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Magnetism, critical fluctuations, and susceptibility renormalization in Pd
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Some of the most popular ways to treat quantum critical materials, that is, materials close to a magnetic
instability, are based on the Landau functional. The central quantity of such approaches is the average mag-
nitude of spin fluctuations, which is very difficult to measure experimentally or compute directly from the first
principles. We calculate the parameters of the Landau functional for Pd and use these to connect the critical
fluctuations beyond the local-density approximation and the band structure.
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The physics and materials science of weak itinerant ferNi;Ga,” and SgRu,O; (Ref. 13 (as mentioned, this latter
romagnetic metals and highly renormalized paramagnetfaterial shows a metamagnetic quantum critical poifite
near magnetic instabilities has attracted renewed theoreticghsic theoretical difficulty in correcting the LDA for these
interest. This is a result of recent discoveries of materialsnaterials is that there is some unknown and possibly
with hlghly _nonconve_nnonal metallic properties, especially strongly material dependent cross-over in endagyd possi-
non-Fermi-liquid scalings, metamagnetic behavior, and unply non-trivially in momentum separating quantum critical
conventional superconductivity, in several cases coexistingyctuations, not included in the LDA, from the dynamical
with ferromagnetism. Discoveries in the last three yearsy,ctyations that are included in the LDA. Qualitatively, this

alone include the coexisting ferromagnetism and SUPercoryay pe understood from the fact that the LDA is based on
ductivity of ZrZr,,~ UGe,,” URNGe, ” high pressure:-Fe, the properties of the uniform electron gas, which is far from

and the metamagnetic quantum critical point iBR8LO;. any magnetic critical point at densities relevant for solids,

Unfortunately, although model theories have been PUlhe consequence being a mean-field-like description of mag-
forth, there is still not an established material spedffiicst . o . ;
netism near critical points. Thus the underlying reason for

principles theoretical understanding of these phenomena, . . .
One difficulty is the usual starting point for first principles the failure of the LDA to describe these systems is very

theories, density functional theofpFT) as implemented in different from the fallu_res in the well-known class of _Cou-
the local density approximatiofLDA). This already in- lomb correlated mater!als, such as.the Mott-Hubbard insula-
cludes most spin degrees of freedom, including dynamicaiers: There, the basic problem is the neglect of some
fluctuations, as evidenced by its formally exact description of!€ctron-electron interactions, and can often be largely cor-
the uniform electron gas as well as its well documented suctected at the static level, e.g., via approaches like LA It
cess in accurately describing a wide variety of itinerant magis worth noting that these dynamical fluctuations are respon-
netic materials. However, the electron gas, upon which mosgible not only for the suppression of the magnetic ordering,
density functionals are built, is not near any critical point for but also for unusual transport properties of quantum critical
densities relevant to the solid state, and furthermore thénaterials, deviating from the conventional Fermi liquid be-
proximity to itinerant magnetism of a metal is an extremelyhavior, for mass renormalization, and even for superconduc-
nonlocal quantity, in particular depending on the electronidivity in some systems. Many of these issues have been ad-
density of states at the Fermi levlIl(Eg). Therefore, the dressed recently in theoretical papers, utilizing idealized
exact DFT, which by definition includes all fluctuations and models of various kinds. However, a quantitative link be-
describes the ground state magnetization exactly, is likely tdween such models and actual material characteristics is still
be extremely nonlocal and probably nonanalytical for themissing.
materials near a quantum critical point. We attempt to build a bridge between such theories and
On the other hand, the LDA, while providing a good de-the LDA. We concentrate on the question of what kind of
scription of most itinerant ferromagnets that are not neamaterial-specific understanding, relevant for quantum criti-
critical points, fails to include the soft critical fluctuations in cality, can be extracted from the LDA calculations. Primarily,
the materials of interest here. Since fluctuations are generiwe focus here on Pd. This is perhaps the best studied high
cally antagonistic to ordering, the result is that magnetic mosusceptibility paramagnét;*”and in fact a number of theo-
ments and magnetic energies of weak itinerant ferromagneties related to spin fluctuations have been elucidated using
near critical points are overestimated in the LDA, as opposethis material. Furthermore, itinerant ferromagnetism appears
to LDAs failure to describe Mott-Hubbard insulators where in Pd at 2.5% Ni dopind® We present highly accurate cal-
the LDA undeestimates the tendency to magnetism. Recentulations of the static magnetic susceptibility for Pd and find
examples include Sin,® NizAl,’ NaCg0,,2 and zrzn.° that, indeed, the LDA overestimates the tendency to magne-
Similarly, susceptibilities of paramagnets near critical pointstism. We also estimate the r.m.s. magnitude of spin fluctua-
are underestimated. Furthermore, there is an overlap regidions (paramagnonsin Pd, needed to reduce the calculated
where the LDA predicts ferromagnetism for paramagneticsusceptibility to reproduce experiment, and show that it is
materials'®~!2 This interesting class includes Fell’?  compatible with that which might be estimated from LDA
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susceptibilityvia the fluctuation-dissipation theorem with a
reasonable ansatz for the cut-off momentum.

We have performed electronic structure calculations using
the self consistent full potential linearized augmented plane
wave”® (FLAPW) method within the density functional
theory?® The local density approximation of Perdew and
Wang! and the generalized gradient approximati@GA)
of Perdew, Burke, and Ernzerliéfwere used for the corre-
lation and exchange potentials. Calculations were performed
using thewlEn2k packagé® Local orbital extensiorf§ were
included in order to accurately treat the upper core states and
to relax any residual linearization errors. A well converged - A—— . . . .
basis consisting of LAPW basis functions with wave vectors 0 01 02 03 04 05 06 07
up to Kpax Set asRKp,=9, with the Pd sphere radiR Magnetic Moment, (M) ug
= 2.59 bohr. Al tOta.l energy Ca}lCUIatic.)ns used at least ].'470 FIG. 2. Applied external magnetic field th Tesla as a func-
anq up to 284%&-points in .the wredumble 'part of the. Bril- tion of the calculated local spin density approximation magnetic
louin z0ne as needed. S_plr_1-0rb|t Interactions were INCOrpOz, meny M(in ug). The total moment is shown together with spin
rated using a second variational procedtirehere all states component and the orbital component.
below the cutoff energy 1.5 Ry were included, with the so-
called p,,, extensiont*?® which accounts for the finite char-
acter of the wave function at the nucleus for thg, state.

All calculations were performed in an external magnetic
field, interacting with both spirs, and orbital,|, momenta:
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tization, M, is shown in Fig. 1. Figure 2 shows the applied

magnetic fieldH, as a function oM (with the magnetization

direction 100. Note that the latter dependence follows from

the former one, asl=JE/JdM. One can see though that of

Vi = pgHey (14 25). the two quantitiesd shows Ies; computatiorjal noiS(_a, so this
Hexi MBMext was the dependency we used in the analysis described below.

The input values oH were chosen from 0 to 10000 T in xiﬁf nfv?)nr:ﬁrsgs?nl?e?n:;hol?lgf?(r:”:: i%tliz ;Igr.nimtthlze;?
irregular increments to map out the change in energy angalues ofMgo 5.4 (correspondin tcb-?~ 1200 T) thé ex-
magnetic moment as a function of applied field. While use of’ =--kB P 9 :

the LDA (Ref. 2J) resulted in zero magnetic moment in a tbeortnhall—lf;er:(cjjsnndcrir;ig)r/am'?jrleasse Slg\s"t’.l?]” %;tf?rim:f#B’ ave
zero magnetic field, consistent with the experiménise of ! pidly, suggesting g wav

the GGA(Ref. 22 resulted in a persistent magnetic momentspin fluctuations at any temperature should be smaller than

: : ~0.5ug in amplitude.
?gaa'zf?n’e\\,/mh an extremely small magnetic energy of less The linear magnetic susceptibility is defined gs?

. B Y 5

In order to understand the change in the total energy andr(aH]Z‘?'\I\/Jl)LMozg_ atEMM ) F'%g.rﬁ 3.Shhqwki’ how?ver, thlat

magnetic moments as a function of the applied external fieldSVen I\(jlr/ HN ~pg e Slﬁ(;g%_z' y 'S/ '9 | y ndog Inéar. in
special care was taken to ensure that these quantities weff%Ct_’ JdM/JH starts near emu/mol and decreases
well converged with respect to tHemesh. Given the low rapidly W'th.the. field. In order. to compute accurately the
fields we are interested in, energy changes need to be Coﬁelevant derl_v atives, we hgve f.'tted the calculatb@d) for
verged of the order of 0.1 meV/atom. The total enefgy ™M <0-Sue with & polynomial(Fig. 3. Thus computed sus-
with respect to that a! =0ug as a function of the magne-
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FIG. 1. Calculated local spin density approximation total energy  FIG. 3. The external magnetic field ¢th Tesla as a function of
E (in eV) with respect to M=0ug as a function of calculated mag- the calculated magnetic moments (M wg). The fit is ton<3 in
netic moment M(in ug). Eq. (2).
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metals has been used by several authors during the 1970’s.
This method starts with an expression for the total energy
without such fluctuations as a function of the induced mag-

[
)]

g30f netic moment,

®25

é Estatid M) =ap+ 2 ia-Zanna (1)
EZO n=1 2N

5]

E —

510 - Hstatid( M) :nZl aZann ! 2

=5 . . . . . .
(obviously, a, gives the inverse spin susceptibility without
0 5 fluctuationg, and then assume Gaussian zero-point fluctua-
' " “'Magnetic Moment (M) (ug) ' tions of an rms magnitudé for each of thed components of

the magnetic momer{for a three-dimensional isotropic ma-
terial like Pd,d=3). After averaging over the spin fluctua-
tiPns, one obtains a fluctuation-corrected functional. The
aeneral expression of Ref. 29 can be written in the following
compact form:

FIG. 4. Magnetic susceptibility (in states/eV cell calculated
from the fit of H, y=(dH/dM) %, shown as a function of M. The
dashed line at 21 states/eV cell corresponds to the experiment
value of y for Pd (Refs. 27 and 28

ceptibility as the function of the magnetic moment is shown ~ S

in Fig. 4 and of the applied field is shown in Fig. 5. In both H(M):nzl aznM

cases we see that the zero field susceptibility is nearly twice -

larger than the experimental value of 8.80 % emu/mol ' 2k
corresponding to 21 st/eV céil:?® Only in a field of 550 T A=, Cﬂ;}_laz(n+i)§2‘ﬂﬂ+;‘l( 1+—].
(corresponding to a magnetic moment@mf35ug) does the =0 d
susceptibility eventually become close to the experimentagyr instance,

number.

One may understand the origin of this overestimation of ~ 5 , 3% , 3 .
magnetic susceptibility in the following way. Not only is the ay= 8+ gAE"+ Frasd t Fagl” ...,
calculated susceptibility very large, but also the as mentioned
dependence of the induced magnetic moment on the applied _ 14
field is highly nonlinear in such a manner that the total en- as=a,+ §a6§2+ 21ages . . .,
ergy as a function of the constrained magnetic moment is
very flat up toM~0.5ug. This implies that zero tempera- (4
ture quantum fluctuations beyond the LDA may have a sub-

stantial magnitude. One of the ways to take into account e can now make a connection between the above theory
these fluctuations is via the Ginzburg-Landau theory, whichgnq the band structure. Our calculations, fitted to@gwith
in connection with the spin fluctuations in nearly-magnetic,—3 gre presented in Fig. 3. Since the high-power coeffi-
cients are positive, obviously, renormalization according to
40 . . . . . . . Eq. (3) will lead to a reduction of the magnetic susceptibility,

x=1/a,<1/a,. The magnitude of this effect depends on the
rms amplitude¢ of the spin fluctuations, which in turn de-
pends on how fasg(g) changes at smadi’s.

In order to find the value of necessary to renormalize
the zero-field value ofy, one can use Eq2) with the n
<3 expansion:

()

W
(3]

W
o

n
4]

iy
[3,]

LM 5 . 35
X (0)=m=az=az+§a4§+gae§- (5

=(dH/dM) -1 (states/eV-cell)
= 8

X
2}

The fit coefficients ara,=478 T/ ug, a4=8990T/,u3, and
ag=277T/u3. Setting x(0) equal to the experimental
' A A T I p 7,28 _ Hoie i ;
40%xterﬁg|0Mag§%%C F;e?gczH) 1(%00 1400 value® _ leads tOf—O.ll\L._)(LB . quever, it is hlghly Qesw-
able to find a way of estimating in a real material usingb
FIG. 5. Magnetic susceptibility (in states/eV cell calculated  initio calculations. This can be done using the fluctuation-
from the fit of H, y=(dH/dM) %, shown as a function of H. The dissipation theorem along the lines suggested by Mdtiya
dashed line at 21 states/eV cell corresponds to the experimentand elaborated by many authofsee, e.g., Refs. 31-83
value of y for Pd (Refs. 27 and 28 which states that for zero-point fluctuations

=00
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4h do 1 q.0z d(N(Eg) u*?)
2_ " 3 Dt _ aMp F
g O d qf 27 2 ImX(q1w)! (6) ReXO(q) N(EF)+;B 4 dEF
where is the Brillouin zone volumé? It is customary to da0p AN(ER)v 40 5)
: +, (12
approximatey(q,w) near a QCP as = 6 dEE
-1 -1 2_ 2
W)= 0,00—Il+cqg—iw/lq, 7 d({N(E
X H0,0)=xo (0,0~ 1 +cq?~iw/Tq () NE ( <dEF>uxx>
F
wherexgl(0,0)z 1/N(Eg) (density of states per spiiis the )
bare (noninteracting static uniform susceptibility, andl is 92 d*(N(Eg)vy)
the Stoner parameter which is weakly dependerd and w. 6 d EE ' (3

Obviously, xo 1(g,®) = xg *(0,0)+ cq?—iw/Tq is the non- ,

interacting susceptibility. Although not necess¥y conve-  Wherevi=vi=v?, uy=yy=pu,,. The last equality as-
nient approximation, good near a quantum critical pointsumes cubic symmetry; generalization to a lower symmetry
(QCP, is that y 1(0,0)=~0, that is,|~1/N(Eg). One can is trivial. Using the following relation:

also use an expansion for(q,w), equivalent to Eq(7),

dF(e dF(e
namely, > ViF(s)=2, gkaﬁZ ( k)Vk,
k k d8k K dsk
xo(d,0)=N(Eg) —ag’+ibw/q. (8 one can prove that
Moriya mentioned in his bodK that the coefficienta and d*(N(Ep)vl)  d(N(Ep) peo) 14
b are related, in some approximation, to the band structure, dE2 N dEq ' (14
in particular to the effective mass of electrons at Fermi level F
and to some contour integral along a line on the Fermi surTherefore
face. While Moriya’s expressions are difficult to evaluate - 5
numerically within the standard band structure calculations, R CNES- L dN(Ep)v3) 1
one can rewrite equivalent expressions, better suited for ac- eXo(®) =N(Eg) 12 dE2 (19
tual calculations. For completeness, below we present the F
full derivation: Similarly, for Eq.(10) one has
| _s |- afe) s 16
Rexo(0.0)= % [F(Ex) ~(Eusq))(Eirq=E) %, (9) M Xo(d©)= 2 de |0k @)|. (19

After averaging over the directions of this becomes, for
small w,

IM x0(0,0) = > [f(El) — f(Extq)18(Eaq— Ex— @),
k w 5(8k)
(10 Imxo(a.e)=> ;

w
0(viq—w)= E<N(Ep)v*l>

viq
where f(E) is the Fermi function, —df(E)/dE=46(E N o sy s
—Ef). Expanding Eq. (9) in A=Eq—Ex=Vvq v=Nuxtoy o (17)
+32 511 %0,0+ - - -, We get, to second order i Although the Fermi velocity is obviously different along dif-

ferent directions, it is still a reasonable approximation to in-
troduce an average- . Then the frequency cutoff in EGL7)

IS w.~qug.
1/ddé(ex—E ° -
ReXo(q,O):N(EF)Jr; E(M) From Eq.(8) it follows that

dE;
bgwN(Eg)?
Im W)=, 18
% 10,09, x(Ge) a2q°+ b2w? 18
X Vk'q+’T and, performing the integrations

buZN(Eg)2
2 DN 10+ in(14+QY)

1(d?8(e—E 2
+g<%) (vea?|. (D sarty
F 2
3b(N(Ep)v)N(E
_ SEINED i1+ @4+ in1+ Q)
The odd powers of}, cancel out and we gei(,B=X,Y,2) 2a%Q)
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2500 - - - - - - Correspondingly,a~ 140, b~72, and q.=N(Eg)/a
2000 L =0.35, using the above-mentioned ansatz.
_ Now we get
L1500
o
O
2% £=0.2ug QN1+ Q H+IN(1+QY, (19
& 500 C
t:‘j‘ 0 L and withQ=0.88, we obtaini=0.16ug. Note that the en-
§_500 07 :; ergy of a long-range spin fluctuation with such an amplitude
;1000 os[F is of the order of a few meV per atom, as can be seen from
3 z 1 Fig. 1.
-1500 | 08 \/ This result is quite sensitive to the second derivative
00400z 0 00z 004 d%(N(Eg)v2)/dEZ, which was the most difficult quantity to
-2000 650606 0004 -0.(')02E EF[Ry]O'doz 0.004 0.006 0.008 calculate. An inspection of the energy dependence of

(N(EF)u)f) (Fig. 6, insel elucidates the reason: the Fermi
FIG. 6. d(N(Eg)v2)/dEF as a function of energy, calculated by €nergy in Pd lies near an inflection point. As a result,
the bootstrap method. Note the numerical noise of up to 10%. Insed*(N(Eg)v2)/dEZ is small (and hard to calculate reliably
(N(Ep)v2). This, perhaps, is not accidental; were this derivative 2—3
times larger, the mean amplitude of spin fluctuation would
where Q=q.va/bvg with g, the cutoff in the momentum have been relatively small even given extreme proximity of
space. There is no solid prescription to estimate the cutofthis material to the ferromagnetic instability, because the rel-
value. At smallQ the dependence af on Q is quadratic, evant phase space would have been too small. If this ap-
however, at larg€) it becomes relatively weatogarithmig. ~ proximation is correct, this gives an important hint for iden-
While the susceptibilityy(qg,w) can, in principle, be calcu- tifying quantum critical materials from the LDA calculations:
lated exactly, there is no rigorous definitionaf. The con-  the calculated ground state should be close to ferromagnetic
ceptual difficulty here is, as in all problems related toinstability (on either sidg and the Fermi energy should be
electron-electron interactions, that some part of the effect iglose to an inflection point of theN(E)v?).
question is already included in the LDA, and a rigorous treat- The calculated value @, if substituted into Eq(3), gives
ment of the double counting becomes virtually impossibley~6.4x 10”4 emu/mol, practically the same as the experi-
(cf. discussion of this issue in connection to the LB  mental number. Such a good agreement is without doubt for-
method®). At this point one needs to make some choice oftuitous; for instance, using the GGA as a starting point in-
gc. A natural ansatz is to choose the valuegadt which the  stead of the LDA would have destroyed this agreenmiewe
model susceptibilitf Eq. (15)] becomes unphysicghega- should keep in mind that, first of all, the formalism itself is
tive), .= VN(Eg)/a. very crude;yo(q,w) was expanded to leading terms at small
The above formulas reduce all parameters needed for es, but this expansion is used up to some lagg&omparable
timating the rms amplitude of spin fluctuations to four inte-to kg . Furthermore, a key parameter in the formalism is the

grals over the Fermi surfac&(Ef), cutoff momentunyg,, for which we use an ansatz based on
the large-q behavior of the model(q, ).
1 d2<N(E,:)v>2() 1 . However,. the fact that this procedure produces a correc-
= TZT’ b= E(N(Ep)v*), tion of the right order of magnitude is probably robust and
F

suggests that the underlying physics was identified correctly.
To summarize, we use highly accurate LDA calculations
(N(EF)vf() to estimate the parameters in Moriya’s spin fluctuation
VE=\ STEF)' theory, and thereby estimate the corrections, due to long
wavelength spin fluctuations, to the LDA results. Let us, in
It should be noted that these integrals are extremely sensitiveonclusion, repeat our main points. The key parameter defin-
to the k-point mesh. We used various meshes between 4Mg the nontrivial physics near the QCP is the mean-square
X 40X 40 and 60 60x 60, and averaged the results usingamplitude of the spin fluctuations. This parameter is a highly
the bootstrap methdl (to eliminate the effect of special Material dependent, nonlocal quantity, determined by the
points Coinciding with mesh poir)ts Velocities were Spin SUSC@ptib”ity in a Iarge part of the Brillouin zone, as
calculated” as matrix elements of the momentum operatorWell as by the characteristic cutoff length separating “non-
using theoptic program of thewieN package. We obtained trivial” spin fluctuations from spin fluctuation implicitly in-
(all energies are measured in Ry, lengths in Bohr, and velocicluded in the LDA. It is hoped, however, that this parameter
ties in RyBohi N(Ep)=17.1, (N(Ef)v2)=058, IS mainly defined by the long wavelength part of the suscep-

d2<N(E,:)v2>/d E§= 1700, (N(Eg)v 1) =135, tibility, while the short wave-length characteristics, including
X the cutoff length, may be only weakly material, pressure,
7 etc., dependent. We implements this idea, relating, in the
(N(Ep)vd) : e j -
vE=\/3———-=0.31. corresponding approximation, the mean-square amplitude of
N(Eg) the spin fluctuations near a QCP with characteristics of the
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one-electron band structure. The formalism is based on theomputable within the LDA formalism, this allows one to
(1) Stoner theory for spin susceptibility2) fluctuation- treat quantum criticality semiquantitatively on the basis of
dissipation theorem, an(B) lowest-order expansion of the LDA calculations.

real and imaginary parts of the polarization operator in terms

of the frequency and wave vector. The actual band structure

of the material is taken into account via the lowest-order We are grateful for helpful discussions with A. Aguayo,
expansion coefficients of the LDA susceptibility, while the A. Chubukov, S. Halilov, G. Lonzarich, and S. Saxena. Work
effects beyond the lowest order qnand w are neglected. at the Naval Research Laboratory was supported by the Of-
Together with the Landau expansion of the free energy, alstice of Naval Research.
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