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Abstract. We have calculated the optical properties (dielectric function, reflectivity and 
electron energy loss function) of 15 metals, including all the 4d series, some 3d metals and 
some noble and simple metals. The calculations are based on the LMTO band structure with 
optical matrix elements. The very good quantitative agreement with optical measurements 
provides an a posreriori justification of the use of local density functional method in the 
calculations of the dynamical response in metals and also allows an analysis of the general 
trends in optical properties from the electronic structure point of view. 

1. Introduction 

It is well known that optical experiments provide a considerable amount of varied 
information about the band structure of metals and the collective excitations in them. 
Such information is extremely valuable for metal physicists, to say nothing of its great 
practical importance in metal optics. However, i t  is not a trivial task to extract this 
information from experimental data. In simple metals one has a good theoretical basis 
for the interpretation of measurements, namely the homogeneous electron gas model 
and the theory of pseudopotentials. A complete description of the problems concern- 
ing simple metals may be found in the reviews by Motulevich (1969) and Sturm (1982) 
and in the book by Pines (1963). 

The case of transition metals is much more complicated. Only a very limited 
amount of information may be extracted from experiments because of the lack of an 
appropriate theoretical basis. Recently some authors have used the density functional 
method combined with the random phase approximation ( R P A )  for direct calculation 
of the optical properties of metals. It is nearly impossible to estimate a priori the 
validity of these approximations. However, there is empirical evidence that in simple 
metals and transition metals the density functional band structure is very close to the 
excitation spectrum. Our  systematic study of the optical properties of 4d and other 
transition metals has given results (which are the subject of this paper) very close to 
the experimental results. 

In this paper, which summarises the results of our recent investigations (1983-6), 
we present detailed calculations of the optical properties (dielectric function, optical 
conductivity and electron energy loss function) of 15 metals, including all the 4d 
metals, in an energy range up to 35 eV, based on LMTO band structure calculations. In 
spite of neglecting all effects beyond the RPA, as well as local field and finite lifetime 

0305-4608/88/040833 + 17 $02.50 0 1988 IOP Publishing Ltd 833 



a34 E G Maksimou et a1 

effects in interband transitions, we find a very good agreement between the calcula- 
tions and experiments. This allows us to estimate the validity of the approximations 
and to analyse the microscopical nature of the optical spectra of the metals investi- 
gated. 

The paper is organised as follows. In § 2 we recall the necessary formulae, describe 
the calculational technique and discuss the accuracy of the calculations. In D 3 we 
present the results of the calculations and discuss them. Our conclusions are summar- 
ised in § 4. 

2. Calculational technique and approximations 

The optical properties of matter are determined by the macroscopical dielectric 
function ~ ~ ( w )  = E ~ ( w ,  q+O) .  We deal in this paper only with cubic crystals where we 
can consider the dielectric function (DF) as a scalar and need not distinguish between 
the transverse and longitudinal DF. 

The following approximate formula for E ~ ( w ,  q)  is widely used: 

where lkA) is the Bloch wavefunction of the electron in the band A with wavevector k 
and energy Eu, and fu is the Fermi distribution function, all the quantities being 
calculated from the Kohn-Sham equations of the density functional theory (DFT). 

The validity of this approach may be argued in two ways. Firstly, equation (1) may 
be considered as an RPA formula without the local field corrections where the one- 
electron Green function is approximated by that of the Kohn-Sham equations. As the 
latter have real eigenvalues Eu, the lifetime of the one-electron excitation is inifinite 
in this model. In fact, there is always a decay of these excitations due to many-electron 
effects, which is stronger the further the energy in question is from the Fermi level. 
Moreover, the Kohn-Sham Eu may differ from the actual one-electron excitation 
energies, again by a greater amount the greater IEu - EFI is. Both effects lead to the 
smoothing and sometimes to the distortion of the optical spectra at high frequencies. 
Fortunately, in simple metals and transition metals (but not in insulators) these effects 
are small enough in a sufficiently large energy region ( [ E u -  EF/<hwp).  

An alternative approach is that due to the generalisation of the DFT to the time- 
dependent external fields (Runge and Gross 1984). Indeed, if we assume that the DFT 

exchange correlation potential changes in a weak external potential dVex,(r, t )  only as 
a result of the change in the density, then 

where the density is defined by the wavefunctions cpk(r, t )  in the usual Kohn-Sham 
manner. One may expect this approach to yield reasonable results for sufficiently low 
frequencies. Indeed, the calculation of the photoabsorption of rare-gas atoms, carried 
out using equation ( 2 ) ,  turned out to be quite accurate (Zangwill and Soven 1980). 
Equation ( 2 )  includes the local field corrections as well as the ladder diagrams with 
Ixc(r, r ' )  = dV,,(r)/Gn(r') and therefore goes beyond the R P A .  Neither this latter effect 
nor the local field correction is included in equation (l), which may be considered as a 
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further approximation to equation ( 2 ) .  The local field effects arise because of the fact 
that the macroscopical DF is determined by the inverse microscopical dielectric matrix: 

& M ( U ,  9 )  = U - ' ( u ,  q + G ,  Q S G ' ) I G = G ' = O .  (3) 
For 9-0, neglecting both effects not included in (1) is partly justified; it can be shown 
(Singhal 1976, Mazin er a1 1986) that there is strong compensation because only the 
sum of these two (nearly equal in magnitude and opposite in sign) expressions enters 
the equations, i.e. 

Neglecting one of these effects is thus likely to be worse than neglecting both. 
Using the continuity equation, equation (1) may be rewritten for q+O as 

where we have divided E ~ ( u )  into the intraband and interband contributions and 
hi. = (k@zV/ilkA') is the moment matrix element. For the intraband DF we have used 
the Drude formula 

Ptra(u) = 1 - &E/u(u + iy) ( 5 )  
where y is the relaxation frequency and 15; is given by 

with 

1 1 dE,, 
m h dk 

vu=- 3 - ,.A - - - (7) 

the velocity of the electron in the state lU>. 
The scheme for our calculations of the optical properties was as follows. The 

interband part of &?(U) was calculated from equation (4). The self-consistent band 
structure and the wavefunctions have been computed by the LMTO method (Andersen 
1975) with I,,,,!, = 3. The matrix elements of the interband transitions have been 
calculated as described by Uspenskii et a1 (1983). The accuracy of the calculated 
matrix elements has been tested by checking the fulfilment of the exact equality (7). 
The reciprocal space integration has been performed by means of the tetrahedron 
method, usually with 204 and 175 points in the irreducible part of the Brillouin zone 
for BCC and FCC metals respectively?. The real part E , ( w )  has been obtained from the 
Kramers-Kronig relation. The numerical integration over U has been performed with 
a step of 0.01 Ryd, the upper limit hu,,,,,-5 Ryd being chosen to cover all non-zero 
&Yter(u). The. total error of integration in the Kramers-Kronig transformation is 
estimated as 0.5%. 

The parameters of the intraband part of the DF, 6jp and y, have also been 
calculated ab initio using the method described by Mazin et a1 (1984). Then we have 

t It should be noted that there are cases where these numbers of points are insufficient to obtain some 
details of the optical spectra correctly. One  such case is AI which is described below. Another example is 
our investigation of infrared absorption in transition metals (Rashkeev el a1 1985). for which we had to use 
as many as 4(MM points. 
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computed the reflectivity R ( w )  and the energy loss function L ( o )  using the total DF, 

Now we turn to a short discussion of the accuracy of the calculations. It is well 
known that the error in LMTO calculations of band structures is some 0.1 eV for the 
energy region h w i 1 5 e V .  Our experience shows that for higher energies 
( 1 5 s h w d 3 5  eV) the LMTO method gives dispersion curves of the correct shape but 
raised by - 1 eV. For even higher energies (hw > 35 eV) the calculated dispersion may 
be incorrect even qualitatively. The corresponding errors in the calculation of the 
matrix elements are S 10% for hw i 15 eV. 2040% for 15 d hw d 35 eV and as much 
as 50-100% for hw > 35 eV. 

In spite of this, we did include the region hw > 35 eV in our calculations, bearing in 
mind that our E?(w)  for such high energies can be considered only as an extrapolation 
of the actual &?(U) which is useful for the more accurate calculation of E , ( w )  from the 
Kramers-Kronig relation. It may be noted that for a more open BCC lattice the error in 
the calculation of Ell by the LMTO method (Andersen 1975) is greater than that for a 
FCC lattice. Therefore we expect a greater error in &?(U) for the BCC metals than for the 
FCC ones. Another source of error is the neglect of core-valence transitions. The main 
effect of all these inaccuracies is the underestimation of F ~ ( U )  by 0.1-0.3. This is 
relatively small and does not have much influence on R ( w )  or L ( w )  at h w S 3 5  eVi .  

An important integral characteristic of the DF is the energy-dependent effective 
number of electrons 

&(U). 

According to the well known f-sum rule, N,,,(E+ ~4 ) = N,,,,, where N , , ,  is the total 
number of electrons per atom including all the core electrons. It is often useful to 
introduce the effective number of valence electrons, i.e. the contribution in (8) from 
the valence electron excitation. It is known (e.g. Wooten 1972) that N,'if'(E+ x )  is 
greater than the actual number of valence electrons by the number of electrons 
corresponding to Pauli forbidden transitions between the core state and the occupied 
part of the valence band. In calculations N:;;' is underestimated because only a finite 
number of empty bands may be taken into account in the calculation of E ? ;  therefore 
the calculated NJi;' may be either greater or less than N,,!,. Actually x;: is quite close to 
NV,,' (figure 1). In the discussion of our results we shall also use the effective number of 
electrons involved in a particular group of transitions (i.e. oscillator strength), defined 
as the contribution to (8) from the transitions in question. 

3. Numerical results and comparison with experiments 

We present here the calculations of the optical properties of 15 metals, among them a 
simple metal (AI), all the 4d transition metals, two 3d metals, (V, Cr), two noble 
metals (Cu, Ag) and two post-noble (Zn, Cd) metals. In order to investigate the 
general trends of the principle features of the optical spectra (including EELS), we 
included also some HCP metals (Y, Zr ,  Tc, Rn, Zn, Cd), which we have, however, 
treated as cubic. Such a treatment is undoubtedly inappropriate in describing the fine 
structure of the optical spectra, but gives a reasonable description of the large-scale 
+ In some previous publications (Mazin ef a1 1986. Rashkeev el a1 1985) there was a numerical error in 
calculations of E ~ ' ~ ~ ( w )  that led to cYnlLr(co) being incorrect by a factor of ni2. This error  worsened the 
agreement with experiment but did not influence the qualitative conclusions of those papers. 
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Figure 1.  The fult i lment of the valence !-sum rule. The broken line corresponds to the 
ideal fulfilment ,N:;:' = ,h',,,. 
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Figure 2. Optical properties of aluminium: full curves.  calculations: broken curves,  
measurements of /?(tu) and L ( w )  = Im( - l / f ( t u ) )  ( f rom Shiles er U/ 1980) (arbitrary units) .  
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features defined mainly by the widths of the bands and their relative positions. The 
comparison with experiment confirms this. 

Now we turn to the discussion of the particular groups of metals. In AI (a simple 
metal) an interband absorption edge lies near 0.5 e V  (figure 2). A t  1.6 e V  &?(U) has a 
strong maximum (corresponding to the gap at the (200) face of the Brillouin zone) and 
a smaller one at 0.8 eV.  These give rise to a sharp minimum and a subtle feature, 
respectively, in R(co). The EELS L ( w )  = - Im(l /&(u))  has a strong plasmon peak at 
15.4 e V  and a barely noticeable plasmon peak at 0.75 eV. The plasmon absorption 
edge at -15.4 e V  is clearly seen in R ( w ) .  It is interesting that the subtle feature 
appearing at 0.8 e V  in E . ( w )  and R ( w )  and at 0.75 eV in L ( w ) ,  which is hardly 
noticeable in the experimental curves and difficult to obtain theoretically (we need to 
include up to 4000 points in the 1/48 part of the Brillouin zone to  catch it), is, however, 
quite important, because it increases rapidly with pressure. This increase has been 
established both experimentallyi- (Tups and Syassen 1984) and theoretically (Rash- 
keev and Halilov 1987). 

The optical spectra of the transition metals are more complicated. Typical of this 
group are the spectra of FCC metals Rh and Pd (figures 3 and 4). R ( w )  and L ( w )  here 
have a number of minima and maxima, which are surprisingly well reproduced in the 
calculations. The BCC metals, being less packed than the FCC ones, are more difficult 
to deal with by the LMTO method. Indeed, in the energy range h w s 1 0  e V  the 
agreement is good (figures 5 and 6) but for higher energies it gets worse. The main 
reason is that the hybridized p f  band which lies some 10 e V  higher than EF is moved 
up in our calculations by about 1 e V  (this is peculiar to the LMTO method). Therefore 
the increase of &?(U) in Nb due to the optical transitions from the d band to the p f  
band takes place not at 11 e V  as the experiment shows but at 12 eV.  For the same 
reason the broad minimum of &*(U) at 10-11 e V  becomes deeper, which leads to an 
unrealistic increase of the reflectivity in this region. 

Thus we see that in cubic 4d metals at h w 6  10 eV the positions of the main 
features, as well as their magnitudes, are in good agreement with experiment. We may 
conclude that in this energy range the Kohn-Sham states closely approximate the one- 
electron excitations. Even at higher energies the discrepancies seem to be mainly due 
to the inaccuracies of the band structure calculations. However, there is evident 
manifestation of many-electron effects in the smoothing of the experimental curves, 
especially in L ( w ) .  It has been shown (Zharnikov and Rashkeev 1984) that this cannot 
be explained solely by the insufficient experimental resolution, but must also be due to 
the finite lifetime of the electron excitations. 

In 4d HCP metals (Y,  Zr. Tc, Ru) we find reasonable agreement with experiment 
for L ( w )  (figures 7-10). This means that the EELS are insensitive to  the crystal 
structure (all HCP metals were treated as FCC). Indeed, we have done the calculation 
for a particular metal (Tc) also in the BCC lattice and found that the EELS was almost 
unaffected. For the reflectivity R ( w ) ,  only the general shapes of the curves are 
reproduced in our calculations, since the detailed structure of R ( w )  is dependent on 
the crystal lattice. 

For the 3d metals V and Cr the experimental data are relatively limited. In general 
the agreement between the measurements and the calculations is satisfactory (figures 
11 and 12). though i t  seems worse than in the 4d metals. In principle this may be 
i. In  a l l  theoretical calculations at P = O  (Alouani and Khan 1986, Rashkeev and Halilov 1987), including the 
present one, the maximum in F?(w) is  found to be 0.2 eV higher than in the measurements. This discrepancy 
persists at high pressures. 
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caused by the inadequacy of the LDA or  by the non-hi-r effects, but it should be noted 
that the available experimental data in this case require verification. 

The optical properties of the noble metals Cu and Ag  agree very well with 
experiment (figures 13 and 14). For Cu the calculated optical conductivity a(w)=  
wE2(w)14;I reproduces all the main features of the experimental curve of Beaglehole et 
a1 (1979) correctly: a sharp increase at hoi = 2.1 e V  due to the appearance of the 
interband transition to the Fermi level; quite a sharp decrease at  hw = 6 e V  which is 
close to the separation between the bottom of the d band and E F ;  and a second 
increase at hw = 15 e V  due to the intensive d-p transitions. A similar situation takes 
place in Ag. All the main features of R ( w )  and L ( w )  coincide with the experimental 
ones, and the magnitude of the calculated &?(U) also coincides with experiment. It is 
interesting that the position and even the very existence of the low-energy peak of 
L ( w )  in Ag (hw  = 3.8 eV) ,  well reproduced in our calculation, are extremely sensitive 
to the accuracy of &:(U) .  For instance, reducing hi by only 30% leads to the complete 
disappearance of the peak. leaving only a small increase of L ( w ) .  Such good 
agreement suggests that in the noble metals the LDA Kohn-Sham band structure, 
particularly the position of the d band, does not differ considerably from the actual 
one.  

Zn  and Cd,  which follow Cu and Ag  in the Periodic Table, share some of their 
features. In Cd the 4d band lies 2 e V  lower relative to the Fermi level than the 3d band 
in Z n  (the corresponding thresholds are 13 e V  and 11 eV). The results are the same as 
in the noble metals: in Cd a well defined peak arises in L ( w )  due  to the plasma 
oscillation of sp electrons: in Z n ,  instead, a sharp increase of L ( w )  takes place, 
resembling the shape of L ( w )  in Cu.  The agreement of L ( w )  with experiment is 
reasonable (figures 15 and 16). but the comparison of R ( w )  with the measurements is 
meaningless, because in fact these metals are hexagonal. 

Now. having such a large body of calculational results which generally agree well 
with experiment, we can analyse the trends and extract from the band structure the 
properties responsible for the main features of the optical spectra. The  following 
groups of optical transitions are peculiar to transition metals: (i) intraband transitions 
(hw 6 0.5 eV); (ii) d-d interband transitions (0.5 < hw 6 5-10 eV) ;  (iii) d-p transitions 
(hw - 10-20 eV)-we include in this group the transitions from the partially occupied 
d bands into the bottom states of the unoccupied hybridised p f  bands; (iv) d-f 
transitions (ho-20-50 eV). i.e. the transitions into the top states of the p f  bands. 
Figure 17 shows the variation of the corresponding oscillator strengths along the 4d 
series. Unlike in the simple metals. the intraband contribution does not dominate 
here. The interband d-d contribution is 3-4 times greater. There are comparatively 
few interband transitions at h w S  1 eV,  hence the deep minimum in R ( w )  at 
0.5 s hw 1 eV.  The total d-d oscillator strength (including both intraband and 
interband d-d transitions) varies along the 4d series in a regular manner: it is small in 
the early 4d metals. where there are few occupied states, and in the late ones, where 
there are few unoccupied states, and it increases smoothly to the middle of the series. 
The d-p transitions are well separated from the d-d ones. Their total oscillator 
strength is nearly proportional to the number of d electrons (figure 17). This group of 
transitions at energies hw - 20 eV gradually transforms into the d-f transitions, which 
turn out to be stronger in the late transition metals (Ru ,  Rh ,  Pd). 

This discussion is directly applicable to E?(w) in the metals under consideration. 
This defines, in turn. the real part EI(W). At  hw 6 h y - 0 . 1  eV e l ( w )  is determined from 
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Figure 17. Oscillator strengths of the d-d, d-p and d-f transitions in  the 4d metals 

the intraband Drude formula (5): 

&l(O) -- 1 - - , < 0. 
w? + y- 

For the (localised in energy) d-d interband transition we add the positive contribution 
at 1-5 eV and the negative one at 5-10 eV (this may be easily understood using the 
model E?(o)  - 6(hw - Ed-d). In the middle 4d metals MO and Nb, as well as in the 3d 
metals V and CO, where the d-d transitions are very strong, &, (U)  in this region 
increases to zero and even to positive values. E?(o)  is not small in this region and this 
prevents the appearance of a plasmon. However, it does affect R(o). Indeed, it can be 
shown that when &?(U)% 1, (1 - R(w))-4I~(o)l-”’ and the sharp decrease in magni- 
tude of € , (U)  gives rise to a minimum in R(w) .  Such minima are clearly seen in the 
corresponding figures. 

An analogous but much stronger effect takes place at higher energies. Just before 
the beginning of the d-p transitions, a positive contribution to &, (U)  is added to the 
Drude part and E ~ ( w )  goes through zero. &?(U) is quite small here due to the gap 
between the d-d and d-p transitions and a sharp strong plasmon peak appears. The 
position EPI of this plasmon is fixed in the above mentioned gap and does not vary 
much from one metal to another. In particular it does not correlate with the number 
of valence electrons. Near E,,, R(o) has a minimum analogous to the plasmon 
reflectivity edge in simple metals. In this region ~~(o )41 ,  and R ( w ) - l  when 
E , ( w )  < 0 and decreases at &, (U)  > 0. Thus a dip in R(o) occurs when goes through 
zero. 

In the early and middle transition metals the d-p and d-f transitions are separated 
by a region of low conductivity. Just before this region E , ( w )  decreases again to 
negative values (this is called ‘anomal dispersion’ in dielectrics optics) and then 
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returns to positive values, approaching unity at U--+ cc . This third zero of & , ( U )  occurs 
in the low-conductivity region and gives rise to a second plasmon, more smoothed 
than the first one. with an energy Ep2 (hence another decrease of reflectivity). The fact 
that EP2 falls between the d-p and d-f transitions is not accidental: according to the 
effective number of electrons involved in this plasmon it should be found at a lower 
energy, but it is ‘pushed up‘ by the strong d-p transitions. In fact the coincidence of 
EP2 with the classical plasma energy hw, calculated with all the valence electrons is 
accidental. This question is discussed in detail by Mazin et al (1986). 

In the late transition metals (Ru,  Rh, Rd) the regions of the d-p and d-f 
transitions are contiguous; therefore € , ( U )  decreases very slowly and does not change 
sign at ho >E,, . The high-energy EELS in these metals have a few very smoothed 
features defined by the structure of the pf bands. The strong plasmon E,> is 
non-existent here and the features of R(w)  show no general trends. 

4. Conclusions 

We have described a method of calculating optical properties and applied it to 15 
metals. In the energy range where the LMTO method allows us to obtain the band 
structure and the matrix elements accurately enough, the agreement with experiment 
is very good. Thus there is a good opportunity to use these calculations for a detailed 
analysis of the optical properties of metals and the different factors which essentially 
determine them. In fact such a detailed analysis of the infrared optics of transition 
metals has been published by us elsewhere (Rashkeev et a1 1985), where we have 
shown that the intraband optics at very low frequencies ( h w 6 0 . 7  eV) is much richer 
than had been thought. Also we have performed a detailed comparative study of the 
electron energy loss spectra in transition metals (Mazin et a1 1986), in which it was 
shown that the underlying physics is very complicated in comparison with simple 
metals and cannot be understood in terms of the usual ‘plasmon excitation’ of Pines. 
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