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A burning question in the emerging field of spin-orbit driven insulating iridates, such as Na,IrO; and Li,IrO3,
is whether the observed insulating state should be classified as a Mott-Hubbard insulator derived from a half-filled
relativistic jer = 1/2 band or as a band insulator where the gap is assisted by spin-orbit interaction or Coulomb
correlations or both. The difference between these two interpretations is that only for the former strong spin-orbit
coupling (A 2 W, where W is the bandwidth) is essential. We have synthesized the isostructural and isoelectronic
Li,RhO; and report its electrical resistivity and magnetic susceptibility. Remarkably, it shows insulating behavior
together with fluctuating effective S = 1/2 moments, similar to Na,IrO3 and Li,IrOj;, although in Rh** (4d°)
the spin-orbit coupling is greatly reduced. We show that this behavior has a nonrelativistic one-electron origin
(although Coulomb correlations assist in opening the gap) and can be traced to the formation of quasimolecular

orbitals, similar to those in Na,IrOs.
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In recent years, complex iridium oxides have caused
extraordinary interest'™ since the physics there is governed
by a unique combination of several comparable scales: one-
electron hopping ¢, spin-orbit coupling (SOC) A, and the
Hubbard repulsion U. The honeycomb layered compound
Na,IrO;, a small-gap antiferromagnetic (AFM) insulator,>
has received particular attention. It was suggested that the
adequate description of the electronic behavior of this system
is in terms of a half-filled relativistic j.s = 1/2 band, which
becomes a Mott-Hubbard insulator.” However, U in iridates is
rather small (1.5-2 eV), and therefore the corresponding band
must be rather narrow for the system to become insulating.
In this scenario, the SOC is the leading interaction in these
systems, so that the £, bands split into a narrow doublet with
the effective angular moment je = 1/2 and a quartet with
Jett = 3/2. In the idealized crystal structure, the one-electron
hopping between the doublet states is fully suppressed, and
the effect of one-electron hopping is reduced, by perturbation
theory, to the second order in ¢, that is, to tz/l.SA ~1/3,
where 1.5\ is the energy separation between the doublet and
the quartet.

Recently, Mazin et al.® proposed an alternative description
and argued that the one-electron nonrelativistic band structure
might be a better starting point for the description of the elec-
tronic behavior of honeycomb iridates than the limit A > W
(bandwidth). In this case the band structure is dominated by
the formation of so-called quasimolecular orbitals (QMOs)
and consists of four narrow bands (the width being defined by
second-neighbor hoppings and other secondary one-electron
parameters), spread over a width of ~4¢, where ¢ ~ 0.3 eV
is the leading one-electron hopping. The highest and the
lowest bands are singlets, having one state per two Ir (i.e.,
one state per spin per unit cell of two formula units), and
the two middle bands are doublets. In the A = 0 limit the
upper singlet and doublet bands nearly merge, forming a
triplet manifold, while turning on SOC further splits those
bands into three singlets. The upper two bands barely overlap,
forming an incipient (SOC assisted) band insulator, and even
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a very small U of a few tenths of an eV is sufficient to
open a gap. In this picture, the material is characterized as a
spin-orbit assisted insulator with the gap enhanced by Hubbard
correlation.

In view of the two alternative, and partly opposite, de-
scriptions of the insulating state in these systems, we present
here a comparative analysis between the electronic behavior
of hexagonal iridates and rhodates. Specifically, we have
synthesized and investigated Li,RhO3, which shows insulating
behavior at low temperatures, similar to Na,IrO3 and Li, O3,
even though in Rh** (4d°) the SOC is substantially reduced.
The comparison sheds light onto the nature of the insulating
state in these systems.

The paper is organized as follows. We first settle the termi-
nology between the various definitions of insulators. We then
proceed with electrical resistivity and magnetic susceptibility
data of Li;RhO; and the description of its electronic and
magnetic properties by means of density-functional theory
(DFT) calculations with and without inclusion of spin-orbit
coupling and discuss the similarities and differences of this
rhodate system compared to the hexagonal iridates. As an
outlook, we provide some predictions for the magnetism in
the hexagonal rhodates.

The question of whether a particular phase is characterized
as a Mott-Hubbard insulator or a band insulator is largely
terminological, as no strict definition or criterion exists to
rigorously separate these notions. Some authors’ further
subdivide the classification of insulators into Peierls, Wilson,
Slater, or Hund insulators, to mention a few. We feel that
this fine tuning is not helpful here, and we will concentrate
on the difference between Mott and band insulators, which
is fundamental in the sense that one cannot go from the
former to the latter continuously. Note that this division does
not have a one-to-one correspondence with the strongly-
correlated—weakly-correlated dichotomy; a band insulator,
in our terminology, may have a gap strongly enhanced by
correlations but is still “topologically connected” with an
uncorrelated insulator.
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We can illustrate this with a simple example: imagine a
crystal of atoms with one half-occupied orbital. If the crystal
has one atom per unit cell, then on the one-electron level
this material can never be insulating. Upon including an
onsite Hubbard U, thereby penalizing double occupation and
hindering itinerancy, it becomes a Mott insulator,'”!" with
no coherent quasiparticles. This happens roughly when U
becomes larger than the total bandwidth W. Now, suppose the
same atoms are bound in dimers forming a molecular crystal.
Each dimer develops a bonding and an antibonding state split
by some energy A. We now allow interdimer hopping. The
levels will broaden into bonding and antibonding bands of the
width W. Aslong as W < A, the material is a band insulator.
If A ~ W, the gap is very small, and the indirect gap may
even become negative. If we add a Hubbard U to this system
(not necessarily larger than W) the gap will get larger by
some fraction of U (depending on the degree of itinerancy),
and this may be a substantial enhancement. We call this a
correlation-enhanced band insulator. For instance, solid Ne is
a band insulator, even though in local-density approximation
(LDA) calculations its gap is severely underestimated (12.7 vs
21.4 eV).!? This discrepancy is related to another problem
in the density-functional theory (DFT), the so-called density
derivative discontinuity, and not to Hubbard correlations. To
first approximation, this discrepancy is inversely proportional
to the static dielectric function.'3

An example of a Mott insulator is FeO. It has one electron
in the spin-minority #,, band and is a metal in DFT. Coulomb
correlations have to destroy entirely the coherent DFT metallic
band crossing the Fermi level, and the excitation gap appears
between the incoherent lower and upper Hubbard band.'*
Note that despite FeO being a Mott insulator even in the
paramagnetic phase the simplistic treatment of LDA + U,
as opposed to more sophisticated dynamical mean-field theory
(DMFT),'* cannot reproduce insulating behavior by symme-
try; the cubic symmetry needs to be broken, for instance,
by assuming antiferromagnetic ordering, after which a gap
opens at sufficiently large values of U. Similarly, in parent
compounds of the superconducting cuprates there exists one
hole in the e, band, and symmetry does not allow one to
open a gap in DFT. These systems are “true” Mott-Hubbard
insulators.

Finally, MnO is an example of a (strongly) correlation-
enhanced band insulator. It has a gap between 3d majority
and minority bands. In DFT, this gap is driven by Hund’s rule
and is ~51 — W, where the Stoner factor / is ~1 eV. The
calculated value is 1.4 eV as compared to 4.5 eV in the
experiment.'® This material is strongly affected by Mott
physics and routinely called a Mott insulator, yet one can make
a gedanken experiment and gradually reduce the Hubbard
correlations to zero, whereupon the gap will drop to its
DFT value, without losing the insulating character. Note also
that a Mott-Hubbard insulator, in our nomenclature, does not
necessarily imply a strong Hubbard repulsion U >> ¢, where
t is a typical intersite hopping. For instance, TaS; by no
means can be expected to be a strongly correlated material,
and U cannot be more than a fraction of an eV, and, indeed,
at high temperatures it is a metal. Yet at low temperature it
experiences a charge-density wave transition typical for this
structure, which, combined with the spin-orbit interaction on
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Ta, splits off, essentially accidentally, an ultranarrow band
(W ~ 0.1 eV), and even a minuscule U suffices to split it into
two Hubbard bands.

In Na,IrOs3, U is relatively small and the material cannot be
strongly correlated. Moreover, correlations are suppressed in
LDA + U calculations because of substantial delocalization
of electrons over Irg hexagons, so that in order to increase the
calculated gap from ~0 to ~0.3 eV one has to add U ~ 4 eV.
Furthermore, there is indirect evidence of itinerancy in the
experiment: the ordered magnetic moment even at the lowest
temperature is less than 0.3up,'” in reasonable agreement
with the band-structure calculations (0.5 wp, equally dis-
tributed between spin and orbital moments), while the fully
localized jer model (1 p, split 2:1 between spin and orbital
moments) requires strong fluctuations to suppress the ordered
moment.'®

It is often argued that the experimentally measured'® spin-
orbit correlation factor, (L - S), is consistent with one hole in
the jer = 1/2 state and thus proves its existence. However,
this factor is mostly collected from the e, holes?™*! and is well
described by band-structure calculations.

A comparison of honeycomb iridates with the isostructural
and isoelectronic Li;RhOj3 should be very instructive, because
if the former are SOC Mott insulators like SrpIrO4>?? then
a Rh analog (with much weaker SOC) should be metallic,
just as Sr,RhO4.3 Tf, on the other hand, the formation of
quasimolecular orbitals triggers the insulating behavior, then
alarger U in Li;RhO; will likely recreate the same physics as
for Na,IrOs, i.e., a correlation-enhanced band insulator.

We have synthesized Li;RhO; polycrystals by the solid-
state reaction method from stoichiometric amounts of Li,COj3
and Rh powder. The mixture has several times been pelletized
and reacted in O, flow at temperatures up to 850 °C. Powder
x-ray-diffraction (XRD) scans do not reveal any evidence for
secondary phases and are similar to those reported in Ref. 24
(cf. Fig. 3). Magnetic susceptibility and (four-probe) electrical
resistivity have been determined utilizing commercial (Quan-
tum Design) instruments.

As presented in Fig. 1(a), Li;RhO3 shows clear insulating
resistivity behavior, which follows the same variable-range
hopping dependence as found in Na,IrO; or Li,IrO3.>% Pre-
vious resistivity measurements at higher temperatures found
an activation gap of ~80 meV.?* The magnetic susceptibility
[Fig. 1(b)] is Curie-Weiss (CW) like, with a small kink at
6 K, likely due to some spin-glass freezing, which needs to be
investigated in future measurements. The CW fit between 100
and 300 K corresponds to ptesf = 2.2 . Similar results have
been recently reported by Luo et al.>®

Now, we need to establish the crystal structure. Lab
powder XRD is not very sensitive to the O positions, which
hinders structural determination. For instance, initial powder
XRD refinement for Na,IrO;° was unable to distinguish
between C 2/c and C 2/m structure, but later measurements
on a single crystal showed that C2/m is the most sta-
ble crystal structure with well-ordered regular honeycomb
planes.17 Also, for Li,RhOj3 there has been discussion about
Li-Rh site exchange.24 However, we have found that site
exchange and stacking faults have similar effects on powder
XRD Rietveld refinement. Thus, from the present data it is
very hard to distinguish between them. On the other hand,
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FIG. 1. (Color online) Temperature dependence of the electrical
resistivity (a) and magnetic susceptibility (b) of polycrystalline
Li,RhO;. Inset (c) displays the resistivity data (on log scale) vs
T~!/4 The line in (b) is a Curie-Weiss (CW) fit x(T) = xo + C/(T —
Oy) with xo = —1.235 x 107* cm?/mol and ®y = —59 K. Inset
(d) shows Ax~! vs T with Ax = x(T) — xo and the CW fit. Inset
(e) displays the same data as in (b) for the low-temperature regime.

single-crystal XRD on NayIrO; by Choi et al. found evidence
that stacking faults are the leading defects rather than Na-Ir site
exchange.!”

For that reason, we have used (well-determined) unit-
cell parameters for Li,RhO3; and performed first-principles
optimization of the internal parameters.”’ We note that the
same procedure yielded excellent agreement with the refined
crystal structure of Na,IrOs.!” The final structure is presented
in Table I and shown in Fig. 2. This refined structure is
consistent with the laboratory powder XRD data (Fig. 3).

Despite the overall low crystal symmetry, the local sym-
metry of the Rh,Li planes is rather high: the hexagons
are nearly ideal and the Rh-O-Rh angles are nearly the
same and relatively close to 90°. This makes it a showcase
for the quasimolecular orbital concept.® To this end, we

TABLE I. Optimized crystal structure of Li,RhOj;, using experi-
mental lattice parameters (a = 5.123 A, b=28836A,c=5885A4A,
B = 125.374°) and space group C 2/m. The nearest neighbor Rh-Rh
and Rh-O distances as well as Rh-O-Rh angles are given. Note that
the hexagon structure is not perfect and there are two Rh-Rh and three
Rh-O nearest neighbours.

Atom Position X y z

Rh 4h 0 0.333 1/2

Li 2a 0 0 0

Li 4g 0 0.660 0

Li 2c¢ 0 0 1/2

o) 8 0.516 0.327 0.263

0 4i 0.002 1/2 0.7380
dist./angle 1 dist./angle 2 dist. 3

Rh-Rh 2951 A 2952 A

Rh-O 2.023 A 2.030 A 2.021 A

Rh-O-Rh 93.2° 93.8°
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FIG. 2. (Color online) Structure of Li,RhO3, viewed along the ¢
direction.

have performed first-principles calculations using the WIEN2K
code? and projected the results using a standard Wannier
function projection technique as proposed by Aichhorn et al.?
and further developed in Ref. 30. The resulting tight-binding
parameters are shown in Table II.

As we see, the main condition for the QMO picture
(dominance of the O-assisted nearest-neighbor hoppings) is
fulfilled. Projecting the density of states (DOS) onto individual
QMOs we see that, although it does not separate into isolated
manifolds as in Na,IrOs3, it is composed of overlapping QMOs
as shown in Fig. 4.

We have also performed spin-polarized calculations with
various spin configurations®' [Fig. 5(a)]. We were not able to
stabilize a Néel order (magnetic moments collapse), but
the ferromagnetic (FM) and two antiferromagnetic phases,
the “stripy” and the “zigzag” phases, are all stable, with the
ground state practically degenerate between the two AFM
states. The FM state has a small advantage in the calculations,
which is lost upon application of U (see below). The calculated
FM state, just as in NayIrOs3, is a half metal with M =
lupg/Rh. One has to keep in mind that at small U the
material is metallic, which promotes ferromagnetism, and that
LDA and generalized gradient approximation (GGA) include
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FIG. 3. (Color online) Comparison of observed (black) and
calculated (red) powder XRD spectra for Li,RhOj; (see text).
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TABLEII. Comparison of the first-principles hopping amplitudes
in Li,RhO; and Na,IrO;. The notations are explained in detail in
Ref. 21. All hoppings ¢ and onsite energies p are given in meV.

NaZIrO3 leRhO;
w —448.8 —385.8
YRR —421.5 —385.7
1) TE —27.8 —18.8
1y —23.1 -155
Distance 3.130 A 3.138 A 2951 A 2952 A
fio 269.6 264.4 211.8 197.5
fo —20.7 25.4 —89.0 —106.4
ft —256/-214 —119 —159/—105 —13.0
ny 47.7/30.0 33.1 58.3/57.2 60.4
Distance 5425 A 5427 A 5.088 A 5.096 A
ho —75.8 -77.0 —77.2 —78.7
taa® —3.5/—0.6 —14 —44/-53 —43
ta -15 —14 0.1 1.4
tre —36.5 —30.4 —24.9 —24.1
bag® 12.5/10.2 9.3 18.4/17.9 18.7
b —214/-186  —19.0 —7.4/-17.8 -7.6

#For the shorter distance, the first number corresponds to xy — xz
and xy — yz transitions and the second to xz — yz transitions.
YFor the shorter distance, the first number corresponds to xy —
xy transitions and the second number to xz — xz and yz — yz
transitions.

spurious Hund’s rule self-coupling of an orbital with itself.
In particular, for the ~90° geometry, as in this case, the
Hund’s rule coupling on oxygen is not supposed to promote
ferromagnetism,'®2! but in LDA and GGA it gives additional
energetical advantage to the ferromagnetic state of the order
of 310m%)/4 ~ 3 x 1.6eV x 0.12/4 ~ 12 meV per Fe, where

-
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- ‘> x» -
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X M ro

FIG. 4. (Color online) Nonrelativistic nonmagnetic band struc-
ture and density of states of Li;RhO3, projected onto quasimolecular
orbitals, as described in Ref. 21.

PHYSICAL REVIEW B 88, 035115 (2013)

S

)

3 oo nonmagnetic -&- T, 1

Q §tr|pe -

o 0sl zigzag -@- ]
’ ferromagnetic -4

-0.41 (a) without SO coupling 1

energy (eV)

-0.41 (b) with SO coupling

0 1 2 3 4
U-J (eV)

FIG. 5. (Color online) Energy of different magnetic configura-
tions in eV/Rh relative to the nonmagnetic state, as a function
of (U — J). Energies at (U — J) # 0 are offset by 1.05(U — J).
(a) Without spin-orbit coupling. (b) With spin-orbit coupling.

Io = 1.6 eV is the Stoner factor,? mgo = 0.1 is the calculated
magnetic moment of O, and there are three oxygens per Fe.

Neither the nonmagnetic state (Fig. 4) nor any of the
magnetic states considered (FM, stripy, and zigzag) are
insulating. Including SOC has little effect on either energetics
or proximity to an insulator (Figs. 5-7).

(a)no SO, U=0 (e) SO, U=0
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FIG. 6. (Color online) Evolution of the density of states with
the Hubbard U in the zigzag phase without spin-orbit coupling (left
panels) and with spin-orbit coupling (right panels). We use Jy =
0.7 eV throughout.
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FIG. 7. (Color online) Evolution of the density of states with
the Hubbard U in the stripy phase, without spin-orbit coupling (left
panels) and with spin-orbit coupling (right panels). We use Jy =
0.7 eV throughout.

On the other hand, experimentally this material appears to
be insulating. It is natural to attribute this fact to the effect
of Hubbard U, which in 4d metals is about 3—4 eV, twice
as large as for 5d systems. Even though LDA + (onsite)U is
a rather naive way to tackle correlations in a QMO system,
we have tried, faut de mieux, to apply a standard LDA + U
correction to our calculations.® As expected, for U > 3 eV
we obtain an insulator for both AFM configurations. In Figs. 6
and 7 we show the evolution of the density of states (DOS)
with the Hubbard U for the zigzag and stripy configura-
tions, respectively. Besides, adding U produces somewhat
less obvious effects. First, it destabilizes the FM structure,
making all three magnetic structures degenerate within the
computational accuracy (in calculations with SOC the FM
state is a few meV lower in energy, but, as mentioned, DFT
always slightly overestimates this tendency because it includes
Hund’s rule self-interaction on O). Second, the Hubbard U
enhances the SOC, increasing the calculated orbital moments.
The spin moment also positively correlates with U, but the
dependence is much weaker. For instance, for the FM state the
moment inside the Rh muffin-tin sphere increases from 0.58
to 0.664 5 as U increases from 0 to 5 eV.

An important point to make is that, as one can expect
from the small value of the SOC, it is not essential for
obtaining an insulating state; an antiferromagnetic order,
however, is, just as in such prototype Mott insulators as
FeO and CoO. In fact, sometimes in LDA + U calculations
including SOC is necessary for reproducing the insulating
behavior, even though a material is obviously not relativistic.
This is an artifact resulting from the inability of LDA + U to
describe Mott insulators in the paramagnetic case. One of the
pathologies that LDA 4 U shares with LDA is the absence
of local magnetic fluctuations.** In both methods, instead of a
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paramagnetic state, i.e., a state with disordered local moments,
a non-magnetic state, with no moments at all, is considered.
As a result, in such prototype strongly correlated materials
as, for instance, 3d oxides, a metallic state is protected by
symmetry, unless some magnetic ordering is included (in
some cases even the ferromagnetic order suffices; in others
an antiferromagnetic ordering is needed), and LDA + U fails
to reproduce the paramagnetic insulating phase. Li;RhOj3 is
a similar case. In the nonmagnetic calculations there are
band crossings protected by symmetry; that is to say, the
best one can possibly achieve within LDA + U, even with
an arbitrarily large U, is a zero-gap semiconductor. SOC, even
infinitesimally small, removes this protection (the protected
bands can now hybridize), and now a sufficiently large U
can open a full gap. Obviously, this feature does not tell us
anything about the real role of the SOC but only highlights
shortcomings of the LDA + U method.® In fact, while the
physics of Na,IrO3 and LiRhO3; compounds is similar, the role
of interactions is reversed. In the former, strong SOC renders
the material nearly insulating already in the paramagnetic
phase, and the relatively weak correlations only help the
existing tendency. In the latter, for U = 0 there exists already
a sizable separation between the upper two bands but they are
too wide and still overlap, forming a negative gap (see Fig. 4).
Indeed, strong correlations are essential to open an actual gap,
and the way to take correlations into account in LDA + U is
to include magnetism from the very beginning. This scenario
with the preexistence of a band separation is in contrast to the
case of Mott insulators and corresponds to a correlated band
insulator.

It is worth noting that the “213” honeycomb structure is
peculiar in the sense that in the nearest-neighbor approxima-
tion the highest band is always a doublet, independent of
the relative strength of the SOC. In the strong SOC limit
this doublet is the relativistic jeg = 1/2. In the opposite
limit, this doublet is an A, molecular orbital, and the band
structure can be characterized as an incipient band insulator.
Mott-Hubbard correlations obviously enhance the tendency
to insulating behavior but generally speaking are not always
necessary. In real materials beyond this approximation the
order of states may change, in which case SOC becomes
absolutely essential (cf. Na,IrO3), or bandwidth may become
too large for such a simplistic treatment, but the fact that
the most basic model has this unique feature is very im-
portant for understanding the physics of these honeycomb
compounds. For a more detailed discussion we refer the reader
to Ref. 21.

The observation that three different magnetic configura-
tions, FM, zigzag, and stripy, with ordered moments on Rh
(~0.5-0.7 pup) independent of the magnetic pattern, are very
close in energy indicates considerable frustration. Structural
disorder is then expected to push the system toward a spin-glass
regime.

These results show an important similarity between the
5d compound Na,IrO; and the isostructural and isoelectronic
4d compound Li,RhOj3, despite a much larger Hubbard U
and much smaller spin-orbit A in the latter. This similarity
suggests that properties of these materials are largely con-
trolled by the nonrelativistic one-electron physics, namely,
the formation of quasimolecular orbitals, while the role of
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Coulomb correlations and SOC lies primarily in enhancing
already existing tendencies (in particular, toward insulating
behavior). As a word of caution, we want to emphasize
that while our results point toward these systems being
band (Slater) insulators rather than Mott insulators this does
not indicate that they are weakly correlated or that they
are localized rather than itinerant. On the other hand, our
results suggest that local antiferromagnetism is an important
ingredient in the formation of an insulating state and that
Coulomb correlations are instrumental in enhancing the
insulating gap.
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