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Electron-phonon coupling strength from ab initio frozen-phonon approach
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We propose a fast method for high-throughput screening of potential superconducting materials. The method
is based on calculating metallic screening of zone-center phonon modes, which provides an accurate estimate
for the electron-phonon coupling strength. This method is complementary to the recently proposed rigid muffin
tin (RMT) method, which amounts to integrating the electron-phonon coupling over the entire Brillouin zone
(as opposed to the zone center), but in a relatively inferior approximation. We illustrate the use of this method
by applying it to MgB2, where the high-temperature superconductivity is known to be driven largely by the
zone-center modes, and compare it to a sister compound AlB2. We further illustrate the usage of this descriptor
by screening a large number of binary hydrides, for which accurate first-principle calculations of electron-phonon
coupling have been recently published. Together with the RMT descriptor, this method opens a way to perform
initial high-throughput screening in search of conventional superconductors via machine learning or data mining.
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One of the most rapidly developing areas of computational
materials science is the theoretical search for functional ma-
terials using such information technologies as data mining,
machine learning, and artificial intelligence [1–5]. At the crux
of this field is the ability to screen candidates not only for
stability (which is more or less routine now) but, most impor-
tantly, for a particular figure of merit. In some cases, testing
material for the property of interest is relatively inexpensive,
and such cases have been intensively investigated in the last
decade. Typical examples include topological bands [6,7],
thermoelectric properties [8], and battery materials [9]. On the
other hand, useful properties that require tedious, often poorly
converged and time-consuming calculations are naturally not
in the first row of this event. Still, as the low-hanging fruit are
being exhausted, researchers’ attention is turning toward those
in the latter category.

One of the relatively less explored, due to this reason,
parts of the landscape, is the massive computational search
for conventional superconductors. While the computational
algorithm based on the linear response formalism in the den-
sity functional theory (DFT) is well known, it is very time
-consuming, even with reduced accuracy. When scanning hun-
dreds and thousands of candidates, it is helpful to have a
fast, albeit less accurate method, to “enrich” the sampling
space the same way as miners enrich ores: to weed out the
candidates that are unlikely to have strong electron-phonon
coupling (albeit this is not guaranteed), and elevate to the next
stage those that are likely to have one (albeit many will not).

To this end, a half a century-old rigid muffin tin (RMT)
method has been revived [10]. This method calculates the
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integrated electron-phonon coupling (EPC) constant exactly,
under one very important assumption that the crystal space
can be partitioned into non-overlapping spheres [muffin tin
(MT) spheres] and interstitial space, and the crystal potential
in the spheres is spherically symmetric and that in the in-
terstitial regions is constant. Furthermore, it is assumed that
as ions are displaced from their equilibrium positions, the
potential inside each MT sphere shifts rigidly. This method
is extremely fast and gives reasonably accurate results for
close-packed transition metals, where the potential is mainly
due to well-localized d electrons (e.g., Nb, V, Mo) [11], but
strongly underestimates the coupling constant for sp metals
(Al, Pb, MgB2) [12]. Below we offer another method that
works very well in MgB2 and reasonably well in hydride
systems, which is based on calculating the EPC for selected
phonons (specifically, zone-center modes), and then making
an ad hoc assumption that these modes are reasonably repre-
sentative for the total EPC. Since the underlying assumptions
are totally different from those in the RMT method, we sug-
gest they can be used complementarily.

The fact that phonon softening is controlled by the same
physics as superconducting EPC comes from the simple
observation that the former is the real part of the phonon self-
energy δω2, while the latter is determined by the imaginary
part of the same quantity, λ = ∑

qv

γqv

πN (εF )ω2
qv

, where γqv is the

phonon linewidth, N (εF ) is the density of states at the Fermi
level εF , and ωqv is the phonon frequency. This can be visu-
ally appreciated from the Feynman diagrams for the phonon
[Fig. 1(a)] and electron [Fig. 1(b)] self-energy. The former
gives the softening (real part) and the broadening (imaginary
part) of the phonon line, the latter is the second Eliashberg
diagram, so its real part gives electron mass renormalization
and the imaginary part, after summation over all the phonon
modes, the anisotropic Eliashberg function [13].
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FIG. 1. Feynmann diagrams for electron and phonon self-
energies.

In Ref. [14] a simple expression was derived for both
quantities, in the special case of q → 0, in terms of the
electron-phonon matrix element g (the dot in Fig. 1). In the
following we recap this picture. The one-electron contribution
to the dynamical matrix is defined as D = d2E1

dR2 where R is
the ionic coordinate. For simplicity we consider a phonon
with just a single atom displaced. Then we can define g as
g = 1√

2Mω

∂εik
∂R , where ω is the full self-consistent frequency,

i.e., the fully screened phonon frequency. The total energy (the
chemical potential is set to zero) is E1 = ∑

σ ik εσ ikθ (−εσ ik) =
2

∑
ik εikθ (−εik), where εik is the quasiparticle energy and

θ (−εσ ik) is the Heaviside’s theta function, and the Fermi
energy is set to zero. This leads to

d2E1

dR2
= 2

∑
ik

[
d2εik

dR2
θ (−εik ) − 2δ(εik)

(
dεik

dR

)2]
. (1)

Here summations over k are normalized to one state per
Brillouin zone (BZ). The first term here can be interpreted
as an unscreened dynamic matrix where the potential is not
affected by the electron-phonon interactions. We define it as
D̃ = 2

∑
ik

d2εik
dR2 θ (−εik) and its corresponding frequency as an

unscreened phonon frequency, i.e., D̃ = Mω̃2. Replacing the
second term with g, we get

Mω2 = Mω̃2 − 4
∑

ik

2Mω|g|2δ(εik). (2)

Therefore,

ω̃2 − ω2

ω2
= 8

ω

∑
ik

|g|2δ(εik). (3)

The definition of EPC constant per mode [13] in the Eliash-
berg theory is λq = 2

N (εF )ωq

∑
i jk |g|2δ(εik)δ(εik+q − ε jk − ωq)

and, after integrating over the entire BZ, λBZ = ∑
q λq. Note

that this expression is zero at q = 0, reflecting the Landau
threshold. However, assuming an Einstein mode, i.e., g inde-
pendent on q, setting ω to zero for finite q, as it is customary
[13], and integrating over q, we get

λBZ = 2

ω

∑
i jk

|g|2δ(εik). (4)

Equation (3) is similar to the one in Eliashberg theory
[Eq. (4)], except for different prefactors. If we define

λ� = ω̃2 − ω2

4ω2
, (5)

then we can assume that λBZ = f λ� , where f = 1 within
the assumptions made. In this formalism, f accounts for
the phase-space factor, i.e., the difference between the
zone-center calculations and the proper integration over all
phonons.

Our main hypothesis is that this “fudge factor” is rea-
sonably constant within the same family of materials. In the
following, we will use a few cases to examine this hypothesis.
The two frequencies ω and ω̃ can be calculated in any DFT
package using the frozen phonon method, with the difference
that in one case we calculate the fully self-consistent total
energies, while in the other the occupation numbers for the
electronic states are kept fixed with the frozen phonon dis-
placement.

DFT calculations in the following were carried out using
the projector augmented wave method [15] implemented in
the VASP code [16,17]. The exchange and correlation energy
are treated with the generalized gradient approximation and
parameterized by the Perdew-Burke-Ernzerhof formula [18].
A plane-wave basis was used with a kinetic energy cutoff of
520 eV, and the convergence criterion for the total energy
was set to 10−8 eV. The �-centered Monkhorst-Pack grid was
adopted for BZ sampling. The k-point mesh was generated
based on the length parameter Rk as Nk = Rk|b|, where b is
the reciprocal lattice vectors. Different k-point meshes were
tested in the phonon calculations. The zone-center phonons
were calculated by the frozen-phonon method with finite dif-
ferences. The displacement amplitude in the frozen-phonon
calculations is 0.02 Å.

Equation (5) is the main analytical result and all computa-
tional difficulties relate to parameters in this equation. Below
we will show how combining Eq. (5) with an efficient way
of calculating phonon frequencies leads to an opportunity to
perform EPC calculation massively.

The screened phonon frequency ω was computed by fully
self-consistent (SCF) calculations in the displaced atomic
configurations using the tetrahedron method with Blöchl
corrections (ISMEAR = −5). To compute the unscreened
phonon frequency ω̃, an SCF calculation with the tetrahedron
method was first performed in the equilibrium configuration,
followed by the SCF calculations with the displaced atoms,
but with partial occupations fixed at the equilibrium configu-
ration (ISMEAR = −2, i.e., the occupation number are read
from the stored WAVECAR file and never recalculated). A
caveat here is that the point symmetry and the size of the
inequivalent wedge of the BZ change upon imposing a frozen
phonon (unless an A1g phonon). The simplest but the least
efficient way to handle it is to turn off the symmetry entirely
and use the built-in frozen-phonon capability in VASP (IB-
RION = 5 or 6, ISYM = 0). However, in that case, VASP
does not perform the symmetry analysis of the phonon modes
either, so instead of calculating only ionic displacements com-
patible with the given phonon representation, it generates all
3N (3N + 1)/2 displacement patterns, where N is the number
of atoms in the unit cell. Alternatively, one can use an external
software suite, such as PHONOPY [19] or SMODES (part
of the ISOTROPY suite) [20] to generate only the relevant
displacement patterns and perform frozen-phonon calcula-
tions separately for each representation. A further speed-up
can be achieved by calculating only the Raman-active modes,
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FIG. 2. Zone-center EPC strength calculations for MgB2 and AlB2. (a), (b) the screened phonon frequencies ω. (c), (d) unscreened phonon
frequencies ω̃. (e), (f) zone-center EPC strength λ� . Rk is the reciprocal lattice spacing that determines the k grid density. Each symbol (and
color) represents one phonon mode. The two curves representing doubly degenerate E2g and E1u modes are overlapped. The reference data
marked by × in (a) and (b) are from Ref. [29].

because otherwise, they would not have any EPC by symme-
try. The SMODES program provides this information, too.
Depending on the size of the unit cell and the symmetry of
the crystal, the saving in computer time may be up to an order
of magnitude or even more. Finally, one can save even more
time by calculating the occupation numbers in the highest
(undistorted) symmetry and using the point group operations
to repeat them into the rest of the BZ. However, this would
require some modification of the VASP source code. In the
calculations presented below we used an intermediate proto-
col, utilizing PHONOPY to generate displacements for each
irreducible representation, and VASP to compute the screened
and unscreened phonon frequencies.

MgB2 and AlB2. We first test the method by comput-
ing the zone-center EPC strength of the MgB2 and AlB2.
Both phases adopt the same “AlB2-type” crystal structure
(P6/mmm). MgB2 has a high Tc of 39 K [21] and strong EPC
interactions [22–28], while AlB2 shows no superconductivity
in experiments and weak EPC [29]. Figures 2(a) and 2(b)
show the frequencies of optical phonon modes at the zone
center computed by the frozen-phonon method for MgB2 and
AlB2. The calculations are tested with different k-point grids
and found to converge at Rk = 60 (i.e., 22 × 22 × 17). The
computed phonon frequencies of both MgB2 and AlB2 agree
well with previous calculations in Ref. [29]. The unscreened

phonon frequency ω̃ are computed for MgB2 and AlB2, shown
in Figs. 2(c) and 2(d), respectively. Comparing the screened
and unscreened phonon frequencies of MgB2 in Figs. 2(a) and
2(c), one can see that the E2g modes, which are the in-plane
boron stretching modes, show a strong softening due to the
screening of electron-phonon interactions, while other modes
remain unchanged. This is consistent with previous studies
that the softening of E2g mode is the main contribution to
the strong EPC of MgB2 [30,31]. In AlB2, there is almost no
difference between screened and unscreened phonon frequen-
cies. Figures 2(e) and 2(f) show the zone-center EPC strength
λ� for each phonon mode. In MgB2, the E2g mode shows a λ�

of 0.23, while other optical modes, as expected by symmetry,
show no EPC. In AlB2, the E2g mode also shows a nonzero
EPC strength while the amplitude is one order of magnitude
smaller than the one in MgB2. Other modes in AlB2 also
do not contribute to the EPC. The summation of zone-center
EPC of MgB2 is 0.44, which is comparable to ∼0.7 from
previous full BZ calculation [29] and experiments [32]. These
results demonstrate that the simple frozen-phonon calcula-
tions of screened and unscreened phonon modes provide a
correct physical picture of the electron-phonon interactions
and a qualitative estimate of EPC strength in MgB2 and AlB2.
Therefore, this test provides a good validation of the current
method. We note that the computational cost of these frozen-
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FIG. 3. (a) The screened and unscreened phonon frequencies (top panel) and zone-center EPC strength (bottom panel) in the CaH6 (Im3̄m)
phase at 100 GPa. (b) Scatter plot of zone-center EPC strength λ� versus EPC constant from full BZ calculations λBZ for datasets by Tanaka
et al. [33] and Shipley et al. [34]. The dashed lines indicate linear relations with different slopes.

phonon calculations is very small, e.g., it only takes ∼20 min
to compute λ� for MgB2 with Rk = 60 on a 32-core Intel(R)
Xeon(R) Gold 6130 CPU, while it takes ∼20 h to compute
full BZ EPC (with q = 6 × 6 × 6) using same k grids and
density-functional perturbation theory (DFPT) implemented
in Quantum ESPRESSO.

High-pressure hydrides. We apply the method to compute
the zone-center EPC strength for two datasets of high-
pressure hydrides developed in Refs. [33,34]. The dataset
from Ref. [33] contains eight systems intensely studied in the
last decades. The dataset from Ref. [34] predicts 52 hydride
systems in the pressure range from 100–500GPa, with some
confirmed experimentally. The full BZ EPC constant, λBZ,
has been calculated in both datasets [33,34], which provides
a perfect reference to investigate the relation between zone-
center EPC strength λ� and EPC constant λBZ. We computed
λ� for all these phases and take the CaH6 (Im3̄m) phase as
an example. The CaH6 (Im3̄m) phase was first predicted to
have strong EPC and large Tc at high pressures [35] and was
recently synthesized in experiments [36]. In Fig. 3(a), we
computed the screened and unscreened zone-center phonon
frequencies for CaH6 (Im3̄m) phase at 100 GPa. The triple
degenerate modes at ∼100 meV show a strong softening due
to EPC. The double degenerate modes at ∼220 meV also
show a slight softening. Therefore, these modes provide the
main contribution to the zone-center EPC, which can be seen
in Fig. 3(b). This is qualitatively consistent with the full BZ
EPC [35]. The triple modes yield λ� = 0.34. The summation
of zone-center EPC of all modes noted as

∑
λ� , is 1.06.

According to the calculations in Ref. [34], the full BZ EPC
constant λBZ of CaH6 (Im3̄m) phase at 100 GPa was 5.81.
The difference between

∑
λ� and λBZ is attributed mainly to

the zone-boundary phonons in CaH6 (Im3̄m), e.g., at H, N
and P points, as shown in Ref. [35]. The EPC of CaH6 has a
strong pressure dependence [34]. When the pressure increases

to 150 GPa, λBZ significantly drops to 2.71 [33]. This is also
captured by

∑
λ� , which decreases to 0.42 at 150 GPa, shown

in Fig. 3(b).
To compare the zone-center EPC and full BZ EPC with

better statistics, we compute
∑

λ� and plot it with λBZ for all
the systems from Refs. [33,34] in Fig. 3(b). It shows that

∑
λ�

has a positive relation with λBZ. The data can be described
by linear regression with a relation of

∑
λ� ≈ 0.22λBZ (with

R2 = 0.55), giving the fudge-factor for this system f ≈ 0.2.
Some of the data points are even close to the y = x curve,
which indicates the zone-center EPC dominants the EPC in
these materials. Therefore, the simple zone-center EPC via the
frozen phonon calculations can be used as a quick screening
for the high EPC candidates before full BZ calculations.

In summary, we suggest using single-cell, q = 0, frozen-
phonon calculations of the EPC strength of the zone-center
Raman-active phonons as a quick and dirty proxy for full DFT
evaluation of the Eliashberg function. The protocol includes
one adjustable parameter, which is roughly a constant within
one materials family, such as high-pressure hydrides. Tests on
the AlB2 and MgB2 show that the method can clearly distin-
guish a promising superconducting material (MgB2) from a
dud (AlB2). The calculations for the binary hydride dataset
show that this method can be used as a reasonable descriptor
of the full BZ EPC constant across a broad range of materials
(from λ ≈ 0.7 to nearly 6) within the same family. There-
fore, this method can enable a quick large-scale screening for
potential high-temperature conventional superconductors. A
major problem with this method is with the systems where
the strong EPC is concentrated away from the zone center;
however, this still leaves us a lot of systems where this is not
the case. We emphasize that this method is complementary to
the RMT method in the sense it is not expected to work well
for materials amenable to RMT, but should be much better for
materials where RMT does not work.
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