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We show that the usual expression for evaluating electron-phonon coupling and the phonon linewidth in
two-dimensional metals with a cylindrical Fermi surface cannot be applied near the wave vector corresponding
to the Kohn singularity. Instead, the Dyson equation for phonons has to be solved self-consistently. If a
self-consistent procedure is properly followed, there is no divergency in either the coupling constant or the
phonon linewidth near the offending wave vectors, in contrast to the standard expression.
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INTRODUCTION

First principles calculations of the phonon spectra and
electron-phonon coupling in MgB2 �see Ref. 1 for a review�
have determined that the interaction mainly responsible for
superconductivity in this material is coupling of small-q,
high-energy optical phonons of a particular symmetry with
approximately parabolic nearly two-dimensional hole bands
forming practically perfect circular cylinders occupying only
a small fraction of the Brillouin zone. It was realized early
enough2 that the case of an ideal two-dimensional �2D� cyl-
inder leads to a divergency in the calculated phonon line-
width at the 2D Kohn singularity, q=2kF, which presents
serious difficulties in calculating the electron-phonon cou-
pling function. One option that was exploited was to use an
analytical integration for the wave vectors comparable with
or smaller than 2kF,2,3 and a numerical one for the larger
vectors.

It was also pointed out1,4 that this singularity gets stronger
when the Fermi surface gets smaller, while the integrated
electron-phonon coupling �for 2D parabolic bands� does not
change. While a perfectly cylindrical Fermi surface is an
idealized construction, deviations may be quite small, it
seems, on the first glance, unphysical that all phonons with
�q�=2kF have infinite linewidth. Note that the problem is not
specific for MgB2: it occurs in doped graphenes such as
CaC6 and, YbC6,5 and, in fact, in any 2D material sporting
Kohn singularities. In particular, the hypothetical hexagonal
LiB, a subject of substantial recent interest, has � bands that
are even more 2D that those in MgB2 �Ref. 6� and the de-
scribed problem is even more pronounced.

This intuition is correct. In this paper, we show that close
to a Kohn anomaly, standard formulas for calculating
electron-phonon interaction �EPI� become incorrect and new,
self-consistent expressions replace them. These expressions
have no singularities, and exhibit a much more natural, rea-
sonably smooth, q dependence of the phonon self-energy.

To start with, we shall remind the readers of the standard
formalism. We first define the retarded phonon Green func-
tion

D���q,t� � − i��t���uq
��t�u−q

� �0��� ,

where �…� is a commutator and �…� denotes statistical av-
eraging. The displacement operator uq

� in the � direction can

be expressed via the phonon eigenvectors eq� and frequen-
cies squared �q�

2 :

uq = 	
�

 1

2M�q�
�eq��aq� + a−q�

† � . �1�

For simplicity, a primitive lattice with a single kind of
ions with a single mass M will be considered below. Also,
atomic �hartree� units will be used throughout the paper. In
this case, the “bare” phonon Green function has a form

D0�q,�� =
1

2M�q0
� 1

� − �q0 + i�
−

1

� + �q0 + i�
 , �2�

where �q0 is the bare phonon frequency, before accounting
for electron-phonon coupling �screening by electrons�. With-
out losing generality, it can be assumed to be q independent,
�q0=�0. Correspondingly, the full Green function is

D�q,�� =
1

2M�q
� 1

� − �q + i	q
−

1

� + �q + i	q
 , �3�

where �q is the renormalized �observable� frequency, and 	q
is damping �phonon linewidth� due to EPI.7

The Dyson equation reads

D−1�q,�� = D0
−1�q,�� −
�q,�� , �4�

where the polarization operator in the lowest approximation
�as usual, the Migdal theorem8 allows neglecting the vertex
corrections� along the real frequency axis at T=0 has a form
�a is the lattice constant in the plane�


�q,�� = − 2i� �gk,k+q
0 �2G0
k +

q

2
,� +

�

2
�

�G0
k −
q

2
,� −

�

2
� a2d2k

�2�2

d�

2
. �5�

Here, gk,k+q
0 is the bare electron-ion scattering matrix ele-

ment �the commonly used EPI matrix element differs in that
the potential gradient is replaced by the derivatives with re-
spect to the normal phonon coordinates�
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gk,k+q
0 =

1

a2�
a2
�k+q

* �r� � V�r��k�r�d2r , �6�

where

G0�k,�� =
1

� − �0�k� + i� sign�k − kF�
�7�

is the bare electron Green function, and �0�k�= �kx
2+ky

2

−kF
2� /2m. The renormalized phonon frequency and the pho-

non linewidth 	q are determined by the pole of the phonon
Green function D�q ,�� or

D−1�q,�q + i	q� � D0
−1�q,�q + i	q� −
�q,�q + i	q� = 0

�note that in the experiment, the phonon linewidth is usually
defined as the half-width of the peak in Im D�q ,��, which
differs from our definition by terms of the order �	 /��4�.
This leads to

�q
2 = �0

2 +
1

M
Re
�q,�q + i	q� + 	q

2 �8�

and

	q = −
1

2M�q
Im
�q,�q + i	q� . �9�

The next standard step, following Ref. 9, is to expand the
polarization operator


�q,� + i�� = − 2	
k

�gk,k+q
0 �2

nk − nk+q

�0�k + q� − �0�k� − � − i�

�10�

to first order in frequency just above the real axis of the
complex frequency �. In this case,

�appq
2 =

1

M

�q,0��1 + O
�0

2

�F
2 � �11�

and

	q
app = −

1

2M
�d Im
�q,��

d�
�
�=0

�


M
	
k

�gk,k+q
0 �2���0�k + q�����0�k�� , �12�

where the factor �nk−nk+q����0�k+q�−�0�k�−�� has been
changed to −����0�k+q�����0�k��. According to Ref. 10,
“Except for extremely pathological energy bands, it is an
excellent approximation.” Unfortunately, MgB2 and some
other recently discovered superconductors are examples
where the energy bands are, in some aspects, pathological.
Formally, expression �12� for a 2D system is divergent near a
Kohn anomaly q→2kF, and we have 	q��q, i.e., phonons
are not well defined quasiparticles. To describe electron-
phonon interaction in these systems, we have to calculate the
polarization operator 
�q ,Z� for a complex frequency Z and
solve Eqs. �8� and �9�.

I. COMPLEX POLARIZATION OPERATOR

Let us consider a model with a cylindrical Fermi surface
of radius kF, whose electrons interact with an optical phonon
with a bare frequency �0, and a momentum-independent ma-
trix element g0 �we also neglect possible warping of the
Fermi-surface cylinder, cf. Ref. 11�. In this case, the imagi-
nary part of Eq. �10� reads

Im
�q,� + i�� = − 2�g0�2	
k

����0�k + q�� − ���0�k���

����0�k + q� − �0�k� − ��

or

Im
�q,�� = −
m�g0�2

2a2q
�

max�kF,m�/q+q/2�

�kF
2+2m�

�Re
dk

�1 − �q/2k + m�/kq�2

= −
m�g0�2

a2Q
�Re �1 − �Q −��2

− Re �1 − �Q +��2� , �13�

where Q=q /2kF and �=� /qvF �vF is the Fermi velocity�.
To find the polarization operator for a complex frequency

Z=�+ i�, we use the Hilbert transformation


�q,Z� =
1


P�

−�

� dE

E − Z
Im
�q,E� .

The result is


�q,Z� = −
m�g0�2

a2Q
�

C

dxdy
x

− �Z/4�F�2/Q2 + x2 , �14�

where �F=kF
2 /2m, x=kx /kF, y=ky /kF, and N�0�=m /2a2 is

the density of states at the Fermi level, per spin. The integra-
tion is performed over the range �x−Q�2+y2�1. The substi-
tution x−Q=r cos � and y=r sin � leads to

�
C

dxdy ⇒ �
0

1

rdr�
0

2

d� ,


�q,Z� = −
m�g0�2

2a2 �2 − 
1 −
Z

4�FQ2��1 − 
Q −
Z

4�FQ
�−2

− �Z → − Z� . �15�

The branches of the square roots are chosen so as to get
the correct behavior 
�q2VF

2 /�2 at large frequencies � ��
=Re Z�. For a 2D system for 
�q ,�� on the real frequency
axis, one can write:12–15
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Re
�q,� + i�� = −
m�g0�2

2a2Q
�2Q − �Q −��Re �1 − �Q −��−2

− �Q +��Re �1 − �Q +��−2� ,

Im
�q,� + i�� = −
m�g0�2

2a2Q
�Re �1 − �Q −��2

− Re �1 − �Q +��2� . �16�

A three-dimensional �3D� plot of the functions �16� can be
found, for instance, in Ref. 16. Note that while the expres-
sion for real frequencies �Eq. �16�� has been published mul-
tiple times, we have not found in the literature the general
expression for an arbitrary complex frequency argument �Eq.
�15��.

First, we see that the imaginary part is finite for all values
of the wave vector q and vanishes inside the Landau-
damping cone q�� /vF �more exactly, at Q� �� /4�F�
− �� /4�F�2�. It has two maxima: one is rather small,
Im
����−m�g0�2�� /4�F /a2, at Q�1− �� /4�F�, while
the other has an antiadiabatical behavior, Im
����
−m�g0�2�2�F /� /a2, and occurs at a very low frequency Q
��� /4�F�+ �� /4�F�2.

However, if we expand the polarization operator at small
frequencies, we recover a standard result �see, e.g., Refs. 2
and 4�


app�q,� + i�� � −
m�g0�2

a2 �1 +
i�/4�F

Q�1 − Q2
��1 − Q�

−�1 −
1

Q2��Q − 1� , �17�

where the imaginary part diverges at q→0 and q→2kF. The
real part of Eq. �16� practically coincides with the real part of
Eq. �17� except inside the Landau-damping region.

At �→0 and finite q, we get

Im
app�q,�� � −
�

4�F

m�g0�2

a2

��1 − Q�
Q�1 − Q2

. �18�

In the opposite limit, Im
�q ,���0 for q
�m� /�kF

2 −m�. For the real part, one can set �=0 in Eq.
�17�:

Re
�q,0� = − 2�g0�2	
k
���k� − kF���kF − �k + q��

�
1

�0�k + q� − �0�k�
.

In this case,

Re
�q,0� � −
m�g0�2

a2 �1 − ��q − 2kF��1 − 
2kF

q
�2

= −
m�g0�2

a2 �1 − ��Q − 1��1 − Q−2� . �19�

In the opposite limit,

Re
�q → 0,�� � −
m�g0�2

2a2 
qkF

m�
�2

.

The momentum dependence of the absolute values of the
imaginary �the upper panel� and real parts �the lower panel�
of Eqs. �16� �solid lines� and �17� �short-dash lines� at �
=�0=90 meV as the functions of the reduced wave vector
q /kBZ �kBZ= /a is the Brillouin zone �BZ� vector, or the
radius of the Wigner-Seitz cylinder� is shown in Fig. 1.
Fermi vectors kF /kBZ=0.075,kF /kBZ=0.1,kF /kBZ=0.15, and
kF /kBZ=0.2 correspond to �F=0.15, 0.27, 0.60, and 1.07 eV,
respectively.

Along the imaginary �Matsubara� axis, the polarization
operator has the following form:


M�q,i�n� = −
m�g0�2

a2 �1 +
�Q4 − Q2 − ��n/4Q�F� + ��Q4 − Q2 − ��n/4Q�F��2 + �Q�n/4�F�2

�2Q2  , �20�

FIG. 1. �Color online� The imaginary and real parts of the nor-
malized polarization operator 2�
�q ,�=�0��a2 /m�g0�2 as a func-
tion of the reduced wave vector q /kBZ, for different fillings kF /kBZ.
Solid lines represent the exact results, and the dashed lines the
approximate solution �Eq. �17��. The four different sets correspond,
from left to right, to four increasing values of kF /kBZ.

SELF-CONSISTENT THEORY OF PHONON… PHYSICAL REVIEW B 77, 014517 �2008�

014517-3



where �n=2nT . T is temperature and n=0,�1, �2, . . .,
��. 
M�q , i�n→0� coincides with Eq. �19�.

II. PHONON RENORMALIZATION IN
TWO-DIMENSIONAL SYSTEMS

First, let us consider the approximate polarization opera-
tor from Eq. �17�. Then

�q
app = �0

�1 − 2��1 − ��q − 2kF��1 − �2kF/q�2� �21�

and, according to Eqs. �12� and �17�,

	q
app =

m�g0�2

2a2MVFq

��2kF − q�
�1 − �q/2kF�2

=
��0

2

4�F

��1 − Q�
Q�1 − Q2

,

�22�

where we have introduced, following Ref. 17, an auxiliary
coupling constant �=N�0��g0�2 /M�0

2 �some authors use an-
other dimensionless constant �0=2��. �q=�q

app+ i	q
app gives

the renormalized frequency and the damping �see Eqs. �11�
and �12��. For q�2kF,

	q
app

�q
app =

��0

4�F
�1 − 2�

1

Q�1 − Q2
. �23�

This expression diverges in the limits Q→0 and Q→1.
Turning now to the exact Eq. �15�, we observe that in the

lowest order in � /�F


�q → 2kF,�� = −
m�g0�2

a2 �1 − �1 + i�� �

8�F
 .

This leads to

�2kF
� �0

�1 − 2� ,

	2kF
=
��0

2

�2kF

��2kF

8�F
,

and

	2kF

�2kF

=
�

1 − 2�
��0

�1 − 2�

8�F
. �24�

This ratio remains finite in the limit Q→1, although the
approximate expression of Eq. �23� diverges for any system
with a cylindrical Fermi surface. Of course, the singularity at
Q→0 is also unphysical and, in principle, can be treated in a
similar way. The common point is that, in both cases, the
well-known popular formula

	q

�q
=

�g0
2�

M
	
k
���k����k+q� =

�g0
2�

M�2a�2 � dk

�v�k�� v�k + q��

�25�

is not valid near the singularity. We do not consider the Q
→0 case in this paper, but it is worth noting that there are
other issues relevant in that limit, but not near the Kohn
singularity, such as the Landau threshold and applicability of
the Migdal theorem.

The results for the linewidth 	q and the renormalized pho-
non frequency �q obtained by using the approximate polar-
ization operator as functions of the reduced wave vector Q
=q /2kF are shown in Fig. 2 by red lines. Parameters are the
following: the bare phonon frequency �0=90 meV and the
bare constant of EPI �=1 /4. The ratio kF /kBZ is equal to
0.17. It corresponds to �F=0.2 eV.

The approximate result agrees with that of Ref. 4 �their
Fig. 4�. The exact result �black lines� has been obtained by a
numerical solution of Eqs. �8� and �9� using the polarization
operator from Eq. �15�. The latter, in contrast to the approxi-
mate expression, shows two shoulders in the wave vector
dependence of the renormalized frequency �q �see also
�Re
�q ,�0�� in the bottom panel of Fig. 2�. The first one
corresponds to the maximum of �Im
�q ,��� �or 	q� and the
second one to the vanishing of these values.

III. ELECTRON SELF-ENERGY

The electron self-energy is expressed via the electron and
phonon Green functions:

��p� = ig0� G�p − k�D�k�	�p,p − k,k�
dD+1k

�2�D+1 ,

where p= �p ,��. It was shown by Migdal8 that one can ne-
glect the vertex corrections 	�p , p−k ,k��g0�1+�m /M� and
that the function G�� ,k� differs from the bare electron Green
function �Eq. �7�� only in the narrow interval of momenta
�k−kF���ph /VF and frequencies �����ph. Thus, the full
electron Green function G�p� can be substituted by the cor-
responding function for noninteracting electrons �Eq. �7��.
Using Eq. �3�, the electron self-energy for T=0 becomes
�see, e.g., Refs. 18 and 19�

FIG. 2. �Color online� The linewidth 	q and the renormalized
phonon frequency �q obtained by using the approximation of Eq.
�17� and the exact expression Eq. �15�, for the following param-
eters: the bare phonon frequency �0=90 meV and the bare constant
of EPI �=1 /4. The filling corresponds to kF /kBZ=0.17 and �F

=0.2 eV.
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��k,�� = 	
q
���k+q�

�g0�2

2M�q
� d�� ����

� − � − �q + i	q

+
��− ��

� − � + �q − i	q
 .

This is a trivial generalization of the standard expressions on
the finite phonon linewidth case. Let us average the self-
energy over the Fermi surface

���� =
1

N�0�	k
���k���k,��

= −
1

N�0�M 	
k

	
q
���k����k+q�

�g0�2

4�q
�ln

	q
2 + ��q − ��2

	q
2 + ��q + ��2

+ 2i�tan−1
�q − �

	q
� − tan−1
�q + �

	q
�� .

The limit �=−lim�→0 Re ���� /� is nothing but the standard
electron-phonon coupling constant

�	 =
1

MN�0�	k
	
q
���k��g0�2���k+q�

1

	q
2 + �q

2

= 	
q

Ñq�0�
�g0�2

M

1

	q
2 + �q

2 , �26�

where we introduced the phase space function �sometimes
called “nesting function”�

Ñq�0� =
1

N�0�	k
���k����k+q� . �27�

For a 2D cylindrical Fermi surface, we have

Ñq�0� =
��1 − Q�

4�FQ�1 − Q2
, �28�

which diverges at Q→0 and Q→1. Following Ref. 9, we
can introduce the “mode �” via the expression �=	q�q.
Then

�q = Ñq�0�
�g0�2

M

1

	q
2 + �q

2 .

In the weak-damping approximation, we recover the stan-
dard formula

�q
app = Ñq�0�

�g0�2

M ��q
2 , �29�

but for 	q��q, the contribution of strongly damped
phonons to total �q is suppressed.

The result �26� we can get also if we introduce, according
to Eq. �3�, a generalized Eliashberg function

�	
2���F��� =

1

2MN�0�	k,q

���k��g0�2���k+q�
2�q

1

2� 	q

�� − �q�2 + 	q
2 −

	q

�� + �q�2 + 	q
2

=
1

2M
	
q

Ñq�0��g0�2

2�q

1

2� 	q

�� − �q�2 + 	q
2 −

	q

�� + �q�2 + 	q
2 . �30�

The second term in this expression cancels out the nonphysi-
cal behavior at low and high frequencies. Otherwise, �	
would have been divergent. Equations �26� and �30� are gen-
eral and valid not only for the 2D systems, where phase
space factor �Eq. �27�� is divergent.

For 	q��q, we have

�app
2 ���F��� =

1

N�0�M 	
k,q

���k��g0�2���k+q�
2�q

��� − �q�

=
1

2N�0�	q

	q
app

�q
��� − �q� , �31�

where in the last equality we have used the approximate Eq.
�12�. Note that Eq. �31� is a consequence of the fact that the
damping 	q

app, according to Eq. �12�, can be expressed via
the nesting function �Eq. �27�� and both are determined by

the same function Im
��q ,0��d Im
�q ,�� / �d���=0. In a
general case, these functions can be different. This result,
without using the pole approximation for the phonon Green
function, can be trivially obtained in the Matsubara formal-
ism. In this case, one does not need to solve the Dyson equa-
tion. In the lowest order in coupling for T=0, the self-energy
has a form

��i�,k� = − i� d�i��
2 	

k�,�

�g0�2DM��i� + i�,k,k��

�
1

i� − �k� − ��i�,k��
,

where
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DM��i�,k,k�� = �1/��
0

�

d� Im D�� + i�,k,k����i� −��−1

− �i� +��−1� . �32�

We can also average the self-energy over the Fermi surface
��i��=	k���k���i� ,k� /N�0�:

��i�� =
1

N�0�	k
	
q
���k�

��g0�2���k+q��
−�

� d�

2
DM�q,i���

−�

� d�

i�� − �� − �
.

The integral �−�
� d�

i��−��−� =−i2 sign��−�� allows us to calcu-

late the physical coupling constant �

� = − � ��el�i��
�i�

�
�→0

= − lim
�→0

1

N�0�	k
	
q
���k�

��g0�2���k+q� � d�

2
D�q,i��2��� − ��

= −
1

N�0�	k
	
q
���k��g0�2���k+q�DM�q,i0�

= −
1

N�0�	k
	
q
���k��g0�2���k+q�

1

DM0
−1 �i0� −
M�q,i0�

.

On the Matsubara axes, for a 2D system, according to Eq.
�20�, the phase space factor vanishes for q 2kF and 
M�q
�2kF , i0�=−2��0

2 is a constant �see Eqs. �20� and �19��. Us-
ing Eqs. �2� and �32�, we get DM0

−1 �i0�=−M�0
2 and

� = �/�1 − 2�� . �33�

In a 3D case, 
M�q , i0� is a rather complicated function of q
and Eq. �33� is only an approximation �as was probably first
mentioned by Fröhlich17�. The physical meanings of the cou-

pling constants � and � are that they are measures of the
renormalization of the phonon frequency from �0 to �q �cf.
a discussion for 3D systems in Ref. 20�.

Turning back to the 2D case, according to Eq. �26�, we
can neglect all divergent contributions near Q=0 and Q=1.
Elsewhere, we can use Eq. �29�.

One should keep in mind that the conventional coupling
constant is �=� / �1−2��. This parameter determines elec-
tronic properties �Fermi velocities, Tc, etc.�. The other pa-
rameter, �=� / �1+2���1 /2, defines the observable phonon
frequency, �q=�0

�1−2�.

CONCLUSIONS

First of all, the standard well-known expression

�2���F��� =
1

2N�0�	q

	q

�q
��� − �q�

�
1

N�0�M 	
k

	
q

���k��g0�2���k+q�
2�q

��� − �q�

is valid only in the lowest order in the bare phonon line-
width, 	q, which is not an acceptable approximation in the
case of strong Kohn singularities, and particularly for a cy-
lindrical Fermi surface. 	q in this approximation is not the
actual phonon linewidth; as opposed to 	q, determined by
the oversimplified Eq. �12�, the real phonon linewidth does
not diverge even for an ideally cylindrical Fermi surface.
Second, following Eq. �33� derived above, the more accurate
treatment presented here still respects the old sum rules that
the total � for a cylindrical Fermi surface and parabolic
bands do not depend on filling.
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