occur in the material [2,3]. Above the bulk MIT tempera-
ture Tc of 155 K, V2O3 is a metal and is stable in the corundum
phase. Below Tc, V2O3 undergoes a structural transition from
corundum to monoclinic. This is accompanied by the opening
of a Mott gap of 0.40 eV below the MIT Tc, which manifests
in a large increase in the electrical resistivity [4]. The co-
occurrence of these phenomena has led to several efforts that
have sought to control these phase transitions.

To understand and control the MIT in V2O3 it is important
to consider the underlying microscopic mechanism that leads
to the transition. While it is well accepted that above Tc the
electronic phase is metallic and below Tc it is a Mott insulator,
the mechanism leading to the MIT cannot be described as
a Mott transition. It is only recently, through a combination
of neutron scattering measurements and first-principles cal-
culations, that Leiner et al. convincingly demonstrated that
it is instead a first-order phase transition between two states
that host different magnetically ordered states in addition to
being structurally and electronically distinct above and below
the MIT Tc [3]. The metallic high-temperature (HT) phase
was shown to be a strongly frustrated paramagnet, and the
insulating low-temperature (LT) phase is a robust antiferro-
magnet with little frustration. Since the structural, electronic,
and magnetic properties of V2O3 are intimately linked, this
makes the metal-insulator transition temperature sensitive to
external perturbations.

Indeed, we have shown that the presence of point defects in
the form of Frenkel pairs disrupts bonding and the magnetic
ordering of the V atoms, which in turn leads to a reduction in
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the energy to transition between the HT paramagnetic metallic
phase and the LT antiferromagnetic insulating phase [5]. This
is consistent with an experimental observation that found
the MIT Tc to decrease when point defects are introduced
intentionally compared to the Tc of as-grown V2O3 [6]. The
sensitivity of the MIT to changes in bonding has also made
the use of strain an appealing approach to manipulate and
control the MIT. This is part of a general growing interest
in manipulating the transition temperature of materials that
exhibit a MIT by taking advantage of advances in epitaxial
growth, which has enabled the growth of thin films on targeted
substrates [7].

Epitaxial growth of V2O3 on a-plane (112̄0), c-plane
(0001), m-plane (11̄00), and r-plane (11̄02) Al2O3 substrates
has been explored by a number of groups [8–14]. Growth of
V2O3 on these substrates occurs at a temperature well above
the MIT Tc, which results in a film that presumably adopts
the HT paramagnetic corundum structure during growth. The
Al2O3 lattice constants are lower than the corundum V2O3

lattice constants, so V2O3 is expected to be under compressive
strain if the growth is coherent. The reports of Tc identified
from measurements of resistance versus temperature of these
epitaxially grown films are varied. Schuler et al. demonstrated
that the Tc increases by 45 K with respect to unstrained
V2O3 in a cooling cycle measurement of resistance versus
temperature for V2O3 grown on c-plane Al2O3 [13]. In con-
trast, Kalcheim et al. [10] demonstrated that V2O3 grown
on the m-plane and r-plane orientations of Al2O3 led to a
Tc that is larger than the unstrained Tc (by up to 16 K),
while growth on the a-plane orientation of Al2O3 led to a
reduction in Tc. Growth on alternative substrates, such as
LiTaO3, has also been explored where V2O3 is expected to
be under tensile strain if the growth is coherent [9,15,16]. In
these studies, it was found that the Tc of V2O3 was larger than
the Tc of unstrained V2O3. An alternative approach to impart
strain on V2O3 has been through the use of ferroelectric and
piezoelectric substrates that are subject to electrical biases
with different polarity [17,18]. For instance, the Tc of V2O3
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on a PMN-PT substrate increased by 30 K when the PMN-PT
substrate underwent tensile expansion due to an applied bias.

The results of these experimental studies have been inter-
preted using the pressure versus temperature phase diagram of
V2O3 [1]. According to this phase diagram, positive pressure
(volume reduction) leads to a reduction in Tc while nega-
tive pressure (volume expansion) leads to an increase in Tc.
However, for a material under uniaxial or biaxial strain, the
corresponding change in bonding can be very different from
the change in bonding associated with hydrostatic pressure.
Furthermore, first-principles calculations have demonstrated
that relying on chemical pressure alone to interpret the V2O3

phase diagram can be misleading [19]. To our knowledge, the
impact of strain on the structural, magnetic, and electronic
properties of V2O3 has not yet been theoretically studied.
Because of this, there is no clear relationship that can be
deduced from the experimental reports on changes in the
V2O3 Tc grown on different substrates and the magnitude and
direction of the strain imparted.

In this study, we use first-principles calculations to in-
vestigate the effect of uniaxial and equibiaxial compressive
and tensile strains on the structural, magnetic, and electronic
properties of V2O3. We find that up to 1% compressive
equibiaxial or uniaxial strains increase the energy required
to transition to the LT antiferromagnetic insulating phase by
up to 75% compared to unstrained V2O3. This would be
reflected in an increase in the MIT Tc when V2O3 is under
compressive strain. In contrast, we find equibiaxial tensile or
uniaxial tensile strains lead to modest reductions or increases
in the energy to transition to the antiferromagnetic insulating
phase depending on the direction along which the strain is
imparted. We identify the microscopic origin of these changes
in the energy to transition between the metallic and insulating
phase as being changes in the bond lengths of the pair of
next-nearest-neighbor vanadium atoms that are antiferromag-
netically aligned in the LT monoclinic structure.

II. COMPUTATIONAL METHODS

Our calculations are based on density functional theory
within the projector-augmented wave method [20] as imple-
mented in the VASP code [21,22] using the generalized gra-
dient approximation defined by the Perdew-Burke-Ernzerhof
(PBE) functional [23]. In our calculations, V 4s23p63d3

electrons and O 2s22p4 electrons are treated as valence.
All calculations use a plane-wave energy cutoff of 600 eV.
Structural relaxations of the lattice parameters and internal
coordinates were carried out with an 8 × 8 × 8 k-point grid
and a force convergence criterion of 5 meV/Å. To simulate
the Mott-insulating behavior of V2O3, we use a spherically
averaged Hubbard correction within the fully localized limit
double-counting subtraction [24]. We apply a U -J value of
1.8 eV to the V d-states, which reproduces the experimental
band gap of V2O3. We note studies that compared exchange-
coupling constants obtained from neutron scattering with first-
principles calculations that relied on a larger value of U -J
(3 eV) to obtain quantitative agreement between theory and
experiment [3]. We find our overall conclusions to remain
unchanged if we also use a U -J value of 3 eV.

To study the effects of epitaxial strain, we performed
“strained-bulk” calculations where we impose compressive
and tensile equibiaxial strain on the a and b (denoted as
ab), b and c (denoted as bc), and a and c (denoted as ac)
monoclinic lattice vectors, and uniaxial strain along the a, b,
and c monoclinic lattice vectors of the V2O3 unit cell, and
then we optimize the free lattice constant(s) and all atomic
positions of the unit cell. The standard VASP package does not
allow for arbitrary constraints to be placed on the strain tensor
during relaxation. To perform these constrained calculations,
we made modifications that set specific components of the
stress tensor to zero during the minimization routine. This
allowed us to impose strain along the different axes as we
report here.

Since growth of V2O3 occurs at temperatures well above
the MIT Tc, the as-deposited V2O3 epitaxial films will
adopt the HT paramagnetic structure. Paramagnetically or-
dered states are challenging to describe with standard DFT.
However, since the paramagnetic HT phase is magnetically
frustrated [3], magnetic ordering has a weak effect on total
energies. We have previously shown that the FM ordered
monoclinic structure can be used as a suitable proxy for the
paramagnetic HT corundum phase [5]. Since strain is defined
with respect to the HT phase, we use the lattice constants of
the HT ferromagnetic structure as the reference for strain. For
example, uniaxial strain along the monoclinic a axis, εa, is
defined as εa = [(a − a0)/a0], where a0 is the equilibrium
a lattice constant of the FM monoclinic structure. In such
a calculation, we would only allow the monoclinic b and
c lattice constants, bond angles, and atomic coordinates to
be optimized. Next, with this optimized structure we impose
an AFM ordering of spins on the V atoms (ferromagnetic
along the a and c axes and antiferromagnetic along the b
axis), and we optimize the free lattice parameters and atomic
coordinates. We report results for compressive and tensile
strain along each of the monoclinic axes for strains that range
between ±1%. Positive values of ε correspond to tensile
strain.

III. RESULTS

A. Bulk properties

The HT metallic phase of V2O3 is stable in the corundum
structure with space group R3̄c. Neutron scattering measure-
ments in combination with first-principles calculations have
demonstrated the corundum phase of V2O3 to be a highly
frustrated paramagnet [3]. As we discuss in Sec. II, we use
a FM ordered structure as a proxy for the disordered param-
agnetic phase of the corundum HT structure since it has the
correct magnitude of the magnetic moments and it respects
the full lattice symmetry (as opposed to an antiferromagnetic
arrangement of spins). Indeed, we have previously shown
that the energy difference between the corundum structure
with FM order and AFM order imposed is low, 0.8 meV per
vanadium atom [5], consistent with the magnetic frustration
that has been experimentally identified in the HT phase [3].
Our DFT + U lattice constants of the FM corundum structure
are a = b = 5.037 Å and c = 14.305 Å, and the bond angle
of the rhombohedral unit cell is θ = 54.6◦, which are within
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FIG. 1. Schematic illustration of the V2O3 monoclinic unit cell.
Vanadium atoms are in blue and oxygen atoms are in orange. The
pair of V atoms that are antiferromagnetically aligned along the
monoclinic b axis are denoted β1 and β2.

1.5% of the experimentally measured lattice parameters of the
HT corundum structure (a = b = 4.952 Å, c = 14.003 Å, and
θ = 56.1◦).

The LT insulating phase of V2O3 is antiferromagnetic and
has a monoclinic structure with space group P21/c. We find
the lattice constants of the LT monoclinic structure of V2O3

to be a = 7.414 Å, b = 5.084 Å, and c = 5.559 Å, and the
bond angles to be α = γ = 90◦ and β = 97.3◦, which are
within 2.7% of the experimental LT lattice parameters (a =
7.255 Å, b = 5.002 Å, c = 5.548 Å, and β = 96.8◦) reported
for monoclinic V2O3 [25]. To describe the antiferromagnetic
ordering of spins, we use a four-formula-unit cell. We find
the ground-state magnetic ordering to be the one where the
V atoms are aligned ferromagnetically along the monoclinic
a and c axes and aligned antiferromagnetically along the
monoclinic b axis, which is consistent with neutron scattering
measurements of the monoclinic insulating phase [3,26].

Along the monoclinic b-axis, the pair of next-nearest-
neighbor V atoms that are antiferromagnetically aligned have
two different V-V bond lengths. We label the shorter of the
two bonds β1, and the second V-V pair is labeled β2, as shown
in Fig. 1. The bond length of the β1 pair is 2.996 Å, while the
bond length of the β2 pair is 3.085 Å.

Since we are interested in the impact of strain on the
energy to transition between the paramagnetic (approximated
as ferromagnetic) HT phase and the antiferromagnetic LT
phase using the “strained-bulk” approach, we also calculate
the lattice parameters and electronic properties of the mono-
clinic structure where all of the V atoms are ferromagnetically
aligned. If we allow for full structural relaxation (volume, cell
shape, and atomic positions) in this magnetic state, we find
that the structure takes on the HT corundum structure and is
metallic.

B. Biaxial and uniaxial strain

1. Structural properties

For the magnitudes of strain that we have investigated, we
find that biaxial and uniaxial strain leads to elastic changes
in the volume and in turn in the free lattice parameter(s). The
monoclinic bond angle only changes by up to ±0.2% for the
largest strain (±1%) that we consider.

If we consider biaxial strain imposed along the monoclinic
ab axes, applying compressive equibiaxial strain to the FM
structure and allowing the monoclinic c lattice parameter and
all atomic positions to relax leads to an increase in the c lattice
constant. We find that the c lattice constant increases linearly
as a function of the applied compressive strain. Conversely,
for equibiaxial tensile strain, the c lattice constant decreases
linearly with respect to the c lattice constant of the unstrained
FM structure. The ratio of the change in the c lattice constant
as a function of the applied equibiaxial in-plane strain is a
positive constant in the elastic regime and is defined as the
Poisson ratio, ν = −εzz/(εxx + εyy), where εzz is the strain in
the c lattice constant, and εxx and εyy are the strains along
the a and b monoclinic lattice constants, respectively. We
find ν = 0.31 for the FM structure under equibiaxial strain
along the ab axes. We find the response of the V2O3 lattice
to equibiaxial strain along the bc and ac axes to be similar;
the free lattice parameter changes linearly with a Poisson
ratio that is positive. ν = 0.33 for the FM structure under
equibiaxial strain along bc, and ν = 0.32 for equibiaxial strain
along ac.

Next we impose AFM ordering on the structures that are
under equibiaxial or uniaxial tensile strain. As discussed in
Sec. II, we assume that the lattice parameters of the HT para-
magnetic (approximated as FM) would be clamped to the sub-
strate post-growth and these lattice parameters remain fixed
when the transition to the LT AFM insulating phase occurs.
For example, for equibiaxial strain along the monoclinic ab
axis, εab, of 1% (where εab is with respect to the equilibrium
FM lattice parameters), we use the same monoclinic a and b
lattice parameters that are strained by 1% with respect to the
equilibrium FM monoclinic lattice constants, we impose AFM
order, and we allow the monoclinic c lattice constant and all
atomic coordinates to relax.

For each of the structures under strain with AFM order
imposed, we find that the lattice also responds elastically with
a positive Poisson ratio. The magnitude of ν for the structures
that are antiferromagnetically ordered for the different direc-
tions of equibiaxial strain are as follows: ν = 0.36 (ab), 0.38
(bc), and 0.33 (ac).

2. Total energies

In Fig. 2, we illustrate the variation in the total energy
of the FM and AFM configuration under biaxial strain along
the monoclinic ab and bc axes and uniaxial strain along the
monoclinic b axis. It is evident that the AFM configuration
remains lower in energy than the FM configuration for all
values of strain. For each of these values of strain, the FM
configuration remains metallic while the AFM configuration
remains insulating.

3. Spin-flip energies

From Fig. 2 it is also evident that the energy to transition
between the high-temperature FM configuration and the low-
temperature AFM configuration as a function of compressive
and tensile strain is not a constant. For example, the total
energy difference between the AFM and FM configuration
under biaxial strain along ab is larger under compressive strain
compared to tensile strain. We define this energy difference
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FIG. 2. Variation in the total energy of the AFM (solid line)
and FM (dotted line) configuration per V2O3 formula unit under
compressive and tensile strain along the monoclinic ab (�), bc
(◦), and b (�) axes. The vertical black dotted line denotes zero
strain. Note, strain is defined with respect to the equilibrium lattice
constants of the FM structure.

between the AFM and FM configuration at a fixed strain, ε, a
spin-flip energy, �E , where �E = [Etot (AFM) − Etot (FM)].
Note that since the AFM configuration remains lower in
energy than the FM configuration for all values (±1%) and di-
rections of strain that we consider in this study, �E is always
negative. An increase in the magnitude of �E corresponds
to an increase in the energy required to transition from the
insulating AFM to the metallic paramagnetic (approximated
as FM) state, while a reduction in the magnitude of �E
corresponds to a reduction in the energy to transition from
the AFM to the FM state. The spin-flip energy as a function
of equibiaxial and tensile strain is illustrated in Fig. 3.

We first consider the change in spin-flip energy for the
structures subject to equibiaxial strain. Under compressive
strain along the ab and bc axes, the magnitude of �E , which
is the energy required to transition from the insulating AFM
state to the metallic FM state, increases by up to 75% at
the largest value of ε of 1%. Tensile strain along these axes

FIG. 3. Spin-flip energy, �E = [Etot (AFM) − Etot (FM)], per V
atom as a function of compressive and tensile (a) biaxial strain along
the monoclinic ab (�), bc (◦), and ac (∗) axes, and (b) uniaxial strain
along the monoclinic a (�), b (�), and c (♦) axes. The vertical black
dotted line denotes zero strain. Note, strain is defined with respect to
the equilibrium lattice constants of the FM structure.

leads to a modest reduction in the magnitude of �E for strain
along ab and a modest increase in the magnitude of �E for
ε greater than 0.5% along bc. In contrast, we find that �E is
insensitive to compressive and tensile equibiaxial strain along
the monoclinic ac axes.

When V2O3 is subject to uniaxial strain, we find the change
in �E to be modest in comparison to the change in �E under
biaxial strain. In particular, when the monoclinic a, b, or c
axes are under compressive strain, we find they all lead to a
slight increase in the magnitude of �E . Under tensile uniaxial
strain, the magnitude of �E increases for strain along the a
and c axes, while the magnitude of �E decreases for tensile
strain along the b axis.

IV. DISCUSSION

At this point, it is instructive to examine the primary
contributions to the change in �E under compressive and
tensile strain. We decompose this change in �E into two
contributions, namely an elastic energy, �E el, and a mag-
netic energy, �Emag, such that �E = �E el + �Emag. The
elastic energy, �E el, is the change in energy due to the
change in the lattice parameters and the atomic positions
to transition from the geometry associated with the FM to
the AFM configuration at a fixed magnetic configuration.
We define �E el as [E [ε,FM]

tot (AFM) − E [ε,AFM]
tot (AFM)], where

E [ε,FM]
tot (AFM) is the total energy of the structure with the

atomic coordinates and lattice parameters of V2O3 in the
strained FM configuration with AFM order imposed, and
E [ε,AFM]

tot (AFM) is the total energy of the structure with the
atomic coordinates and the lattice parameters in the strained
AFM configuration and AFM order imposed. The magnetic
energy, �Emag, is the change in energy associated with
flipping spins from ferromagnetic to antiferromagnetic at a
fixed set of atomic coordinates and lattice parameters. We
define �Emag as [E [ε,AFM]

tot (AFM) − E [ε,AFM]
tot (FM)], where

E [ε,AFM]
tot (AFM) is the total energy of the structure with the

atomic coordinates and lattice parameters of the strained AFM
configuration with AFM order imposed, and E [ε,AFM]

tot (FM) is
the total energy of the structure with the atomic coordinates
and lattice parameters of the strained AFM configuration with
FM order imposed. For all values of biaxial and uniaxial
strain, �E el only changes by up to 0.5 meV per vanadium
atom. Note, �E changes by up to ∼4 meV per vanadium
atom in comparison to unstrained V2O3 (Fig. 3). Hence, the
remaining energy difference between �E and �E el is the
change in the magnetic energy, �Emag, as a function of strain.

Based on Fig. 3, it is evident that �E is more sensitive to
compressive strain in V2O3. To explain this sensitivity to com-
pressive strain, we examine the bond lengths of V2O3 in the
AFM configuration. In the AFM configuration, the V atoms
are ferromagnetically coordinated along the a and c axes and
antiferromagnetically coordinated along the b axis. Previous
first-principles calculations of the unstrained V2O3 lattice [3]
have demonstrated that the V atoms along the monoclinic b
axis have the largest exchange coupling constants compared
to the next-nearest-neighbor V-V exchange coupling constants
along the other axes of the monoclinic structure. Within a
nearest-neighbor Heisenberg model, the Néel temperature of
the HT paramagnetic to the LT AFM phase transition would
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FIG. 4. Change in the bond length, dβ1 (cf. β1 in Fig. 1), as
a function of compressive and tensile (a) biaxial strain along the
monoclinic ab (�), bc (◦), and ac (∗) axes, and (b) uniaxial strain
along the monoclinic a (�), b (�), and c (♦) axes. The vertical black
dotted line denotes zero strain. Note, strain is defined with respect
to the equilibrium lattice constants of the FM structure. (c) Spin-flip
energy vs change in the dβ1 bond length for the different directions of
compressive and tensile strain imparted on the monoclinic axes. The
dβ1 bond length of unstrained AFM V2O3 (d0

β1
= 2.996 Å) is shown

with a dotted black line.

be determined primarily by the exchange coupling constants
of these antiferromagnetically aligned V atoms. We denote
these V-V bonds along the monoclinic b axis as β1 and β2

(Fig. 1), where the bond length of β1 (dβ1 ) is shorter than
the bond length of β2 (dβ2 ). Leiner et al. [3] have shown that
the exchange coupling constant of β1 is twice as large as that
of β2.

Through our first-principles calculations, we find that dβ1

changes nonmonotonically as a function of compressive and
tensile strain. These results are illustrated in Figs. 4(a) and
4(b). Figure 4(c) illustrates the dependence of �E on dβ1

for the different directions of strain we consider in our study.
When dβ1 decreases with respect to dβ1 of the unstrained
AFM monoclinic structure, we find that the magnitude of �E ,
which is the energy to transition from the insulating AFM
to the metallic FM state, increases, while an increase in dβ1

corresponds to a reduction in the magnitude of �E . Since
the primary contribution to the change in �E is the magnetic
energy, this dependence of �E on dβ1 can be understood as
follows. A reduction in the dβ1 bond length is expected to
lead to an increase in the hopping energy, t , between the
β1 pair of vanadium atoms (Fig. 1), which in turn would
lead to an increase in the exchange coupling constant, Jβ1 ,

where Jβ1 ∝ −t2/U , and U is the on-site Coulomb repulsion.
Conversely, we expect an increase in dβ1 to lead to a reduction
in Jβ1 compared to unstrained V2O3. This dependence of �E
on dβ1 also explains why equibiaxial compressive and tensile
strain along the monoclinic ac axes does not lead to a change
in �E . We find that the biaxial strain that is imparted on
the ac axes is accommodated by changes in dβ2 while dβ1

remains unchanged for all values of strain that we investigate
[Fig. 4(a)].

Hence, our calculations suggest that the MIT Tc is sensitive
to changes in the bond length, dβ1 . In particular, we suggest
that compressive strain along the monoclinic bc, ab, a, b, and
c axes and tensile strain along the monoclinic bc, a, and c
axes will increase Tc compared to unstrained V2O3. We note
that this is consistent with the increase in the MIT Tc that has
been measured in V2O3 thin films grown on Al2O3 substrates,
where V2O3 is under compressive strain [8–10,13].

V. SUMMARY AND CONCLUSIONS

In summary, we examined the role of equibiaxial and
uniaxial compressive and tensile strain on the electronic,
structural, and magnetic properties of V2O3.

The metal-insulator transition in V2O3 was recently rein-
terpreted as being a strong first-order transition between
the high-temperature corundum structure, which is a highly
frustrated paramagnet, and the low-temperature monoclinic
structure, which is strongly antiferromagnetic [3]. The leading
contribution to the strong antiferromagnetic coupling in the
low-temperature monoclinic phase is the shortest of the pair
of V-V bonds that are antiferromagnetically aligned (β1)
along the monoclinic b axis. As a result, shifts in the energy
difference between the high-temperature metallic phase and
the low-temperature insulating phase are sensitive to changes
in the bond length of β1 of the LT AFM monoclinic phase.
Our calculations confirm this interpretation and demonstrate
that changes in the bond length of β1 due to strain can lead to
changes in this energy difference. In particular, we find that a
suppression of this energy difference, which would translate
to a reduction in the MIT Tc, coincides with an elongation
of the bond length of β1 while an increase of this energy
difference coincides with a compression of the β1 bond length.

Based on our calculations, we can draw the following con-
clusions on the role of strain on the metal-insulator transition
temperature of V2O3. Under compressive strain along the
monoclinic bc, ab, b, a, and c axes, the energy to transition
to the low-temperature insulating antiferromagnetic phases
increases by up to 75% for compressive strains up to 1%.
Tensile strain along the monoclinic a and c axes leads to
modest increases in the energy to transition to the insulating
antiferromagnetic phase. Hence, strain along these directions
and axes will likely lead to an increase in Tc compared to
unstrained V2O3. Tensile strain along the ab and b axes lowers
the energy to transition to the insulating phase by up to
10% compared to unstrained V2O3 for the largest strain we
consider of 1%, which would be reflected in a reduction in Tc

compared to unstrained V2O3. In contrast, compressive and
tensile strain along the monoclinic ac axes does not lead to
any change in the energy to transition between the insulating
and metallic phase.
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