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We report inelastic neutron scattering measurements on Na2IrO3, a candidate for the Kitaev spin model

on the honeycomb lattice. We observe spin-wave excitations below 5 meV with a dispersion that can be

accounted for by including substantial further-neighbor exchanges that stabilize zigzag magnetic order.

The onset of long-range magnetic order below TN ¼ 15:3 K is confirmed via the observation of

oscillations in zero-field muon-spin rotation experiments. Combining single-crystal diffraction and

density functional calculations we propose a revised crystal structure model with significant departures

from the ideal 90� Ir-O-Ir bonds required for dominant Kitaev exchange.
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Transition metal oxides of the 5d group have recently
attracted attention as candidates to exhibit novel electronic
ground states stabilized by the strong spin-orbit (SO) cou-
pling, including topological band or Mott insulators [1],
quantum spin liquids [2], field-induced topological order
[3], topological superconductors [4], and spin-orbital Mott
insulators [5]. The compounds A2IrO3 (A ¼ Li, Na)
[6,7], in which edge-sharing IrO6 octahedra form a honey-
comb lattice [see Fig. 1(b)], have been predicted to display
novel magnetic states for composite spin-orbital moments
coupled via frustrated exchanges. The exchange between
neighboring Ir moments (called Si;j, S ¼ 1=2) is proposed

to be [2]

H ij ¼ �JKS
�
i S

�
j þ J1Si � Sj; (1)

where JK > 0 is an Ising ferromagnetic (FM) term arising
from superexchange via the Ir-O-Ir bond, and J1 > 0 is the
antiferromagnetic (AFM) Heisenberg exchange via direct
Ir-Ir 5d overlap. Because of the strong spin-orbital admix-
ture the Kitaev term JK couples only the components in the
direction �, normal to the plane of the Ir-O-Ir bond [2,8].
Because of the orthogonal geometry, different spin com-
ponents along the cubic axes (� ¼ x, y, z) of the IrO6

octahedron are coupled for the three bonds emerging out
of each site in the honeycomb lattice. This leads to the
strongly frustrated Kitaev-Heisenberg (KH) model [2],
which has conventional Néel order for large J1, a stripy
collinear AFM phase (to be discussed later) for 0:4 & � &
0:8, where � ¼ JK=ðJK þ 2J1Þ (exact ground state at � ¼
1=2), and a quantum spin liquid with Majorana fermion
excitations [9] at large JK (� * 0:8). In spite of many

theoretical studies [2–4,10–13] very few experimental re-
sults are available for A2IrO3 [6,7,14]. Evidence of un-
conventional magnetic order in Na2IrO3 came from
resonant x-ray scattering [14] which showed magnetic
Bragg peaks at wave vectors consistent with either an in-
plane zigzag or stripy order (to be discussed later).
Measurements of the spin excitations are very important

to determine the overall energy scale and the relevant
magnetic interactions, however, because Ir is a strong
neutron absorber inelastic neutron scattering (INS) experi-
ments are very challenging. Using an optimized setup we
here report the first observation of dispersive spin-wave
excitations of Ir moments via INS. We show that the
dispersion can be quantitatively accounted for by including
substantial further-neighbor in-plane exchanges, which in
turn stabilize zigzag order. To inform future ab initio stud-
ies of microscopic models of the interactions we combine
single-crystal x-ray diffraction with density functional cal-
culations to determine precisely the oxygen positions,
which are a key in mediating the exchange and controlling
the spin-orbital admixture via crystal field effects. We
propose a revised crystal structure with much more sym-
metric IrO6 octahedra, but with substantial departures from
the ideal 90� Ir-O-Ir bonds required for dominant Kitaev
exchange [8], and with frequent structural stacking faults.
This differs from the currently adopted model, used by
several band-structure calculations [13,14], with asymmet-
rically distorted IrO6 octahedra, with Ir-O bonds differing
in length by more than 20%, improbably large in the
absence of any Jahn-Teller interaction, and with the short-
est Ir-O bond length below 2 Å, highly unlikely for a large
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ion such as Ir4þ. We show that the previously proposed
structure is unstable with large unbalanced ionic forces,
and when allowed to relax it converges to a higher-
symmetry structure.

As other ‘‘213’’ honeycomb oxides, Na2IrO3 has an
alternating stacking of hexagonal layers of edge-sharing
NaO6 octahedra and similar layers where two-thirds of Na
are replaced by Ir to form a honeycomb lattice with Na in
the center [see Fig. 1(b)]. To determine the precise struc-
ture x-ray diffraction was performed on a self-flux-grown
single crystal of Na2IrO3 [6,15]. The diffraction pattern
showed sharp Bragg peaks which could be indexed by a
monoclinic unit cell [see Fig. 1(a)] derived from a parent
rhombohedral structure with an ideal repeat every three
layers. The monoclinic distortion leads to an in-plane shift
of successive Ir honeycombs differing by 1.2% from the
ideal value [� c cos� compared to a=3, see Fig. 1(a)],
well above our instrumental resolution, which enabled us
to determine that our sample was a single monoclinic
domain. The detailed refinement [15] was performed using
both the published C2=c (No. 15) unit cell with 15 refined
atomic positions leading to values somewhat similar to
Ref. [6], and an alternative, higher-symmetry and half the
unit cell volume, C2=mmodel [No. 12, shown in Figs. 1(a)
and 1(b)] (as found for the related Li2IrO3 [16]), with only
seven refined atomic positions listed in Table I. Other

structural motifs reported for 213 honeycomb oxides [17]
including Na2PtO3, Li2TeO3, Na2TbO3 were also tried but
did not provide a good fit. We also tested for Ir=Na site
admixture but this did not improve the agreement with
data.
The C2=c structure can be described as a ‘‘supercell’’

obtained from the C2=m structure by small displacements
of atoms (of the order of a few percent of the unit cell
dimensions) leading to a doubled unit cell volume.
Although C2=m and C2=c gave comparable agreement
with the main Bragg peaks, the largerC2=c unit cell should
be manifested experimentally by the appearance of new
‘‘superstructure’’ peaks at positions such as (odd,odd,half-
integer) in the small unit cell description (C2=m). These
superlattice peaks, however, were not observed in the data
[15], ruling out the C2=cmodel. Furthermore, in structural
optimization calculations using VASP [15,18] (also con-
firmed by an all-electron LAPW code [19]) we find that
the C2=c structural model, which has asymmetrically dis-
torted IrO6 octahedra, is unstable: (i) the forces on oxygen
are very large, exceeding 3 eV=A for the published C2=c
cell [6] and (ii) when the structure is allowed to relax the
oxygens move such as to recover the more symmetric
C2=m structure with the Ir-O distances converging to
within 1.1% of the experimentally refined values in
Table I. The IrO6 octahedra are much more symmetric in
the C2=m model with Ir-O distances and Ir-O-Ir bond
angles ranging from 2.06 to 2.08 Å, and 98� to 99.4�,
respectively, compared to the wider ranges 1.99 to
2.43 Å, and 91� to 98� proposed before [6].
In addition to sharp Bragg peaks, visible diffuse ‘‘rods’’

of scattering were also observed [see Fig. 1(d)] and could
be quantitatively understood [compare with calculation in
Fig. 1(e)] in terms of a structural model that allows for the
possibility of faults in the stacking sequence along the
c axis. The stacking of atomic layers can be easily visual-
ized with reference to projections in the basal plane
[Fig. 1(c)], where A defines a nominal hexagonal lattice
(made up of three triple-cell sublattices A1-A3), and B and
C are also hexagonal lattices with positions in the center of
a triangle of A sites. The atomic stacking is always in the

FIG. 1 (color online). (a) Layer stacking along the monoclinic
c axis with an in-plane offset along a (dashed box is the C2=m
unit cell). (b) Basal layer (z ¼ 0) showing the Ir honeycomb
lattice. (c) Diagram to illustrate the layer stacking in the ideal
honeycomb lattice. Ideal stacking of layers and stacking faults
are explained in the text. (d) X-ray diffraction intensity in the (0,
k, l) plane showing rods of diffuse scattering in between struc-
tural Bragg peaks along c� with selection rule hþ k ¼ 2n and
k ¼ 3mþ 1 or 3mþ 2 (n, m integers) modeled in (e) by
frequent in-plane translational stacking faults of the type shown
by the thick arrows in (c).

TABLE I. Structural parameters extracted from single-crystal
x-ray data at 300 K. (C2=m space group, a ¼ 5:427ð1Þ �A, b ¼
9:395ð1Þ �A, c ¼ 5:614ð1Þ �A, � ¼ 109:037ð18Þ�, Z ¼ 4). All
sites are fully occupied. U is the isotropic displacement. The
goodness-of-fit was 2.887 (Rint ¼ 0:1247, R� ¼ 0:0584) [15].

Atom Site x y z U( �A2)

Ir 4g 0.5 0.167(1) 0 0.001(1)

Na1 2a 0 0 0 0.001(6)

Na2 2d 0.5 0 0.5 0.009(7)

Na3 4h 0.5 0.340(2) 0.5 0.009(6)

O1 8j 0.748(6) 0.178(2) 0.789(6) 0.001(6)

O2 4i 0.711(7) 0 0.204(7) 0.001(7)
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ABC sequence to minimize the interlayer Coulomb energy,
i.e., Ir-O-Na-O-Ir-O is A1-B-C-A-B1-C. Only Ir layers have
a sublattice index, indicating the position of the Na at the
honeycomb center, as the other atomic layers are full
hexagonal lattices. However, if neighboring Ir layers are
only weakly interacting (as they are separated by a hex-
agonal NaO2 layer) then the second Ir layer could be
shifted to another position on the B lattice, say B2 [thick
arrows in Fig. 1(c)] or B3, with only minimal energy cost,
as that would not affect the bonding with the fully hexago-
nal NaO2 layers below and above. To quantitatively verify
this idea, we performed structural optimization calcula-
tions using VASP [15] in an extended unit cell to include
a stacking fault of the type illustrated in Fig. 1(c) and found
that the energy cost of a stacking fault is extremely small,

below 0:1 meV= �A2, explaining why such stacking faults
are very likely to occur.

The calculated scattering for such a microscopic model
[15] indeed reproduces well the selection rule for where
diffuse scattering occurs in Figs. 1(d) and 1(e). In particu-
lar, there is no diffuse scattering along (00l), as this corre-
sponds to adding all layers in phase irrespective of their in-
plane translations. Also there is no diffuse scattering along
(0, 6n, l) (n integer), as again layers add in phase because
the two allowed in-plane translations have a phase factor
equal to a multiple of 2�. We use the strength of the diffuse
scattering integrated between (020) and (021) relative to
the intensity of the (020) peak (to have similar absorption
factor), obtained experimentally as ’ 0:42, to estimate the
probability for stacking faults p ’ 9%, this means that on
average one fault occurs every 1=p ’ 10 layers. We mea-
sured over 30 crystals from a batch and all showed diffuse
scattering, suggesting that this is a common structural
feature.

The magnetic order of the Ir spins was detected by zero-
field (ZF) muon-spin rotation (�þSR) on a powder sample
ofNa2IrO3. Example raw spectra are shown in Fig. 2(a). At
temperatures below TN ¼ 15:3 K, we observe clear oscil-
lations in the time dependence of the muon polarization,

characteristic of quasistatic local magnetic fields at the
muon stopping site. Fits to the time-dependent muon data
reveal that two frequencies are present, indicating the
presence of two distinct muon stopping sites with different
local fields. The full spectra was fitted to the form
AðtÞ ¼ A1e

��1t cosð2��1t þ 	1Þ þ A2e
��2t cosð2��2t þ

	2Þ þ A3e
��t þ Abg, where the last two terms account for

muons polarized parallel to the local magnetic fields, and
muons stopping in the sample holder (or cryostat tail),
respectively. Using our best-fit parameters we estimate
that the muons occupy the two sites with a probability
ratio of about 9:1. Both local fields set in at a common
temperature, but have a distinctly different temperature
dependence [see Fig. 2(b)]. The relative weight of the
second frequency component suggests that it may come
from muon sites implanted near stacking fault planes, as
such sites also occur in a similar proportion. Our value for
TN is consistent with both susceptibility measurements on
the same batch, which indicated a clear anomaly (sharp
downturn) near TN as reported previously [6,7], and
the magnetic Bragg peaks observed in resonant x-ray
scattering [14].
The magnetic excitations were probed by powder inelas-

tic neutron scattering using the direct-geometry time-of-
flight spectrometer MARI at ISIS with an optimized setup
to minimize absorption [15]. Figure 3(e) shows the raw
neutron scattering intensity as a function of wave vector
(Q ¼ jQj) and energy transfer deep in the ordered phase.
An inelastic signal with a sinusoidal-like dispersive bound-
ary below a maximum near 5 meV is clearly observed at
low Q. A gap, if present is smaller than 2 meV. The
magnetic character of the scattering is confirmed by the
broad, damped-out signal observed in the paramagnetic
phase at 55 K [see Figs. 3(f) and 3(g) (contrast filled and
open symbols)]. Interestingly, the dispersion boundary
extrapolates at the lowest energies to a wave vector Q
much smaller than that expected for conventional Néel

order, Qð020Þ ¼ 1:34 �A�1, so this magnetic order can be

ruled out; in fact Q is close to the expected location of the
first magnetic Bragg peak for both zigzag or stripy order,

Qð010Þ ¼ 0:67 �A�1. Figures 3(h) and 3(i) show the calcu-

lated scattering from spin waves of a 2D Heisenberg model
with up to third neighbor exchanges, J1;2;3, with zigzag

(J1 ¼ 4:17 meV, J2=J1 ¼ 0:78, J3=J1 ¼ 0:9) and stripy
order (J1 ¼ 10:89 meV, J2=J1 ¼ 0:26, J3=J1 ¼ �0:2), re-
spectively (we neglect the interlayer couplings believed to
be small). The constraints to reproduce the dispersion
maximum and the measured Curie-Weiss (CW) tempera-
ture [� ¼ �SðSþ 1ÞðJ1 þ 2J2 þ J3Þ=kB ��125 K [7] ]
are not sufficient to determine all three exchanges, so the
values chosen are representative of the level of agreement
that can be obtained [15]. The calculation for the zigzag
phase [Fig. 3(h)] can reproduce well the observed disper-
sion at low-Q (filled symbols), whereas the stripy phase
[Fig. 3(i)] cannot account for the strong low-Q dispersive
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FIG. 2 (color online). (a) ZF �þSR spectra on a polycrystal-
line sample of Na2IrO3 above and below TN . Solid lines are (top)
a guide to the eye and (bottom) a fit described in the text. (b),(c)
Fitted parameters as a function of temperature.
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signal and predicts stronger scattering at larger Q’s not
seen. Calculations for the KHHamiltonian (1) are shown in
Fig. 3(j) for � ¼ 0:4 (lower limit for the stripy phase) and
J1 ¼ 25:85 meV to reproduce the CW temperature [20]

� ¼ �SðSþ 1ÞðJ1 � JK=3Þ=kB. The lower boundary of
the scattering at low Q (solid line) is predicted to have a
quadratic shape near the first softening point, a robust
feature for any � throughout the stripy phase. This is in
contrast to the data where the dispersion boundary (marked
by filled symbols) has a distinctly different, sinusoidal-like
shape with a curvature the opposite way. In addition, a
different distribution of scattering weight to higher ener-
gies is predicted, but not seen in the data. We conclude that
the KH model in the stripy phase has a qualitatively differ-
ent spin-wave spectrum compared to the data. A minimal
model that can reproduce the observed low-Q dispersion
and which predicts distribution of magnetic scattering in
broad overall agreement with the data up to some intensity
modulations is shown in Fig. 3(h) and requires substantial
couplings up to third neighbors, which stabilize zigzag
magnetic order. Recent theory [12] proposed that in
addition to couplings up to third neighbors, a Kitaev term
may also exist. We have compared the data with such a
model as well [15] and estimate that a Kitaev term, if
present, is smaller than an upper bound corresponding to
� & 0:40ð5Þ.
We note that sizable J3’s are not uncommon in triangular

plane metal oxides. The reason is that even though J1
involves two hoppings and J3 four, the two additional
hoppings are strong pd� ones, and the hopping proceeds
through intermediate unoccupied eg states [21]. In the

case of Na2IrO3 the hopping proceeds through somewhat
higher Na s orbitals, but these are very diffuse, and
the corresponding tsp� parameter is sizable. Near cancel-

lation of the AFM and FM superexchange interaction
for the nearest-neighbor path further reduces J1 compared
to J3.
To summarize, by combining single-crystal diffraction

and local-density approximation calculations we proposed
a revised crystal structure for the spin-orbit coupled honey-
comb antiferromagnet Na2IrO3 that highlights important
departures from the ideal case where the Kitaev exchange
dominates. We observed dispersive spin-wave excitations
in inelastic neutron scattering and showed that substantial
further-neighbor exchange couplings are required to ex-
plain the observed dispersion and we proposed a model for
the magnetic ground state that could support such a dis-
persion relation.
We thank G. Jackeli for providing notes on spin-wave

dispersions for the KH model in the rotated frame, A.
Amato for technical support, N. Shannon, J. T. Chalker,
and L. Balents for discussions, and EPSRC for funding.
Work at Rutgers was supported by DOE (DE-FG02-
07ER46382).
Note added in proof.—Very recently, neutron diffraction

data on single crystals ofNa2IrO3 was reported, which also
provided evidence in support of zigzag magnetic order, and
x-ray studies obtained similar structural informa-
tion [22].

FIG. 3 (color online). Diagram of (a) Néel, (b) zigzag, and
(c) stripy order. (d) Reciprocal space diagram showing locations
of magnetic Bragg peaks for various magnetic phases (inner
hexagon shows first Brillouin zone of the honeycomb lattice).
(e) Powder inelastic neutron scattering data. The notable well-
defined feature is the sharp lower boundary of the scattering at low
Q [filled (magenta) symbols in (h)–(j)], which we associatewith a
sinusoidal spin-wave dispersion; this becomes damped out in the
paramagnetic phase in (f). Slanted thick dashed arrow shows the
scan direction in (g). Gray shading marks the inaccessible region
close to the elastic line dominated by incoherent elastic scattering.
(g) Energy scan (solid points 4.6 K, open symbols 55 K) through
the maximum spin-wave energy seen in (e) fitted to a Gaussian
peak (solid line), dashed line is estimated background. (h)–(j)
Calculated spherically averaged spin-wave intensity [15] for the
J1;2;3 model with (h) zigzag or (i) stripy order, and (j) the KH

model with stripy order for parameters given in the text. Solid red
line in (j) highlights the low-energy boundary, which coincides
with the dispersion from � to the first softening point.
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Here we provide additional information on 1) structural optimization calculations to confirm the unit cell
stability and estimate the energy of stacking faults, 2-3) the x-ray diffraction measurements and analysis of
the diffuse scattering, 4) µSR and 5) neutron scattering experiments, and 6-9) derive the spin-wave dispersion
relations and dynamical structure factor in neutron scattering for the Heisenberg J1,2,3, Kitaev-Heisenberg and
Kitaev-Heisenberg-J2-J3 models for various magnetic orders.

PACS numbers: 75.10.Jm, 75.40.Gb, 76.75.+i, 61.72.Nn

S1. Structural optimization calculations using VASP

We used the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [1] within the generalized gradient
approximation (GGA) and the projector augmented waves
method [2]. The 2p semi-core electrons in Na were treated
as valence. Numerical convergence was achieved with a 500
eV energy cutoff and dense Monkhorst-Pack k-meshes [3]
of 7×7×3 for the previously reported [4] C2/c primitive
unit cell and 6×4×6 for the proposed C2/m conventional
unit cell in Table I. We performed three types of calculations
for the two structures: a static run with the experimental
parameters, optimization of the atomic positions only, and full
optimization of the atomic positions and lattice parameters.
The residual forces and stresses were typically below 0.002
eV/Å and 0.5 kbar, respectively. We found the magnetic and
the spin-orbit interactions to have a rather small effect on the
Na2IrO3 structure and the comparisons below are made for
the non-magnetic case without the spin-orbit coupling.

To illustrate the differences in the local environments in Fig.
S1 we plotted normalized radial distribution functions (RDFs)
for all types of interatomic distances in the experimental and
optimized structures. C2/c exhibits a considerable disper-
sion of the Ir-Ir and Ir-O nearest neighbor distances critical for
the magnetic ordering in the compound. The O-Na and Na-
Na separations are unphysically small and we observed large
forces, over 6 eV/Å on Na and over 3 eV/Å on O, at the be-
ginning of the optimization run. The RDFs in C2/m with
the experimental parameters demonstrate much more sym-
metric local environments and a negligible variation of Ir-Ir
lengths within the honeycomb lattice (below 0.3%). The cal-
culated forces on atoms did not exceed 0.5 eV/Å indicating
a good agreement between the experiment and theory. Op-
timization of the atomic positions with fixed C2/m experi-
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FIG. S1: (color online) Radial distribution functions (RDFs) show-
ing the difference in the local atomic environments for the previously
reported C2/c structure [4] and the C2/m structure proposed in this
study. In the C2/m case, the RDFs are plotted for the unit cell ex-
tracted from the experiment (red solid line), the unit cell with atomic
positions relaxed in the DFT (blue dashed line), and the unit cell fully
relaxed in the DFT (green dotted line). Note that a small Gaussian
smearing (σ = 0.008Å) was used in the calculation of the RDFs.

mental unit cell had little effect on the Ir-Ir distances because
they are defined primarily by the in-plane lattice constants a
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and b. When fully optimized, C2/c and C2/m converged to
the same structure with the C2/m space group and virtually
indistinguishable RDFs. The enthalpy gains were 0.434 and
0.018 eV/atom, respectively (for comparison, the optimization
of atomic positions in C2/m led to a 0.007 eV/atom gain).
Note that the full optimization of C2/m leads to ∼ 2% elon-
gation of the Ir-Ir distances which is a typical bond overesti-
mation observed for the GGA. For this reason we believe that
use of the experimental lattice constants is more appropriate
for the modelling of the magnetic interactions.

To estimate the stacking fault energy we simulated 1×1×n
(n = 2, . . . , 6) supercells of the C2/m primitive 12-atom unit
cell with one Ir-Na layer and the two adjacent O layers shifted
by b/3 along [010]. The resulting lower-symmetry structures
(C2 space group) had two stacking faults per unit cell and
the same a × b/2 = 25.49Å2 x − y base. We optimized
only the atomic positions keeping the experimental unit cell
parameters fixed. The n = 2 structure gained additional sym-
metry operations (C2/c space group) upon relaxation. The
comparison of the faulted structures against the respective
C2/m supercells with the same unit cell dimensions and the
same k-point meshes allowed us to reduce computational
errors. However, the energy differences, En − EC2/m, in our
non-magnetic calculations without the spin-orbit coupling
(SOC) proved to be exceptionally small in magnitude: 0.7,
-1.7, -2.0, -2.6, -1.8 meV/(n × 12 atoms) for n = 2, . . . , 6,
respectively. For the smallest n = 2 structure we were able to
calculate the energy difference with the FM ordering and the
SOC as well and found En=2−EC2/m to remain small at 2.9
meV/(24 atoms). Based on these tests, we expect the stacking
fault energy in C2/m to be below ∼ 0.1 meV/Å2, one to
two orders of magnitude smaller than typical stacking fault
energies for elemental metals. For comparison, an ABCBA
stacking fault generated by reflecting C2/m structure (which
has the ABCABC sequence along c) about a Na layer was
calculated to have a much higher, measurable energy value of
about 8 meV/Å2.

S2. X-ray diffraction and structural analysis

X-ray diffraction was performed using a Mo-source Oxford
Diffraction Supernova diffractometer on a single crystal of
Na2IrO3 of approximate size 220×150×10µm3 grown via
self-flux [4]. 96% out of over 1000 detected peaks were
indexed by a single monoclinic domain. Structural refinement
was performed using both a unit cell with space group
C2/m, with parameters listed in Table I, as well as a unit
cell with twice the volume and space group C2/c, using
the SIR-92 and SHELX packages [5]. The two unit cell
parameters are related by a′ = −a, b′ = −b, c′ = a + 2c,
c′ =

√
a2 + 4c2 + 4ac cosβ, sinβ′ = 2c

c′ sinβ, and in terms
of the reciprocal lattice components h′ = −h, k′ = −k,
l′ = h + 2l, where primed values refer to the C2/c model.
Starting from the larger unit cell (C2/c) and slightly dis-
placing the atoms to some “ideal” positions one recovers the
higher-symmetry structure described by the smaller, C2/m,

FIG. S2: (color online) X-ray diffraction intensity in the (−3, k′, l′)
plane: a) data, b) calculation for the “idealized” C2/c structure with
atoms at special positions, equivalent to the C2/m model in Table I,
c) calculation for the distorted C2/c model in [4] (assuming no Ir/Na
site mixing in the honeycomb Ir2/3Na1/3 layers). Notice the series
of sharp peaks predicted in c) at (-3,1,even) positions, which how-
ever are not present in the data in a). d) Scan along the (-3,1,l′) line
(arrowed direction in a-c)) comparing data (solid circles) and calcu-
lation for the two models (triangles-C2/c and squares-C2/m). The
calculated diffraction intensities have been multiplied by an overall
scale factor and have been convolved with a finite width Gaussian in
momentum space to mimic the effects of the instrumental resolution.

cell. The distinction between those two models is entirely due
to such small atomic displacements, the presence of which is
manifested in finite intensity diffraction peaks at (h′, k′, l′)
positions with h′ odd, k′ odd and l′ even, which disappear
when atoms are displaced to the “ideal” positions, when the
structure recovers the C2/m symmetry. This is illustrated
by the calculated diffraction pattern in the (−3, k′, l′) plane
where the “extra” peaks expected in the larger cell model
C2/c shown in Fig. S2c) are not seen in the data plotted in
Fig. S2a), which is however fully consistent with the pattern
expected for the higher-symmetry C2/m model shown in
Fig. S2b). This is also apparent in Fig. S2d) showing a
scan along the (−3, 1, l′) line with extra peaks (triangles)
predicted for l′ = 0, 2, not seen in the data (filled symbols).
For completeness we note that we applied a shift of the
fractional atomic coordinates in the C2/c unit cell (in the
notation adopted in [4]) by (-1/4,-3/4,0) before converting
them into fractional atomic coordinates of the C2/m cell (in
the notation used in Table I), due to the different positions of
the origin in the two space groups.

S3. Microscopic model of stacking faults

The calculated diffraction pattern in Fig. 1e) was obtained
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numerically by direct structure-factor calculations using
the DISCUS package [6]. We considered a “crystal” of
200a × 200b × 4000c unit cells of Na2IrO3 (C2/m). To
include the effect of stacking faults we assumed that each Ir
layer has a choice with probability 1− p to keep in-stacking-
sequence with the layer below and p/2 to be shifted to either
of the other two sublattice positions (translated in-plane by
(0, 1/3, 0) or (1/2, 1/6, 0)), with p = 0 for perfect stacking
and p = 1/3 for a completely uncorrelated layer stacking
sequence, a model first introduced to describe the stacking
faults in the related material Li2MnO3 [7].

S4. Muon spin relaxation experiments

Zero field (ZF) µ+SR measurements were made at the
Swiss Muon Source (Sµ+S), Paul Scherrer Institut, CH using
the GPS spectrometer. For the measurement a 250 mg pow-
der sample of Na2IrO3, which was used for inelastic neutron
scattering measurement, was packed inside a silver foil packet
(foil thickness 25 µm) and mounted on a silver sample holder.

Fits of the data to an equation in main text reveal the
evolution of νi and λi with temperature, as shown in Figs.
2b-c). Unusually, the frequencies do not vary in fixed
proportion, although they do tend to zero at the same tem-
perature. The low-amplitude, higher frequency component
ν2 drops off far more dramatically than the large amplitude,
lower frequency ν1. In order to quantify this behavior, the
frequencies were fitted to the phenomenological function
νi(T ) = νi(0) [1− (T/TN)

αi ]
βi . A common value of

TN = 15.3(1) K was identified from fitting to this function.
We find that α ≈ 2 for both cases. The parameter β can
be interpreted as an order parameter exponent. The other
fit parameters are ν1(0) = 5.54(1) MHz, β1 = 0.36(1),
ν2(0) = 6.20(3) MHz and β2 = 0.11(1). We note that
λ1 is an order of magnitude larger than λ2, implying either
that the distribution of fields is broader in the majority site
or, assuming the fast fluctuation limit, that the fluctuation
rate is smaller. The lower frequency oscillation, accounting
for ≈ 90% of the muon sites in the material, has a β value
suggestive of the behavior of a three-dimensional (3D) system
(for 3D Heisenberg β = 0.367 and 3D Ising β = 0.326),
while the minority muon site has an exponent value more
similar to that expected for a 2D Ising system (for which
β = 0.125). These seem to suggest that the magnetic fluc-
tuations have a rather different character at the two muon sites.

S5. Inelastic neutron scattering experiments

Inelastic neutron scattering measurements were made
using the direct-geometry time-of-flight spectrometer MARI
at ISIS using an incident neutron energy of 18 meV, which
covered the full bandwidth of magnetic excitations with a
zone boundary energy near 5 meV. The instrumental energy
resolution was 0.67(1) meV (FWHM) on the elastic line. The
sample was ∼ 10 g of Na2IrO3 powder spread out in a very
thin layer (. 1 mm to minimise neutron absorption) inside

of an annular can of outer diameter of 40 mm and height
50 mm. Counting times for the data in Figs. 3e-f) were 28
and 7 hours, respectively, at an average proton current of
150µAmps.

S6. Spin-wave dispersions for the Heisenberg J1,2,3
model in the zigzag and stripy phases

Here we outline the derivation of the linear spin wave dis-
persion relations and dynamical structure factors relevant for
neutron scattering for various spin Hamiltonians on the honey-
comb lattice. For the Heisenberg model with up to 3rd neigh-
bour exchanges we extend previous results on the dispersion
relations [8] to include also the dynamical structure factors.
For the Kitaev-Heisenberg model the spin-wave spectrum (in-
cluding 1/S quantum corrections) has been studied before
in a special “rotated” reference frame [9], here we explic-
itly derive here the dispersion relations and dynamical struc-
ture factors in the experimentally-relevant, un-rotated refer-
ence frame. For the Kitaev-Heisenberg-J2-J3 models both
the dispersion relations and dynamical structure factors have
not been studied before.

We start with the isotropic Heisenberg model on the honey-
comb lattice with exchanges with up to 3rd nearest-neighbor,
so called J1,2,3 model with Hamiltonian

H =
∑

1NN

J1Si · Sj +
∑

2NN

J2Si · Sk +
∑

3NN

J3Si · Sl (S1)

where 1-, 2-, and 3NN indicate summing over all 1st, 2nd
and 3rd nearest-neighbor pairs with couplings J1, J2 and J3
[paths indicated in Fig. S3a)], where positive values corre-
spond to antiferromagnetic exchanges. Depending on the rela-
tive ratio of the couplings there are six distinct types of mean-
field ground states [8, 10], which include the two candidate
magnetic orders for Na2IrO3, the zigzag and stripy AFM or-
ders shown in Figs. S3a-b) (labelled II and IV, respectively, in
[8, 10]). Both of those magnetic structures have four magnetic
sublattices (labelled A-D) and can be described by a rectangu-
lar magnetic unit cell (dashed box in Figs. S3a-b)), which co-
incides with the in-plane chemical unit cell a× b of Na2IrO3.
Within a single layer the Ir honeycomb lattice in very close to
ideal (b/a ' √

3) in spite of the 3D monoclinic crystal struc-
ture, so we treat here the ideal 2D honeycomb lattice with 3-
fold symmetry. In this case the magnetic order can have three
spacial domains, one such domain is shown for both structures
in Figs. S3a-b), the other two magnetic domains are obtained
by ±60◦ rotation around the direction normal to the plane.

Using a standard Holstein-Primakoff transformation in the
large-S limit the Hamiltonian becomes (to leading order) a
quadratic form of magnon operators

H =
∑
q

X†HX+N(1 + 1/S)EMF (S2)

where higher than quadratic terms are neglected. Here EMF

is the mean-field ground state energy (per spin) and N is the
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FIG. S3: (color online) a) Zigzag and b) stripy order. Dashed rectangular box of size a × b shows the magnetic unit cell containing four
sublattices A-D. In a) solid, dashed and dot-dashed lines show paths for J1, J2 and J3. b) Bond labels x, y, z refer to the components of the
spins at the two bond ends coupled by the Kitaev term. Inset show projection of the (cubic) x̂, ŷ and ẑ axes onto the honeycomb plane. c) 2D
reciprocal space showing magnetic Bragg peak positions for various magnetic orders. d-j) Spin-wave dispersions along symmetry directions
in reciprocal space (arrowed path in c)) for the KH, J1,2,3 and KH-J2-J3 Hamiltonians for exchange values and magnetic orders listed in
the legends. Wavevectors Q are expressed in reciprocal lattice units of the rectangular magnetic unit cell. Colour is the dynamical structure
factor (convolved with a Gaussian in energy for visualization, full width at half maximum = 0.15J1), isotropic for the Heisenberg model
in g-h) (Sxx(Q, ω) = Syy(Q, ω)) and different for the two polarizations x, y for the KH model in d-f). i-j) Dynamical structure factor for
the KH-J2-J3 model with the zigzag structure in a), where the ordered moments are along a general direction x′ in the xy plane and y′ is a
direction in this plane normal to x′.

total number of spin sites. The sum extends over all wavevec-
tors q in the first magnetic Brillouin zone.

For the zigzag order in Fig. S3a) we define the operator
basis as X† =

[
a†q , d†q , c−q , b−q

]
where a − d label op-

erators on sublattice A-D, i.e. a†q (aq) creates (annihilates)
a plane-wave magnon mode on sublattice A and so on. The

Hamiltonian matrix in eq. (S2) is

H =




A B C D∗

B∗ A D C
C D∗ A B
D C B∗ A


 (S3)
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where

A = S {−J1 + 2J2 + 3J3 + 2J2 cos(2πh)}
B = 2SJ1η cos(πh)
C = 2SJ2{cos [π(h+ k)] + cos [π(h− k)]}
D = S {J1η2 + J3

[
η−4 + 2η2 cos(2πh)

]}
η = ekπi/3.

Here (h, k) are components of the wavevector q in units of
the reciprocal lattice of the a × b rectangular unit cell shown
in Fig. S3a). By periodicity the above expressions are valid for
any momentum, not necessarily restricted to the 1st magnetic
Brillouin zone. Diagonalisation of the Hamiltonian by stan-
dard techniques [11, 12] to obtain the normal magnon modes
gives two doubly-degenerate dispersions

(ω±
q )

2 = A2 +BB∗ − C2 −DD∗

±
√
4|AB − CD∗|2 − |B∗D∗ −BD|2. (S4)

We have explicitly verified for the same model (S1) that
eq. (S4) agrees with earlier results of [8] [eq. (5.21)]. The
spin-wave intensity in neutron scattering is proportional to
the dynamical structure factor (expressed as Sxx(Q, ω) for
spin fluctuations along the x-direction and similarly for y-
direction) and an analytical expression for this in the case of
a Hamiltonian of the form in eq. (S3) are given explicitly [12]
[eq. (A3)] and for brevity are not included here.

The spin-wave dispersions in (S4) (and their intensity de-
pendence) for the zigzag phase are plotted for representa-
tive exchange values in Fig. S3h). As expected, the acoustic
magnon, ω−, is gapless with a linear dispersion at the mag-
netic Bragg peak at the Y point, is also linear and gapless
at the X point, but has zero intensity because the structure
factor for magnetic Bragg peaks also cancels at this position.
Furthermore, the dispersions soften and appear gapless at the
M point and others part of the quartet (±1/2,±1/2), which
are Bragg peaks for the other two magnetic domains rotated
by ±60◦. This softening is a general feature of linear spin-
wave dispersions for a multi-domain magnetic ground state
[12], however the fact that the gap closes at those points is
not protected by any symmetry, but is an artefact of the linear
spin-wave approximation; by analogy with related spin-wave
models for other multi-domain structures [13] we expect the
dispersions to become gapped at the softening points when
quantum fluctuations to 1st order in 1/S are included.

A spherical average of the spin-wave spectrum (includ-
ing various prefactors listed in eq. (S9) below) is shown in
Fig. 3h). The dominant contribution to the low-Q disper-
sive edge of the strong signal near the first softening point
(Q=0.67 Å−1) is due to acoustic magnons on the ω−

k branch
emerging out of the Y point and dispersing in the Y→ Γ di-
rection [see Fig. S3h)] and also magnons on the ω+

k branch
emerging out of the M-point and dispersing in the M→ Γ di-
rection. To reproduce the observed low-Q dispersion in the
powder data we have imposed the constraint that the zone-
boundary energy of the lowest branch on the Γ-Y line repro-
duces the observed maximum of the low-Q dispersion, i.e.

FIG. S4: (color online) Classical phase diagram of the Heisenberg
J1,2,3 model on the honeycomb lattice, eq. (S1), showing the regions
of stability for zigzag (II) and stripy order (IV). Phase I is collinear
2-sublattice Néel order, III and V are incommensurate spiral phases,
and solid lines are phase boundaries [10]. The dotted line inside re-
gion II indicates possible solutions for a minimal model to describe
the spin dynamics in Na2IrO3 obtained by imposing the constraints
described in the text (the red star is a representative solution for
which the full spectrum is shown in Fig. S3h)).

ω− (
0, 1

2

)
= 5 meV. This constraint together with the condi-

tion that the exchanges reproduce the observed Curie-Weiss
constant θ = −S(S + 1)(J1 + 2J2 + J3)/kB = −125 K
cannot determine all three exchange values J1, J2 and J3, but
allow for a one-dimensional family of solutions located on a
curve in the parameter space (J2/J1, J3/J1) (the dotted line
in region II in Fig. S4). All sets of exchange values part of
this family are broadly consistent with the data. The level of
agreement that can be obtained is illustrated in Fig. 3h) for
one representative solution (red star in Fig. S4), chosen as it
comes closest to reproducing also the intensity distribution at
the lowest Q.

We now turn to the alternative magnetic structure, the stripy
order shown in Fig. S3b). If the spin-wave operator basis is
defined as X† =

[
a†q , b†q , c−q , d−q

]
, then the Hamiltonian

reduces to the same form as in eqs. (S2,S3), with magnon dis-
persions given by eq. (S4), but where the expressions for the
A−D parameters are

A = S {J1 + 2J2 − 3J3 + 2J2 cos(2πh)}
B = S {J1η−2 + J3

[
η4 + 2η−2 cos(2πh)

]}
C = 2SJ2{cos [π(h+ k)] + cos [π(h− k)]}
D = 2SJ1η

−1 cos(πh)
η = ekπi/3.

The resulting spin-wave dispersions and intensities for repre-
sentative exchange values are plotted in Fig. S3g). In contrast
to the zigzag phase, for the stripy phase the acoustic magnon,
ω−, is gapless, with a linear dispersion and finite intensity at
both the X and Y points, as both are magnetic Bragg peaks
with non-zero structure factor (X four times stronger intensity
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than Y). Again, due to the three domain structure there is
softening of the dispersion with an artificial gapless point
at M, which is expected to become gapped when quantum
fluctuations beyond the linear spin-wave approximation are
included, as discussed earlier. A spherical averaging of the
spin-wave spectrum in Fig. S3g) is shown in Fig. 3i), here
the strongest signal at low energies is due to scattering from
acoustic magnons near the X-point (Q = 1.16 Å−1) with
weaker scattering from magnons near Y (Q = 0.67 Å−1)
and intensity decreasing rapidly for magnons with smaller
momentum.

S7. Spin-wave dispersions for the Kitaev-Heisenberg
model in the stripy phase

For the nearest-neighbor Kitaev-Heisenberg (KH) model in
eg. (1) the stripy phase in Fig. S3b) is the stable ground state
for 0.4 . α . 0.8, where α = JK/ (JK + 2J1) [9]. This
ground state is exact at α = 0.5, when upon rotation of the
coordinate system at certain sites the Hamiltonian (1) converts
to that of a Heisenberg ferromagnet in a rotated basis [9].

For each of the three bonds coming out of a honeycomb lat-
tice site the Kitaev term JK couples different spin components
x, y, z expressed in terms of an orthogonal (cubic) reference
frame. This is oriented with the cubic [111] axis normal to
the honeycomb plane and the projections of the x̂, ŷ and ẑ
axes in the plane making 120◦ as shown in Fig. S3b) inset.
Each bond is labelled with the type of the spin component
for the moments at the two bond ends coupled by the Kitaev
term, i.e. the z-bond AB stands for exchange −JKS

z
AS

z
B and

x-bond AD stands for −JKS
x
AS

x
D and so on.

Due to the anisotropic nature of the Kitaev exchange
more coupling terms between magnon operators on the
4 different magnetic A - D sublattices are generated
as compared to the Heisenberg J1,2,3 model. Thus,
one needs to use the full 8-term operator basis X† =[
a†q , b†q , c†q , d†q , a−q , b−q , c−q , d−q

]
, for which the

Hamiltonian expressed in magnon operators to leading order
still has the quadratic form (S2) with the matrix H given by

H =
1

2




A B 0 C 0 0 0 D
B∗ A C∗ 0 0 0 D∗ 0
0 C A B 0 D 0 0
C∗ 0 B∗ A D∗ 0 0 0
0 0 0 D A B 0 C
0 0 D∗ 0 B∗ A C∗ 0
0 D 0 0 0 C A B
D∗ 0 0 0 C∗ 0 B∗ A




(S5)

where

A = S (J1 + JK)
B = SJ1η

−2

C = −SJKi sin (πh) η
D = S (2J1 − JK) cos (πh) η
η = ekπi/3.

Diagonalization to get the normal magnon modes [11] gives
four dispersion relations

ω2
1,2(q) = A2 −DD∗ + |B − C|2

±
√
4A2|B − C|2 − |D∗(B − C)−D(B∗ − C∗)|2

ω2
3,4(q) = A2 −DD∗ + |C +B|2

±
√
4A2|B + C|2 − |D∗(B + C)−D(B∗ + C∗)|2.

(S6)

The dispersion curves are plotted for α = 0.4 in Fig. S3d)
and α = 0.5 in Figs. S3e-f), where the colour represents the
dynamical structure factor, plotted separately for the spin fluc-
tuations along x and y-axes, the presence of Kitaev bond di-
rectional exchanges make those the dynamical structure factor
non-equivalent. The structure factors were obtained from the
eigenvectors of the Hamiltonian matrix H in eq. (S5), using
a numerical implementation of a general algorithm to diago-
nalize a quadratic form of boson operators proposed in [14].
Changing the relative strength of the Kitaev term, for example
α = 0.4 compared to 0.5, does not change the spectrum qual-
itatively only introduces a weak dispersion in the gapped ω1,2

modes, compare Figs. S3d-e).

The dispersions show many distinct features compared to
the case when the same stripy ground state was stabilized in-
stead by isotropic Heisenberg exchanges shown in Fig. S3g).
Notably there is no longer a gapless mode at the Γ point and
at the Bragg peak positions (X and Y). The lowest mode soft-
ens at the M point as in previous cases due to the 3-domain
structure of the stripy ground state. The dispersion is gapless
at this point in the linear spin-wave approximation and a gap
is predicted to open up when quantum fluctuations to 1st order
in 1/S are included for any general α, except for the exactly
solvable point α = 0.5 where due to an exact cancellation the
spectrum is gapless [9].

A spherical average of the spin-wave spectrum in Fig. S3d)
(including both the Sxx and Syy dynamical structure factors)
is shown in Fig. 3j), the lower boundary of the scattering at
low-Q (emphasized by the red solid line) is due to scattering
off magnons on the ω4 Γ-M dispersion branch near the M
point.

S8. Spin-wave dispersions for the Kitaev-Heisenberg-
J2-J3 model in the zigzag phase

Here we explore the effects of adding a small Kitaev in-
teraction JK to the J1,2,3 Hamiltonian when the ground state
order is the zigzag phase (this has recently been shown to be
stable for a range of JK values [15]). We obtain the spin-wave
Hamiltonian matrix in this case by combing eqs. (S3) and (S5)
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as

H =
1

2




A B 0 C 0 D E F
B∗ A C∗ 0 D∗ 0 F ∗ E
0 C A B E F 0 D
C∗ 0 B∗ A F ∗ E D∗ 0
0 D E F A B 0 C
D∗ 0 F ∗ E B∗ A C∗ 0
E F 0 D 0 C A B
F ∗ E D∗ 0 C∗ 0 B∗ A




(S7)

where

A = S {−J1 + 2J2 + 3J3 + 2J2 cos(2πh) + JK}
B = (−1/2)SJKη

−2

C = S {2J1 cos(πh)− (1/2)JKζ}η
D = S {J1η−2 + J3

[
η4 + 2η−2 cos(2πh)

]− JKη
−2/2}

E = 2SJ2{cos [π(h+ k)] + cos [π(h− k)]}
F = (1/2)SJKζη
ζ = ehπi

η = ekπi/3.

Diagonalization leads to four dispersion branches

ω2
1,2(q) = A2 − E2 + |B − C|2 − |D − F |2

±
√
4|A(B − C) + E(D − F )|2 − δ2

ω2
3,4(q) = A2 − E2 + |B + C|2 − |D + F |2

±
√
4|A(B + C)− E(D + F )|2 − δ2

(S8)

where δ = |(B−C)(D∗−F ∗)−(B∗−C∗)(D−F )|. The dis-
persions are plotted in Figs. S3i-j) for α=0.4 (JK/J1 = 4/3),
J2/J1 =0.23 and J3/J1 =0.51. To discuss the key features of
the spectrum it is helpful to visualize the degeneracies asso-
ciated with the magnetic order. The magnetic structure is the
zigzag pattern shown in Fig. S3a) but where the spin direction
can be either along the x̂ direction to satisfy the Kitaev term
on the x-type AD bond, or along the ŷ direction to satisfy the
Kitaev exchange on the y-type BC bond. At the classical level
any in-between direction, i.e. in the x̂ŷ plane, also has the
same energy, so one expects a gapless mode associated with
rotations in this “easy” plane. Indeed Fig. S3j) shows that the
dispersion is gapless at the Y point and with strong intensity
for fluctuations in this easy-plane (along the ŷ′ normal to the
ordered direction labelled x̂′), and gapped for fluctuations
along ẑ out of the easy plane, see Fig. S3i). Furthermore, due
to the honeycomb lattice geometry the magnetic structure is
degenerate with another two domains rotated by ±60◦ around
the axis normal to the plane, so the spectrum is gapless at
the Bragg peak positions of those other two domains, at
points equivalent to M. The Hamiltonian however does not
poses any continuous rotational symmetry in the presence of
the Kitaev term, so one might expect that small gaps would
open at both Y and M points when quantum fluctuations
are included so the spectrum would be fully gapped. For
completeness we quote the Curie-Weiss temperature for this
model θCW = −S(S + 1)(J1 + 2J2 + J3 − JK/3)/kB.

S9. Spherically-averaged neutron scattering intensity

The one-magnon neutron scattering intensity including the
magnetic form factor and neutron polarization factor is pro-
portional to

(g
2
f(Q)

)2
[(

1− Q2
x

Q2

)
Sxx(Q, ω) +

(
1− Q2

y

Q2

)
Syy(Q, ω)

]

(S9)
where we used for f(Q) the Ir4+ spherical magnetic form fac-
tor [16] and assumed the g-factor equal to 2. Here Qx (Qy)
are the components of the wavevector transfer Q along the
x-axis (y-axis), where z is the ordered spin direction. The
precise direction of the ordered moments (ẑ-axis) with re-
spect to the crystallographic axes has only a small effect on
the powder-averaged spectrum via small intensity modula-

tions through the polarization factors
(
1− Q2

x,y

Q2

)
, however

for concreteness, we included a specific moment direction for
the comparison with data. For the J1,2,3 model in Figs. 3h-i)
the moments were assumed to be aligned along the crystal-
lographic a-axis (as suggested by resonant x-ray data [17])
and for the KH model [Fig. 3j)] the moment is assumed to be
along the cubic ẑ-axis closest to the a-axis (tilted out-of-plane
by 35.26◦ from the −a axis, see Fig. S3b) inset). Eq. (S9) was
numerically averaged over a spherical distribution of orienta-
tions for the wavevector transfer Q and convolved with the
instrumental resolution to obtain the plots in Figs. 3h-j), di-
rectly comparable with the raw neutron scattering data in Fig.
3e). For the KH-J2-J3 model the intensity is also given by
eq. (S9) but with the axis labels (x,y,z) replaced by (y′, z,
x′), where the x′-axis defines the ordered moment direction
(located in the original xy plane) and y′ and z are orthogonal
directions to it.

a Present address: Department of Physics, Durham University,
South Road, Durham DH1 3LE, United Kingdom.
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