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Kyuil Cho 1,2,* , Marcin Kończykowski 3 , Makariy A. Tanatar 1,4 , Igor I. Mazin 5 , Yong Liu 1,6 ,
Thomas A. Lograsso 1 and Ruslan Prozorov 1,4

1 Ames National Laboratory, Ames, IA 50011, USA
2 Department of Physics, Hope College, Holland, MI 49423, USA
3 Laboratoire des Solides Irradiés, CEA/DRF/IRAMIS, École Polytechnique, CNRS, Institut Polytechnique

de Paris, F-91128 Palaiseau, France
4 Department of Physics & Astronomy, Iowa State University, Ames, IA 50011, USA
5 Department of Physics & Astronomy and Quantum Science & Engineering Center, George Mason University,

Fairfax, VA 22030, USA
6 Crystal Growth Facility, Institute of Physics, École Polytechnique Fédérale de Lausanne,

CH-1015 Lausanne, Switzerland
* Correspondence: cho@hope.edu

Abstract: Low-temperature variable-energy electron irradiation was used to induce non-magnetic
disorder in a single crystal of a hole-doped iron-based superconductor, Ba1−xKxFe2As2, x = 0.80. To
avoid systematic errors, the beam energy was adjusted non-consequently for five values between 1.0
and 2.5 MeV when sample resistance was measured in situ at 22 K. For all energies, the resistivity
raises linearly with the irradiation fluence suggesting the creation of uncorrelated dilute point-like
disorder (confirmed by simulations). The rate of the resistivity increase peaks at energies below
1.5 MeV. Comparison with calculated partial cross-sections points to the predominant creation of
defects in the iron sublattice. Simultaneously, superconducting Tc, measured separately between the
irradiation runs, is monotonically suppressed as expected, since it depends on the total scattering
rate, hence on the total cross-section, which is a monotonically increasing function of the energy. Our
work experimentally confirms an often-made assumption of the dominant role of the iron sub-lattice
in iron-based superconductors.
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1. Introduction

Response of superconductivity to impurities and defects provides a useful tool to
study the pairing mechanism of superconductors [1–3]. The isotropic s—wave paring state
of conventional Bardeen–Cooper–Schrieffer (BCS) superconductors is robust against non-
magnetic scattering. This statement is known as Anderson theorem [4]. However, in the
case of paramagnetic impurities, scattering involves simultaneous flipping of the spins
of impurity and conduction electron, destroying singlet Cooper pairs. Thus, according to
the Abrikosov and Gor’kov theory [5], conventional BCS superconductivity is suppressed
and is destroyed at the finite critical value of the magnetic dimensionless scattering rate,
Γ = h̄/(2πkBTc0τ) ≈ 0.14. In the cases of the anisotropic or multiband superconducting
order parameters, even nonmagnetic scattering is pair-breaking and leads to a suppression
of Tc [6,7].

Traditionally, chemical doping and alloying are used to induce extra scattering [8].
However, in addition to changing the scattering rate, these cause changes in the electronic
band structure and the Fermi energy level, and build internal “chemical pressure”, all of
which affect the measurable properties.
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Particle irradiation is an alternative way to generate scattering centers, and it has been
intensively used to investigate the properties of materials. Depending on the choice of
particles, the character of induced scattering centers varies from point-like defects, mostly
vacancies (electron irradiation) [9–17], to dendritic clusters (proton irradiation) [18–28],
and to columnar defects (heavy-ion irradiation) [29–38]. Furthermore, if the energy of the
projectile particles varies, the character of defects generated also changes accordingly since
the scattering dynamics significantly vary with the energy [39,40].

In this contribution, we use variable-energy electron irradiation to experimentally
determine which ions contribute most to the scattering rate in iron-based superconduc-
tors, thus testing the models of electronic conductance in these materials. We chose
Ba1−xKxFe2As2 as one of the most intensively studied among the iron-based superconduc-
tors [16,41,42]. Here, superconductivity exists starting from x = 0.16 and extends all the
way to x = 1. The abrupt change in the superconducting gap structure around x = 0.7
was attributed to the Lifshitz transition [13,43,44]. At low x, superconductivity coexists
with long range magnetic order [45]. To avoid the influence of the magnetic phase and
enable in situ resistivity measurements, performed at a fixed 22 K in our setup, we chose
the overdoped compound with x = 0.8 with a convenient Tc,onset = 20.2 K.

2. Materials and Methods

Single crystals of Ba0.2K0.8Fe2As2 were grown by using an inverted temperate gradient
method with the starting materials—Ba and K lumps, and Fe and As powders. Details
of the growth method can be found elsewhere [13,46]. Resistivity measurements were
performed in a standard four-probe configuration. Typical dimensions of the samples
are (1–2) × 0.5 × (0.02–0.1) mm3. Silver wires of 50 µm diameter were soldered to the
sample to provide electrical contacts [47]. The sample was mounted on a Kyocera chip
over a hole of about 5 mm diameter at the center. The Kyocera chip was transferred
to the irradiation chamber filled with liquid hydrogen providing efficient cooling down
to 22 K. A Faraday cup placed behind the chamber enabled accurate measurement of
the fluence during irradiation. The electron irradiation was performed at the SIRIUS
Pelletron facility of the Laboratoire des Solides Irradiés at the École Polytechnique in
Palaiseau, France. The energy of the electron beam was varied from 1.0 MeV to 2.5 MeV.
The acquired irradiation dose is conveniently measured in C/cm2, where 1 C/cm2 = 6.24 ×
1018 electrons/cm2. After irradiation, the sample in the Kyocera chip was transferred to
another set-up for temperature-dependent resistivity measurement.

3. Results and Discussion

Figure 1 shows the in situ resistivity measurement during irradiation. The electron
irradiation was performed at T = 22 K in liquid hydrogen. A low temperature is needed
to remove the heat generated during irradiation, prevent immediate recombination of
Frenkel pairs and, importantly, prevent clusterization and agglomeration of the produced
defects. The first irradiation (run 1) with a 2.5 MeV electron beam was conducted up to
0.87 C/cm2. During this irradiation, the resistivity monotonically increased from 15 to
30 µΩcm. The rate of resistivity increase per fluence (∆ρ/∆ f luence) was 16.56 µΩcm3/C.
After run 1, the sample was removed from the irradiation chamber and transferred to the
other cryostat to measure the temperature-dependent resistivity. For the second irradiation
(run 2), the sample was again mounted to the irradiation chamber. Between run1 and
run 2, the sample was exposed to the room temperature and annealing of defects at room-
temperature was evident as a decrease in resistivity from 30 to 24 µΩcm. Run 2 was
performed with a 1.0 MeV electron beam up to 0.21 C/cm2. The identical procedure was
repeated for all five irradiation runs in order.
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Figure 1. Fluence dependence of the resistivity of a Ba0.2K0.8Fe2As2 single crystal measured in situ
in an irradiation chamber during electron irradiation. The sample was sitting in a liquid hydrogen
environment at a temperature around T = 22 K. Five irradiation runs were conducted in order
(sections of the broken line in the figure). After each irradiation, the sample was taken out of the
irradiation chamber for characterization and returned for the next irradiation. The sample’s thermal
cycling to room temperature resulted in a partial disorder annealing and a slight resistivity decrease
compared to the value at the end of the previous run.

Figure 2a summarizes the energy dependence of the in situ resistivity found in Figure 1.
Interestingly, we found that the rate of change in in situ resistivity, ∆ρ/∆ f luence, is sub-
stantially larger for the irradiation at lower energies. To understand this behavior, we need
to calculate the energy-dependent partial cross-section for Ba, Fe, and As. This requires
knowledge of the knockout barriers, Ed, which depend on the element and on its position in
a particular crystal lattice. The knockout threshold barriers’ Ed values, Ba (33 eV), Fe (22 eV),
and As (50 eV), were estimated by using projector-augmented wave [48] as implemented in
the Vienna Ab-initio Simulation Package (VASP) [49]. Gradient correction [50] was used in
the calculations, and semicore Ba-s and Fe-p states were treated as valence states. We used
a supercell of 18 formula units and 1 K-point in the Brillouin zone. Ab initio molecular
dynamics (MD) was performed using the standard VASP settings [51]. Calculations were
initialized by assigning a prescribed kinetic energy to a given atom and monitoring whether
it will drift away in the process of MD, or return back to its original site. The magnetic state
of the starting configuration did not affect the final estimate of the knockout energy within
the accuracy that we were interested in. With the obtained Ed values, we used SECTE (“Sec-
tions Efficaces Calcul Transport d’Électrons”) software, developed at École Polytechnique
(Palaiseau, France) by members of the “Laboratoire des Solides Irradiés”, specifically for
the interpretation of MeV-range electron irradiation. Essentially, this is a computer-assisted
atomic-weights-averaged interpolation of the ion knockout cross-sections tabulated by
O. S. Oen [52]. It appears that the defects produced roughly below 1.5 MeV contribute
most to the resistivity change and, according to our calculations, these are defects in the
iron sublattice. This is our central profound result, which has always been assumed in
iron-based superconductors, but is now directly experimentally verified.
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Figure 2. (a) Rate of the in situ resistivity increase with the fluence (slope of the line’s segments in
Figure 1) plotted as a function of the energy of the electron beam. ∆ρ is the increase in resistivity
during each irradiation run and ∆ f luence is the total fluence for that irradiation. The lower energy
irradiations show a larger rate of in situ resistivity per fluence. (b) Energy-dependent scattering
cross-sections for Ba, Fe, and As are calculated using the displacement energies (Ed) = 33 eV (Ba),
22 eV (Fe), and 50 eV (As), which were calculated using VASP-MD simulation. The total cross-section
for BaFe2As2 is plotted as a dashed line.

As a next step, we look at the independent parameter that depends on disorder—the
superconducting transition temperature, Tc. Figure 3a shows the temperature-dependent
resistivity measurement after each irradiation run. The first measurement (pristine) was con-
ducted before irradiation. It has Tc,onset = 20.2 K and Tc,o f f set = 19.3 K. After each irradiation,
the normal state resistivity increased, indicating the addition of defects. We used the normal
state resistivity at 19.5 K, just above the transition, to characterize impurity scattering. Since
the Tc of the pristine samples is higher than 19.5 K, we used an extrapolation of the normal
state resistivity down to 19.5 K to estimate the normal state resistivity. Figure 3b shows the
suppression of Tc,onset and Tc,o f f set plotted against the normal state resistivity at T = 19.5 K.
In general, Tc decreases at a rate of −0.20 K/µΩcm (Tc,onset) and −0.21 K/µΩcm (Tc,o f f set).
As expected, Tc is affected by the total increase in resistivity, i.e., the total scattering rate.
Defects in all ion sub-lattices contribute to scattering and therefore we should expect that
the rate of Tc suppression depends on the total cross-section.
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Figure 3. (a) Temperature-dependent resistivity measured after each run of irradiation. The sample
was removed from the irradiation chamber and transferred to a separate set-up to measure the
temperature-dependent resistivity. The normal state resistivity at 19.5 K is used as a parameter
to indicate the amount of impurities generated upon irradiation. The definitions of Tc,onset and
Tc,o f f set are shown as red dotted lines. (b) Tc versus resistivity at T = 19.5 K. Tc decreases at a rate of
−0.20 K/µΩcm (Tc,onset) and −0.21 K/µΩcm (Tc,o f f set).

The Tc suppression is further analyzed in Figure 4. The inset of Figure 4 explains the
way the normalized suppression was calculated during the fourth irradiation with 2.0 MeV
and 0.31 C/cm2 (‘run4’) as an example. ∆Tc is the variation in Tc before and after 2.0 MeV
irradiation, and ∆ρ is the variation in the resistivity measured at T = 19.5 K before and after
2.0 MeV irradiation. From these values, we calculated a normalized Tc suppression rate of
|∆Tc/∆ρ|. The same calculation was performed for all five irradiations and the results are
plotted in the main panel of Figure 4. Indeed, the normalized Tc suppression rate increases
with increasing energy. As asserted above, this is expected since the total cross-section
(dashed line) increases with energy.



Materials 2023, 16, 4520 6 of 9

Figure 4. Normalized Tc suppression rate (|∆Tc/∆ρ|) as a function of energy, calculated from the
data in Figure 3a. The inset shows the definition of ∆Tc and ∆ρ for a particular run, ‘run4’ (2 MeV
irradiation, 0.31 C/cm2), as an example. The fact that the suppression rate increases for higher
energies is consistent with the increasing total cross-section (dashed line).

4. Conclusions

Low-temperature variable-energy electron irradiation was used to probe ion-specific
scattering and superconductivity in a single crystal of Ba1−xKxFe2As2, x = 0.80. Measured in
situ at 22 K, the rate of the resistivity increase peaks at electrons energies below 1.5 MeV. The
comparison with the calculated partial cross-sections points to the predominant creation
of defects in the iron sublattice at these energies. Simultaneously, superconducting Tc,
measured separately between the irradiation runs, is monotonically suppressed with
resistivity increase. This observation reflects that the total scattering rate on all defects,
hence the total cross-section, monotonically increases with energy. Our work experimentally
confirms an often-made assumption of the dominant role of the iron sub-lattice in scattering
in iron-based superconductors.
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