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Abstract. We have calculated the optical properties (dielectric function, reflectivity and
electron energy loss function) of 15 metals, including all the 4d series, some 3d metals and
some noble and simple metals. The calculations are based on the LMTO band structure with
optical matrix elements. The very good quantitative agreement with optical measurements
provides an a posteriori justification of the use of local density functional method in the
calculations of the dynamical response in metals and also allows an analysis of the general
trends in optical properties from the electronic structure point of view.

1. Introduction

It is well known that optical experiments provide a considerable amount of varied
information about the band structure of metals and the collective excitations in them.
Such information is extremely valuable for metal physicists, to say nothing of its great
practical importance in metal optics. However, it is not a trivial task to extract this
information from experimental data. In simple metals one has a good theoretical basis
for the interpretation of measurements, namely the homogeneous electron gas model
and the theory of pseudopotentials. A complete description of the problems concern-
ing simple metals may be found in the reviews by Motulevich (1969) and Sturm (1982)
and in the book by Pines (1963).

The case of transition metals is much more complicated. Only a very limited
amount of information may be extracted from experiments because of the lack of an
appropriate theoretical basis. Recently some authors have used the density functional
method combined with the random phase approximation (rRpa) for direct calculation
of the optical properties of metals. It is nearly impossible to estimate a priori the
validity of these approximations. However, there is empirical evidence that in simple
metals and transition metals the density functional band structure is very close to the
excitation spectrum. Our systematic study of the optical properties of 4d and other
transition metals has given results (which are the subject of this paper) very close to
the experimental results.

In this paper, which summarises the results of our recent investigations (1983-6),
we present detailed calculations of the optical properties (dielectric function, optical
conductivity and electron energy loss function) of 15 metals, including all the 4d
metals, in an energy range up to 35 eV, based on LMTO band structure calculations. In
spite of neglecting all effects beyond the rra, as well as local field and finite lifetime
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effects in interband transitions, we find a very good agreement between the calcula-
tions and experiments. This allows us to estimate the validity of the approximations
and to analyse the microscopical nature of the optical spectra of the metals investi-
gated.

The paper is organised as follows. In § 2 we recall the necessary formulae, describe
the calculational technique and discuss the accuracy of the calculations. In §3 we
present the results of the calculations and discuss them. Our conclusions are summar-
ised in § 4.

2. Calculational technique and approximations

The optical properties of matter are determined by the macroscopical dielectric
function ey(w) = ey(w, g—0). We deal in this paper only with cubic crystals where we
can consider the dielectric function (DF) as a scalar and need not distinguish between
the transverse and longitudinal DF.

The following approximate formula for ey(w, ¢) is widely used:

em(w,@)=1+

8e’ 2 Kk+q, Al kA (fis— firgr) (1)
T3

Q Ek,‘._Ek+q.;\'+h(U+ié

where |kA) is the Bloch wavefunction of the electron in the band 4 with wavevector k
and energy E,, and f, is the Fermi distribution function, all the quantities being
calculated from the Kohn-Sham equations of the density functional theory (DFT).

The validity of this approach may be argued in two ways. Firstly, equation (1) may
be considered as an rRPa formula without the local field corrections where the one-
electron Green function is approximated by that of the Kohn-Sham equations. As the
latter have real eigenvalues E,;, the lifetime of the one-electron excitation is inifinite
in this model. In fact, there is always a decay of these excitations due to many-electron
effects, which is stronger the further the energy in question is from the Fermi level.
Moreover, the Kohn-Sham E,; may differ from the actual one-electron excitation
energies, again by a greater amount the greater |E,; — E¢| is. Both effects lead to the
smoothing and sometimes to the distortion of the optical spectra at high frequencies.
Fortunately, in simple metals and transition metals (but not in insulators) these effects
are small enough in a sufficiently large energy region (|E, — E¢| < hw,).

An alternative approach is that due to the generalisation of the DFT to the time-
dependent external fields (Runge and Gross 1984). Indeed, if we assume that the prFT
exchange correlation potential changes in a weak external potential 6V, (r, t) only as
a result of the change in the density, then

hlvz
<_ 2m + chf(n(r) + én(’* t)) + 6cht(r’ t)> cpk(r9 t) =ih -g-[ (pk(r’ t) (2)

where the density is defined by the wavefunctions ¢,(r, t) in the usual Kohn-Sham
manner. One may expect this approach to yield reasonable results for sufficiently low
frequencies. Indeed, the calculation of the photoabsorption of rare-gas atoms, carried
out using equation (2), turned out to be quite accurate (Zangwill and Soven 1980).
Equation (2) includes the local field corrections as well as the ladder diagrams with
L{r, r')=0V,(r)/dn(r') and therefore goes beyond the rra. Neither this latter effect
nor the local field correction is included in equation (1), which may be considered as a



Calculations of the optical properties of metals 835

further approximation to equation (2). The local field effects arise because of the fact
that the macroscopical DF is determined by the inverse microscopical dielectric matrix:

em(w, @)=le '(w, ¢+G, ¢+ G')lg=¢ =0- (3)

For g— 0, neglecting both effects not included in (1) is partly justified; it can be shown
(Singhal 1976, Mazin et al 1986) that there is strong compensation because only the
sum of these two (nearly equal in magnitude and opposite in sign) expressions enters
the equations, i.e.

[1(g+ G, qg+G')+ dg5(4me|g + G)g.rw0-

Neglecting one of these effects is thus likely to be worse than neglecting both.
Using the continuity equation, equation (1) may be rewritten for ¢—0 as

e 8ne’n’ 2 full = fu) Pyt
en(0) = € (0) 4 3 s f U 2, BB = Eu— (7 1) @

AR

where we have divided ey(w) into the intraband and interband contributions and
Pk = (kA|hV/ilkA') is the moment matrix element. For the intraband DF we have used
the Drude formula

eimra(w) =1- u')f,/a)(w + 1)’) (5)

where y is the relaxation frequency and @; is given by

8me’

w; = 30 (Viul'0(Ew — Eg), (6)
Ak
with
Vi=— Ph=r 2 ™

the velocity of the electron in the state |kA).

The scheme for our calculations of the optical properties was as follows. The
interband part of &,(w) was calculated from equation (4). The self-consistent band
structure and the wavefunctions have been computed by the LtMmTO method (Andersen
1975) with /,,,=3. The matrix elements of the interband transitions have been
calculated as described by Uspenskii et a/ (1983). The accuracy of the calculated
matrix elements has been tested by checking the fulfiiment of the exact equality (7).
The reciprocal space integration has been performed by means of the tetrahedron
method, usually with 204 and 175 points in the irreducible part of the Brillouin zone
for Bcc and Fcc metals respectivelyt. The real part &,(w) has been obtained from the
Kramers—Kronig relation. The numerical integration over w has been performed with
a step of 0.01 Ryd, the upper limit Aw,,~5 Ryd being chosen to cover all non-zero
£M™(w). The. total error of integration in the Kramers-Kronig transformation is
estimated as 0.5%.

The parameters of the intraband part of the pF, @, and y, have also been
calculated ab initio using the method described by Mazin et al (1984). Then we have

t It should be noted that there are cases where these numbers of points are insufficient to obtain some
details of the optical spectra correctly. One such case is Al which is described below. Another example is
our investigation of infrared absorption in transition metals (Rashkeev et al 1985), for which we had to use
as many as 4000 points.
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computed the reflectivity R(w) and the energy loss function L(w) using the total DF,
e(w).

Now we turn to a short discussion of the accuracy of the calculations. It is well
known that the error in LMTO calculations of band structures is some 0.1 eV for the
energy region Aw=<15eV. Our experience shows that for higher energies
(15<hw=<35 eV) the LMTO method gives dispersion curves of the correct shape but
raised by ~1eV. For even higher energies (Aw > 35 eV) the calculated dispersion may
be incorrect even qualitatively. The corresponding errors in the calculation of the
matrix elements are <10% for iw<15eV, 2040% for 15<hAw <35 eV and as much
as 50-100% for Aw >35 eV.

In spite of this, we did include the region Aw > 35 eV in our calculations, bearing in
mind that our &,(w) for such high energies can be considered only as an extrapolation
of the actual £,(w) which is useful for the more accurate calculation of ¢,(w) from the
Kramers—-Kronig relation. It may be noted that for a more open Bcc lattice the error in
the calculation of E,; by the LtMTO method (Andersen 1975) is greater than that for a
FCC lattice. Therefore we expect a greater error in £,(w) for the Bcc metals than for the
Fcc ones. Another source of error is the neglect of core—valence transitions. The main
effect of all these inaccuracies is the underestimation of &(w) by 0.1-0.3. This is
relatively small and does not have much influence on R(w) or L{w) at hAw <35 eV+.

An important integral characteristic of the DF is the energy-dependent effective
number of electrons

N = (5] f " vedw) do. ®)

According to the well known f-sum rule, Ny(E— ®)=N,,, where N, is the total
number of electrons per atom including all the core electrons. It is often useful to
introduce the effective number of valence electrons, i.e. the contribution in (8) from
the valence electron excitation. It is known (e.g. Wooten 1972) that NJ#(E— ) is
greater than the actual number of valence electrons by the number of electrons
corresponding to Pauli forbidden transitions between the core state and the occupied
part of the valence band. In calculations N is underestimated because only a finite
number of empty bands may be taken into account in the calculation of e,; therefore
the calculated N may be either greater or less than N,,;. Actually N} is quite close to
N, (figure 1). In the discussion of our results we shall also use the effective number of
electrons involved in a particular group of transitions (i.e. oscillator strength), defined
as the contribution to (8) from the transitions in question.

3. Numerical results and comparison with experiments

We present here the calculations of the optical properties of 15 metals, among them a
simple metal (Al), all the 4d transition metals, two 3d metals, (V, Cr), two noble
metals (Cu, Ag) and two post-noble (Zn, Cd) metals. In order to investigate the
general trends of the principle features of the optical spectra (including EELS), we
included also some Hce metals (Y, Zr, Tc, Rn, Zn, Cd), which we have, however,
treated as cubic. Such a treatment is undoubtedly inappropriate in describing the fine
structure of the optical spectra, but gives a reasonable description of the large-scale
+In some previous publications (Mazin et al 1986, Rashkeev er al 1985) there was a numerical error in

calculations of £5"'(w) that led to ¢/'(w) being incorrect by a factor of 2/2. This error worsened the
agreement with experiment but did not influence the qualitative conclusions of those papers.
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features defined mainly by the widths of the bands and their relative positions. The
comparison with experiment confirms this.

Now we turn to the discussion of the particular groups of metals. In Al (a simple
metal) an interband absorption edge lies near 0.5 eV (figure 2). At 1.6 eV &(w) has a
strong maximum (corresponding to the gap at the (200) face of the Brillouin zone) and
a smaller one at 0.8 eV. These give rise to a sharp minimum and a subtle feature,
respectively. in R(w). The EeLs L(w)= —Im(l/e(w)) has a strong plasmon peak at
15.4 eV and a barely noticeable plasmon peak at 0.75 eV. The plasmon absorption
edge at ~15.4 eV is clearly seen in R(w). It is interesting that the subtle feature
appearing at 0.8 eV in ¢(w) and R(w) and at 0.75 eV in L(w), which is hardly
noticeable in the experimental curves and difficult to obtain theoretically (we need to
include up to 4000 points in the 1/48 part of the Brillouin zone to catch it), is, however,
quite important, because it increases rapidly with pressure. This increase has been
established both experimentally? (Tups and Syassen 1984) and theoretically (Rash-
keev and Halilov 1987).

The optical spectra of the transition metals are more complicated. Typical of this
group are the spectra of Fcc metals Rh and Pd (figures 3 and 4). R(w) and L(w) here
have a number of minima and maxima, which are surprisingly well reproduced in the
calculations. The BcC metals, being less packed than the Fcc ones, are more difficult
to deal with by the tmTo method. Indeed, in the energy range Aw=<10 eV the
agreement is good (figures 5 and 6) but for higher energies it gets worse. The main
reason is that the hybridized p—f band which lies some 10 eV higher than Er is moved
up in our calculations by about 1 eV (this is peculiar to the LmTo method). Therefore
the increase of &,(w) in Nb due to the optical transitions from the d band to the p—f
band takes place not at 11 eV as the experiment shows but at 12 eV. For the same
reason the broad minimum of &,(w) at 10-11 eV becomes deeper, which leads to an
unrealistic increase of the reflectivity in this region.

Thus we see that in cubic 4d metals at Aw <10 eV the positions of the main
features, as well as their magnitudes, are in good agreement with experiment. We may
conclude that in this energy range the Kohn-Sham states closely approximate the one-
electron excitations. Even at higher energies the discrepancies seem to be mainly due
to the inaccuracies of the band structure calculations. However, there is evident
manifestation of many-electron effects in the smoothing of the experimental curves,
especially in L(w). It has been shown (Zharnikov and Rashkeev 1984) that this cannot
be explained solely by the insufficient experimental resolution, but must also be due to
the finite lifetime of the electron excitations.

In 4d Hep metals (Y. Zr, Tc, Ru) we find reasonable agreement with experiment
for L{w) (figures 7-10). This means that the EELS are insensitive to the crystal
structure (all HCp metals were treated as Fcc). Indeed, we have done the calculation
for a particular metal (Tc) also in the Bcc lattice and found that the EELS was almost
unaffected. For the reflectivity R(w), only the general shapes of the curves are
reproduced in our calculations, since the detailed structure of R(w) is dependent on
the crystal lattice.

For the 3d metals V and Cr the experimental data are relatively limited. In general
the agreement between the measurements and the calculations is satisfactory (figures
11 and 12). though it seems worse than in the 4d metals. In principle this may be
T In all theoretical calculations at P =0 (Alouani and Khan 1986, Rashkeev and Halitov 1987), including the

present one, the maximum in £;(w) is found to be 0.2 ¢V higher than in the measurements. This discrepancy
persists at high pressures.
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caused by the inadequacy of the Lpa or by the non-mT effects, but it should be noted
that the available experimental data in this case require verification.

The optical properties of the noble metals Cu and Ag agree very well with
experiment (figures 13 and 14). For Cu the calculated optical conductivity o(w) =
weL(w)/dx reproduces all the main features of the experimental curve of Beaglehole et
al (1979) correctly: a sharp increase at hiw=2.1 eV due to the appearance of the
interband transition to the Fermi level; quite a sharp decrease at iw =6 eV which is
close to the separation between the bottom of the d band and E;; and a second
increase at aw =15 eV due to the intensive d—p transitions. A similar situation takes
place in Ag. All the main features of R(w) and L(w) coincide with the experimental
ones, and the magnitude of the calculated ¢,(w) also coincides with experiment. It is
interesting that the position and even the very existence of the low-energy peak of
L{w)in Ag (Aw =3.8 eV), well reproduced in our calculation, are extremely sensitive
to the accuracy of ex(w). For instance, reducing @; by only 30% leads to the complete
disappearance of the peak. leaving only a small increase of L(w). Such good
agreement suggests that in the noble metals the LbA Kohn-Sham band structure,
particularly the position of the d band, does not differ considerably from the actual
one.

Zn and Cd, which follow Cu and Ag in the Periodic Table, share some of their
features. In Cd the 4d band lies 2 eV lower relative to the Fermi level than the 3d band
in Zn (the corresponding thresholds are 13 eV and 11 eV). The results are the same as
in the noble metals: in Cd a well defined peak arises in L{w) due to the plasma
oscillation of sp electrons; in Zn, instead, a sharp increase of L(w) takes place,
resembling the shape of L(w) in Cu. The agreement of L(w) with experiment is
reasonable (figures 15 and 16), but the comparison of R(w) with the measurements is
meaningless, because in fact these metals are hexagonal.

Now, having such a large body of calculational results which generally agree well
with experiment, we can analyse the trends and extract from the band structure the
properties responsible for the main features of the optical spectra. The following
groups of optical transitions are peculiar to transition metals: (i) intraband transitions
(how <0.5eV); (ii) d—d interband transitions (0.5 < hw <5-10 eV); (iii) d—p transitions
(hw ~ 10-20 eV)—we include in this group the transitions from the partially occupied
d bands into the bottom states of the unoccupied hybridised p—f bands; (iv) d-f
transitions (Aw ~20-50 eV). i.e. the transitions into the top states of the p—f bands.
Figure 17 shows the variation of the corresponding oscillator strengths along the 4d
series. Unlike in the simple metals, the intraband contribution does not dominate
here. The interband d—d contribution is 3—4 times greater. There are comparatively
few interband transitions at hw=<1 eV, hence the deep minimum in R(w) at
0.5<hw=1 eV. The total d—d oscillator strength (including both intraband and
interband d-d transitions) varies along the 4d series in a regular manner: it is small in
the early 4d metals, where there are few occupied states, and in the late ones, where
there are few unoccupied states, and it increases smoothly to the middle of the series.
The d-p transitions are well separated from the d-d ones. Their total oscillator
strength is nearly proportional to the number of d electrons (figure 17). This group of
transitions at energies Aw ~ 20 eV gradually transforms into the d—f transitions, which
turn out to be stronger in the late transition metals (Ru, Rh, Pd).

This discussion is directly applicable to e(w) in the metals under consideration.
This defines, in turn, the real part ¢ (w). At hw <hy~0.1 eV & (w) is determined from
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Figure 17. Oscillator strengths of the d-d, d—p and d—f transitions in the 4d metals.

the intraband Drude formula (5):

P
W+

d <.

glw)y=1-—

For the (localised in energy) d—d interband transition we add the positive contribution
at 1-5 eV and the negative one at 5-10 eV (this may be easily understood using the
model &,(w) ~ 0(hw — E4). In the middle 4d metals Mo and Nb, as well as in the 3d
metals V and Co, where the d-d transitions are very strong, &(w) in this region
increases to zero and even to positive values. &(w) is not small in this region and this
prevents the appearance of a plasmon. However, it does affect R(w). Indeed, it can be
shown that when ex(w)>1, (1 — R(w))=4|e(w)|” " and the sharp decrease in magni-
tude of ¢ (w) gives rise to a minimum in R{w). Such minima are clearly seen in the
corresponding figures.

An analogous but much stronger effect takes place at higher energies. Just before
the beginning of the d—p transitions, a positive contribution to ¢(w) is added to the
Drude part and ¢,(w) goes through zero. &(w) is quite small here due to the gap
between the d—d and d-p transitions and a sharp strong plasmon peak appears. The
position E, of this plasmon is fixed in the above mentioned gap and does not vary
much from one metal to another. In particular it does not correlate with the number
of valence electrons. Near E,, R(w) has a minimum analogous to the plasmon
reflectivity edge in simple metals. In this region &(w)<1, and R(w)=1 when
e,(w)<0 and decreases at ¢,(w)>0. Thus a dip in R(w) occurs when &, goes through
zero.

In the early and middle transition metals the d—p and d-f transitions are separated
by a region of low conductivity. Just before this region &,(w) decreases again to
negative values (this is called ‘anomal dispersion’ in dielectrics optics) and then
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returns to positive values, approaching unity at w—> . This third zero of ¢,(w) occurs
in the low-conductivity region and gives rise to a second plasmon, more smoothed
than the first one, with an energy E,» (hence another decrease of reflectivity). The fact
that E, falls between the d-p and d-f transitions is not accidental: according to the
effective number of electrons involved in this plasmon it should be found at a lower
energy, but it is ‘pushed up’ by the strong d-p transitions. In fact the coincidence of
E,, with the classical plasma energy Aw, calculated with all the valence electrons is
accidental. This question is discussed in detail by Mazin et al (1986).

In the late transition metals (Ru, Rh, Rd) the regions of the d-p and d-f
transitions are contiguous; therefore ¢,(w) decreases very slowly and does not change
sign at Aw > E,,. The high-energy EeLs in these metals have a few very smoothed
features defined by the structure of the p—f bands. The strong plasmon E,; is
non-existent here and the features of R(w) show no general trends.

4. Conclusions

We have described a method of calculating optical properties and applied it to 15
metals. In the energy range where the LMTO method allows us to obtain the band
structure and the matrix elements accurately enough, the agreement with experiment
is very good. Thus there is a good opportunity to use these calculations for a detailed
analysis of the optical properties of metals and the different factors which essentially
determine them. In fact such a detailed analysis of the infrared optics of transition
metals has been published by us elsewhere (Rashkeev ef a/ 1985), where we have
shown that the intraband optics at very low frequencies (hw=<0.7 eV) is much richer
than had been thought. Also we have performed a detailed comparative study of the
electron energy loss spectra in transition metals (Mazin er a/ 1986), in which it was
shown that the underlying physics is very complicated in comparison with simple
metals and cannot be understood in terms of the usual ‘plasmon excitation’ of Pines.
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