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Abstract. A simple technique for calculating the phonon-limited resistivity ( P p h )  of metals is 
described which is analogous to the Gaspari-Gyorffy method for calculating the 
electron-phonon coupling constant ( I ) .  pph and I are  calculated for all 4d metals and silver. 
The HCP metals have been treated as  cubic, as  is common in calculations of A. For P p h .  

however. this approach turns out to be too rough because it depends strongly on the average 
Fermi velocity which is very sensitive to crystal structure. In  all transition metals investigated 
the superconducting and transport electron-phonon coupling constants are nearly equal, 
A = A t i .  Also nearly equal are their electronic parts. 7 %  v u ,  The only exception is Pd, where 
qtr is nearly 1.5 times larger than v :  this is because the superconducting and transport  
properties of Pd are  defined by different parts of the Fermi surface. Palladium is the only 4d 
metal where the Mott model of conductivity (s-d scattering) is valid. 

1. Introduction 

Electron-phonon interaction (EPI) in transition metals is a subject of intensive theoretical 
and experimental investigations. After the works of Butler (1977), Pettifor (1977) and 
others, considerable progress has been made in understanding the relationship between the 
electron-phonon coupling constant (A) and electronic structure. For example, the origin of 
the old empirical law relating the superconducting transition temperature and the number 
of valence electrons (Matthias 1955) now has a clear theoretical explanation. However, the 
trends in another important EPI defined quantity, namely the phonon-limited resistivity 
( p P h ( 7 7 ) ,  are less well studied. In spite of the fact that both A and Pph are defined by the 
strength of the EPI, they vary across the transition-metal series in a rather different manner. 
It can be seen from figure 1 that in most 4d metals much of the variation in pph is 
correlated to that in 1 but at the beginning of the series the correlation breaks down. 

With a view to understanding better the trends in these quantities we have calculated 
,? and pph ab initio for all 4d transition metals including silver. The calculation of pph was 
performed using the method developed in our previous paper (Mazin ef a1 1982) which is 
based on the spherical approximation of Gaspari and Gyorffy (1972). 

2. Method of calculation of phonon-limited resistivity 

In this work we shall concentrate our attention on the intermediate temperatures 
(8,/3<T<28,; & is the Debye temperature). These temperatures are of special 
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Figure 1. Variation of electron-phonon coupling constant and of phonon-limited resistivity 
across the 4d series (after Landolt-Bornstein 1982, Butler 1977). 

importance in many applications and the most comfortable in experiments. In this 
temperature range the solution of the Boltzmann equation may be written as (Allen 1978) 

where N(0) and ( c2) are the electron density of states and the mean square velocity at the 
Fermi surface, R is the atomic volume and d F ( w )  is the transport spectral function of EPI. 
This function differs from the Eliashberg function a2F by the factor (vu - v k ’ i ’ ) 2 :  

a:rF(w) = 4 1 &Eu)&E,,)&w - o h - & ‘ ,  v)IML, k,i ’  I2(vM - Uk’l’)’/N(o)( U’> (2) 
kk’, A i ’ ,  U 

where A is the band index, Y numbers the phonon branches, wp,U is the frequency of the 
phonon with wavevector q and ML,#i,  is the electron-phonon matrix element. Let us 
rewrite equation (1)  in a factorised form: 

( 5  1 

(6) 

,. dw 
Ltr = ‘Itr/M(u2),* = 2 1 4 A w )  

‘Itr = 1 I (k’A’l V Vei JM) I 2  &EM )&Eklil X U M  - VkTl.‘ > ’ / N O ) (  V2 ) 
kK, M’ 

where A, is the transport constant of the EPI, qtr is the electronic part of & and EM, IkA) 
and t j M  are the energy, the wavefunction and the velocity of the electron with wavevector k 
in the band A: energy is measured from the Fermi level and VVei is the change in crystal 
potential per unit displacement of an ion: GV(r-R) = GRVVei ( r -R) .  These formulae are 
analogous to the commonly used formulae for A = q/M(w2)  and q. 
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We shall compute q, qv and N(0)(v2)  ab initio, while (w2), B(T)  and ( 0 3 ) ~ ~  will be 
obtained from the experimental phonon densities of states. This technique imposes strong 
limitations on the temperature dependence of pph(T). Nevertheless it is known that even the 
Bloch-Griineisen formula describes pph ( T )  sufficiently accurately at intermediate 
temperatures. In fact, B ( T )  is close to one and the phonon characteristics affect primarily 
the value of (w2),,. Therefore the factorisation of Au into electronic and phonon 
contributions is as adequate as the analogous factorisation of A. 

By rewriting the factor (U, - uk'lr)2 in equation (6) as (U:  + v : , ~ , )  - 2uu vK1' one can 
obtain an obvious separation of qu : qv = q20 - qll  so that q20 and qll  depend on & + z& 
and L', L'k'l' respectively. 

Equation (6) for A may be greatly simplified by using the rigid muffin-tin approximation 
(RMTA) and the spherical approximation (SA) (Gaspari and Gyorffy 1972). 

The main idea of the SA is as follows. When the electron wavefunction inside the 
muffin-tin sphere is expanded in spt :rical harmonics (L  { I ,  m } )  

A 
Y , ( r ) = c  exp(ikR) 1 ~ ~ ( k ,  A)i'YL(r-R)R/(lr-Rl, E,) (7) 

R L 

the selection rules for matrix elements in equation (6) are supposed to be the same as for 
free electrons, where A,@,  1)- Y,*(k), E ,  = E(lkl, A )  and U, =ku(lkl, 1)llkl. Then the 
selection rules for q20 will be the same as for q, giving 

(8) 

where W/, / +  is the RMTA matrix element and NI is the partial Fermi energy density of 
states, 

720 = 1 w,t/+ 1 (WNU2) /+  1 + N / +  I ( N u 2 ) / ) / N ( o ) ( u 2 )  
/ 

( N u 2 ) /  =I ~ ( E u ) u &  1 I A I m ( k  A)I2/3(21+ 1). 
U m 

It was shown by Butler (1977) that the SA introduces an error of a few per cent into the 
calculation of q. The selection rules for qI1 are more complicated. The final result is 
( ( N u ) / , / +  are the matrix elements of U,) 

- w ? / + , ( ~ ~ ) : / + 1 / ( 2 1 +  1)1/"(v2). (9) 

Because of the complex shape of the Fermi surface the assumption that 
U ,  =(k/lkl)u(lkl, A) is not quite correct. In transition metals it often gives rise to an error 
of more than 100% in the calculation of q l l  . However, for the same reason,   NU)^,^, is 
found to be rather small since it is a kind of average of the electron velocity over the Fermi 
surface. Hence q l l  is small in comparison with q20 (tables 1 and 2) and the error 
introduced by q l l  in qw is found to be insignificant (a few per cent). In simple metals qll  
may be as large as 10-20%, but in these metals the SA is quite adequate and the method 
remains accurate enough in this case too. Therefore the method we use provides an 
accuracy of a few per cent in the computation of expression (1) at temperatures 
&/3 < T <  20,. Further details are given by Mazin et aZ(1982)". 

t In that paper there is a misprint (the fault of the authors). In the definition of fj,? (p K31) the factor \/4n/3 is 
omitted (TLy. =&, ,,t!,!!m). The final formulae are quite correct. 
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Table 1. 

Metal s N(0) N ( O X c 2 >  tl 4tr 1 1 1 1  

Nb 3.072 21.07 7.480 0.183 0.188 -2.1 x I O - ’  
MO 2.905 8.36 5.675 0.1 16 0.126 - 1.9 x I O - ’  
Rh 2.818 18.19 5.780 0.101 0.0960 -2.9 x  IO-^ 
Pd 2.876 29.87 3.152 0.0492 0.0699 2.5 x 
Ag 3.017 3.56 6.367 0.0128 0.0146 9.3 x 

yBCC 

YFCC 

Zr BCC 

ZrFCC 
TcBCC 
TcFCC 
RUBCC 

RuFCC 

34.6 4.03 0.063 1 0.0642 
3’79 27.9 3.23 0.0536 0.0533 

22.9 3.97 0.1 19 0.122 
3’349 19.8 5.55 0.0959 0.09 16 

20.2 6.72 0.205 0.2 I 1  
2’850 16.7 7.75 0.172 0.182 

33.9 7.08 0.190 0.21 1 
2‘798 15.2 6.76 0.127 0.135 

-4.2 x 10-5 
-5.1 x 10-5 
- 1.1 x 10-3 
- 8.3 x 
- 1.5 I O - )  

-1.0 x 
-3.6 x 

-4.6 x 

3. Results 

The coupling constant 1 and the resistivity have been calculated for all 4d metals and for 
silver. The hexagonal metals were treated as cubic (BCC and FCC). Band-structure 
calculations were performed using the LMTO method with I,,,, = 3. The number of k points 
in the irreducible part of the Brillouin zone was 306 for FCC and 285 for BCC structures. 
We have used the self-consistent crystal potentials of Moruzzi et a1 (1978). In this book the 
potentials are listed for lattice parameters different from the experimental ones. We have 
always made calculations for the real lattice parameters, expanding or contracting the 
region of the constant potential. 

As the RMTA leads to a significant underestimation of the EPI in simple metals, for 
silver we have introduced corrections to the RMTA, adding to VVei the expression 
6(r  - s)A V =  1OZ exp(-s/K)d(r - s)/s where s is the Wigner-Seitz radius and K is the 
Debye screening radius?. This expression leads to suitable values of the corrections in 
simple metals (0.23 Ryd in Ag) and it vanishes in transition metals. 

All integrations in k space, as well as the calculations of the Fermi velocity, were 
performed by the tetrahedron method. The results for 17 and qk are listed in tables 1 and 2 
(all quantities are in atomic units, energy is in Ryd, velocity is in Ryd rB). The calculated 
values of (c’) and qtr in Nb and Pd are close to those found by Pinski et a1 ( 1  98 l) ,  but for 
q l ,  the agreement is only qualitative. 

The calculation of the phonon quantities was performed as follows: as is common in 
the calculation of 1, d F ( w )  was assumed to be proportional to F(o)--the phonon 
density of states (constant a’ approximation). For $rF(o)  a more sophisticated 

t This lowest-order correction is related to the difference between the muffin-tin zero and the value of the ion 
potential at infinity. One can obtain this expression by describing the ion potential at a distance r 2 s  as a 
screened Coulomb potential. It should be noted that the value of the pre-factor does not significantly affect the 
final result. 
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Table 3. 

~~ 

Nb 196 204 1.40 0.97 1.32 14.3 13.5 
MO 270 265 0.45 0.44 0.50 5.8 4.9 
Rh 245 245 0.44 0.27 0.42 4.1 4.3 
Pd 141 192 0.62 - 0.49 10.4 9.7 
Ag 156 156 0.13 0.13 0.16 1.8 1.7 

5 3 . 7  

38.6 

16.7 

5.6 

0.74 28.5 
yBcc 156 1 6 3  o’80 0.68 o‘26 0.67 30.0 

1.00 26.7 
‘ ‘ 1 5  0’45 0.86 15.0 Z r F C C  190 0.86 

0.94 8.8 
6.7 0’92 0.78 o.82 248 0.77 

0.65 0.69 5.6 

yFCC 

Z ~ B C C  176 

TcBCC 248 
TcFCC 

287 0.44 0‘71 0.44 3.7 
RueCC 2 7 8  
RuFCC 

approximation has been used. One can see from equation (2) that 4 differs from c? by the 
factor (UU - uK1,)’, which for /k - k’l+ 0 may be written as (k - k)Z - / c y ,  where wq 
is the phonon frequency and c is the sound velocity. Therefore 4 -U’ may be taken as 
the first approximation. Taking into account the difference between longitudinal and 
transverse phonons we divide F(w) conditionally into two parts, F(u) = ql (U) + F, (U), 
which yields 

(10) 

where wI and 
The estimates of these frequencies are the positions of the first and second maxima of 

F(w). The calculated values of (w2), (u’)~,, A, Atr and pph(273 K) and the experimental 
values of A and pph are shown in tables 3 and 4. The phonon densities of states are from 
Landolt-Bornstein (1981), excluding Rh and Tc, for which only are available. 
Experimental data for A were taken from Butler (1977) and for pph(273 K) from 
Landolt-Bornstein (1982). The agreement between theory and experiment for A and 
especially for pph is fairly good. For HCP metals the comparison between the calculation 
and experiment is questionable because of the strong dependence of A and pph on crystal 
structure. 

a:,F(U) - w2(F, ( w Y 4  + ~ 1 1  ( ~ ) / c q f )  
are the cut-off frequencies of F ,  and F,:. 

4. Discussion 

The 4d metals investigated may be classified into three groups according to their transport 
properties: (i) all transition metals except Pd, (ii) Pd, in which a complicated and unusual 
mechanism of conductivity takes place, and (iii) Ag (a noble metal). 

The main feature of the first group is the approximate equality of q and qtr, A and Am. 
This may be easily explained. Assuming ( N u Z ) /  E ( c 2 ) N /  in equation (8), one can obtain 



172 I I Mazin et a1 

an approximate equality q20 z q. In transition metals qI1  is negligible in comparison with 
11’~; hence q z q u .  Such an assumption is reasonable when the absolute value of the 
electron velocity at the Fermi surface is approximately constant. It is a good 
approximation in all 4d transition metals (except Pd) where all sheets of the Fermi surface 
are due to the d bands. In these metals (U’) and (o’), are also found to be nearly equal; 
hence ,I z ,Itr, 

The different variations of A and Pph at the beginning of the series (Y and Zr) are due to 
the factor Cl/N(0)(u2) in equation (2). The average d-electron velocity may be estimated 
roughly as 

(t‘i)1‘2“o.3wds (1 11 

where wd is the width of the d band. Hence n/N(o)v2  -s/Wd. The variation of both 
quantities is shown in figure 2. The qualitative correlation is quite pronounced. 

The minimum in the middle of the series is closely related to the well known cohesive 
energy maximum in metals with a half-filled d band. Nevertheless, the increase of s/ W, 
does not explain the whole increase of P p h  in Zr and especially in Y. Our calculation leads 
to an overestimation of in Y and Zr and to an underestimation of Pph (tables 2 and 4). 
This discrepancy arises from the fact that N(0) and especially ( u 2 )  depend strongly on the 
crystal structure, as well as on the position of the Fermi level. The low values of uF at the 
beginning of the series are specific to the HCP structure-hence the failure of ‘cubic’ 
calculations. One could try to extract N(0)(v2) from the optical measurements, but this is 
also doubtful because this quantity is defined by the intensity of the intraband transitions 
and in many metals it is difficult to distinguish them from the interband low-energy 
transitions, so that the error in N(O)( U ’ )  is unpredictable. 

Palladium differs from other 4d metals because in Pd there are two conductivity bands: 
the d-like band (‘jungle gym’) with a high density of states (about 85% of N(0)) and a low 
electron velocity (about 10% of (U’ )” ’ ) ,  and an s-like band (T-centred sheet), which 
contains only 15% of N(0) but where the electron velocity is greater than average (80% of 
N(O)(t”)) .  Therefore q and ,I are defined mainly by the parameters of the ‘d sheet’, while 
qu and & are defined by the scattering from the ‘s sheet’ to the ‘d sheet’ (the appropriate 
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Figure 2. Variation of average d-electron Fermi velocity and of inverse d-band width across 
the 4d series. 
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term in equation (8) is proportional to Nd(Nt'2)f). As a result qe turns out to be 1.5 times 
larger than q. We find A close to A e ,  as it is in other 4d metals, only because of the 
appreciable difference between U' and It is obvious that this resemblance is quite 
accidental. The specific mechanism of the electron-phonon scattering justifies the Mott 
model for conductivity in this metal, as mentioned by Pinski et a1 (1 98 l), while in other 4d 
metals this model is not valid. 

Silver is a typical noble metal with a nearly spherical Fermi surface. It differs from 
simple metals only in the fact that N(0) contains some d electrons because of the 
hybridisation. The spherical shape of the Fermi surface causes q,, to be comparable with 
qtr and Ar are defined by the scattering from the 's sheet' to the 'd sheet' (the appropriate 
transition metals, so that the final error does not increase. The equality qZ0 =: q is as true as 
in other 4d metals (except Pd). The large value of ( U ' )  with the low density of states N(0) 
yields a small 1 and high conductivity. 

5. Conclusion 

The numerical study of the EPI in 4d metals shows that in cubic metals the RMTA is 
accurate enough to describe P p h (  7'). The discrepancy between the theory and experimental 
data is larger for 1 than for P p h .  This is probably because the experimental determination of 
,? is much more problematic. Treating hexagonal metals as cubic does not allow good 
results to be achieved. They require band-structure calculations for the HCP lattice and 
probably necessitate giving up the SA. 

Some specific features may be noted: (i) a considerable decrease of N(0) (v2 )  at the 
ends of the series and as a result the different variation of 1 and P p h ,  (ii) the approximate 
equality of 1 and Aw in transition metals and (iii) the specific mechanism of conductivity in 
Pd. 

Our calculations cannot describe the temperature dependence of P p h  at low 
temperatures ( T <  8,/3). Generally speaking it is possible to describe & h ( T )  at high 
temperatures in the framework of the method without loss of simplicity. However, it 
requires taking anharmonic effects and Fermi smearing into account (Pinski er a1 1978). 
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