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Superconductivity in MgB2: Clean or Dirty?
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A large number of experimental facts and theoretical arguments favor a two-gap model for super-
conductivity in MgB2. However, this model predicts strong suppression of the critical temperature by
interband impurity scattering and, presumably, a strong correlation between the critical temperature and
the residual resistivity. No such correlation has been observed. We argue that this fact can be understood if
the band disparity of the electronic structure is taken into account, not only in the superconducting state,
but also in normal transport.
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FIG. 1. Critical temperature for samples of varying quality as a
function of the residual resistivity. The theoretical curves are
computed in the two-band model, according to Ref. [5], with
different ratios: �

=N
�0� : �		=N	�0� : �
	=N	�0�. Filled
symbols refer to ‘‘high-quality samples’’: dense wires (�) [6]
and single crystals (�;�) [7,8]. Half-filled symbols refer to
‘‘high-Tc, high-�’’ samples [9,10]. Open symbols refer to
only if �inter � �intra. The normal-state transport poses two samples of intermediate quality (�;�;4;5;�) [11].
More than 40 years ago Suhl, Matthias, and Walker [1]
predicted the existence of multigap superconductivity, in
which a disparity of the pairing interaction in different
bands, such as the s and d bands in transition metals, leads
to different order parameters and to an enhancement of the
critical temperature. Despite much effort, however, no
material has been unambigously demonstrated to have
two or more distinct order parameters. The strongest case
appears to be that of MgB2. This material seems to be the
first superconductor for which a two-gap model [2,3] offers
a simple explanation of many anomalous experimental
findings, most notably in tunneling and thermodynamic
measurements [4]. One of the fundamental properties of
multigap superconductors is that nonmagnetic impurities
are pair breaking, similar to magnetic impurities in conven-
tional superconductors. However, this fingerprint of multi-
gap superconductivity seems to be missing in MgB2,
because no clear correlation between Tc and the defect
concentration, as gauged by the residual resistivity, has
been observed, and until this paradox is resolved, the
case for two-gap superconductivity in MgB2 can hardly
be considered settled.

Figure 1 illustrates this problem by showing that existing
bulk samples of MgB2 have essentially the same critical
temperature although their residual resistivities, �0, vary
greatly, between 0.4 and 40 ��cm. Even though some of
the resistivity variation may be due to extrinsic effects such
as sample inhomogeneity, one can hardly doubt that sub-
stantial differences in impurity concentration exists among
the samples shown in Fig. 1. As mentioned above, if two
gaps are present, samples with larger �0 are expected to
have lower Tc. Indeed, impurity interband scattering (mag-
netic and nonmagnetic) with rate �inter suppresses two-
band superconductivity as �Tc / �inter=	Tc [5]. For a
sample with �0 � 40 ��cm it seems unlikely that �inter
can be smaller than 	Tc. In fact, the body of experimental
evidence (Fig. 1) can be reconciled with the two-gap model
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further problems: (i) The high-temperature slope of the
resistivity is clearly correlated with the residual resistivity
(violation of Matthiessen’s rule) [4], and (ii) the plasma
frequency estimated from the measured infrared reflectiv-
ity is 5 times smaller than the calculated one [9,10,12]. In
this Letter we shall show that there is one solution to all
three problems: It turns out that, due to the particular
electronic structure of MgB2, the impurity scattering be-
tween the 
 and the 	 bands is exceptionally small. Thus,
the large variation of the residual resistivities reflects pri-
marily a large variation of the scattering rate inside the 

and the 	 bands, while the interband 
	 scattering plays
no role in normal transport. In the superconducting state,
the two different gaps in the 
 and the 	 bands are
preserved even in dirty samples due to the extreme weak-
ness of the 
	-interband impurity scattering.
 2002 The American Physical Society 107002-1
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FIG. 2. LMTO (linear muffin-tin orbitals) band structure of
MgB2 along the �A line and in the plane �kz�

	
2c� between the

�MK and ALH planes, where the 
 and the 	 bands (fat)
hybridize most. The �M=AL direction is along, and the
�K=AH-direction is perpendicular to, a B-B bond. The orbital
characters of the heavy and light 
 bands are explained in the
text. 6� 2� 1 supercell bands for Mg12B24 and Mg11B24 are
shown along the main folding direction, �M. For Mg11B24, two
extra electrons and protons were distributed over the 11 Mg
atoms to preserve the band filling and electroneutrality.
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MgB2 has two 	 and three 
 bands (Fig. 2) formed by,
respectively, the two B pz and the three bond orbitals per
cell, or, more correctly, by the corresponding Wannier-like
functions. A bond orbital is the bonding linear combination
of the two B sp2 hybrids which are directed along a B-B
bond. The attractive potential from the Mg2	 ions in the
hollows between the hexagonal boron layers is felt much
stronger by a pz electron than by a bond electron and, as a
result, the 	 band is pulled so far down in energy that
�0:17 holes are left at the top of the 
 band. The strong
coupling of these holes to the optical bond-stretching
modes [13] is what drives the superconductivity. Since
the top of the 
 band is at kk � �kx; ky� � 0 and is doubly
degenerate, the holes are distributed in an upper heavy and
a lower light band.

The
-	 scattering is small, first of all because the
 and
	 bands are formed from different local orbitals, and
therefore are orthogonal on the atomic scale, rather than
merely on an intermediate scale because of Bloch factors.
Moreover, the layered structure and the compactness of the
B 2s and 2p orbitals makes the 
	 disparity in MgB2
much stronger than, for example, the sd disparity in a
transition metal, where the sd-hybridization gap is almost
as large as the d-band width. Specifically, since a pz orbital
has odd parity, and a bond orbital has even parity with
respect to the B layer, the only route for 
	 hybridization
is via interlayer hopping, from a pz orbital in one layer to a
bond orbital in another layer. The corresponding hopping
integral tbz is, essentially, the geometrical average of the
integrals t?bb � 0:1 eV and t?zz � 1 eV, responsible for the
kz dispersions of the 
 and 	 bands [13], and is therefore
small.

Two further factors limit 
	 coupling: One is that, in its
interaction with the nearest bond orbitals in the next layer,
the B pz orbital picks up merely the axial projection, which
is essentially the s character, on the boron above (or
below) it. Near the top of the 
 band, the linear combina-
tions of the three bond orbitals are, however, such that the
contributions from the B s orbitals cancel, so that the top of
the 
 band is purely B px; py-like. Hence, the only source
of B s character is tails of B p orbitals centered at other
sites. It turns out that the wave functions for the heavy and
light holes �� � h; l� are: j
�;ki /

P
T�p��r	 � � T� �

p��r� � � T��eik�T, where T are the lattice translations,
�� are the positions of the two borons in the cell (i.e., in a
bond), and ph=l�r� is a B p orbital directed transverse/
longitudinal to the kk vector. From this representation,
illustrated in Fig. 2, it may be realized that the B s character
often vanishes completely, and that it generally vanishes
proportional to k2

k
for the heavy holes, and proportional to

kk for the light holes.
Yet another limiting factor is the matching of the phase,

’, between the two pz orbitals in a bond, j	�;ki /P
T�pz�r	 � � T�ei’�kk� � pz�r� � � T��eik�T, and the

phase between the corresponding B s characters arising
from the combination, p��r	 � � T� � p��r� � � T�,
of the two parallel in-plane p orbitals on the above-
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lying bond. In the nearest-neighbor orthogonal tight-
binding model for the 	 bands, ’�kk� � argf1	 eik�a 	
eik��a�b�g, where a and b are the primitive translations of
the layer.

Because of their even/odd parity, the 
 and 	 bands can
only hybridize when kz � 	

c � integer. Even then, as seen
in Fig. 2, the 		 band neither hybridizes with the heavy 

band when kk is along a bond nor with the light 
 band
when kk is perpendicular to a bond. As may be realized
from the pictures of the 
 orbitals (Fig. 2), the crossing
with the heavy band occurs because the B s character of
that band vanishes exactly along this k line, and the cross-
ing with the light band occurs because, along that k line,
the B s character is purely antibonding between two bor-
ons, whereas the 		 band is purely bonding �’ � 0�. The
two 
	 gaps seen in the figure are 0.2–0.3 eV, i.e., the
hybridization matrix elements, jh
kjHj	kij, are merely a
percent of the 
 and 	 bandwidths.

We now discuss impurity scattering and use [14]

�nn0 �
2

�hNn�0�

X
kk0

��"nk�jhnkjVjn0k0ij2��"n0k0 � (1)

for the rate of scattering to band n0 of an electron in band n,
by a weak localized impurity potential, V�r�. Here,

P
k

denotes the average over the Brillouin zone, "nk is the band
energy with respect to the Fermi level, and N�0� �P
n Nn�0� �

P
nk ��"nk� is the density of states per spin

and cell. Typical defects for MgB2 are Mg vacancies and
Mg-substitutional impurities, which form easily, and B-site
substitutions such as N and C, which have a higher energy
cost. The potential V�r� for a localized Mg defect has the
full point symmetry of the site and, similar to the Mg2	

potential in the crystal, is felt more by a pz orbital than by a
bond orbital. Hence, the largest matrix elements are those
involving pz orbitals near the impurity, i.e., the largest
perturbation is of the energies of the pz orbitals on the B
hexagons immediately above and below the impurity, and
of the corresponding t?zz. This means that �		 should be
107002-2



TABLE I. Superconducting and direction-averaged
transport coupling constants $ for the effective two-band model.
The partial densities of states at the Fermi level for the
two bands have values of N
�0� � 0:15 and N	�0� �
0:21 �states=cell spin eV�.

$

 $		 $
	 $	


Transport 0.79 0.37 0.30 0.09
Superconducting 1.02 0.45 0.21 0.15
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large. Screening perturbs the energies of the bond orbitals
surrounding the impurity, and also perturbs t?bb, but to a
lesser extent. Hence, we expect that �		 > �

 for Mg
defects, albeit not for B-site substitutions. What contrib-
utes to �
	 are matrix elements involving a pz and a bond
orbital, and most importantly, those on either side of a Mg
defect. Since this matrix element is the perturbation of tzb,
it is expected to be intermediate between those of t?zz and
t?bb, as for the 
	 hybridization. Moreover, since the
impurity potential is fairly constant around a neighboring
boron, a pz orbital still picks up merely the B s character
which vanishes as k2

k
for the heavy holes and as kk for the

light holes. This makes jh
kjVj	k0ij minute because
kFh and kFl are very small. Also the mismatch of phases
between the 
 and 	 functions will tend to reduce
jh
kjVj	k0ij. Finally, squaring this small matrix element
and inserting it in Eq. (1) leads to an exceedingly
small �
	.

To gain quantitative understanding of the disparity be-
tween the scattering rates we have performed LMTO
supercell calculations for various impurities. Since the
induced 
	 gaps, 2jh
kjVj	k0ij, are sensitive to their
position within the
 band (the B s factor), we must choose
a supercell which provides band foldings near "F. The
results shown in Fig. 2 were obtained with a 6� 2� 1
supercell. The bands labeledMg12B24 are the same as those
in the left panel, but folded into the smaller zone. The
heavy 
 band now crosses itself closely below "F, while
the heavy-light and light-light crossings are a bit farther
down. The 	� band (fat) slightly above the top of the 

band was originally at ML=2 and has been folded 3 times
into �. The Mg11B24 bands illustrate the effects of a Mg
vacancy: While the three 	 bands get split by 0.35 eV, and
the heavy and light 
 bands by 0.27 eV (but by 0.04 eV at
�), the 
	 splitting of the heavy band is merely 0.015 eV
and that of the light band is merely 0.030 eV. The squares
of these splittings give estimates for the corresponding �’s.
For Mg vacancies, therefore,

�		 > �

 � �
	: (2)

We found very similar results for systems in which the Mg
vacancy was compensated by substitution of B by two C or
one N: ForMg15B31N, the 		 splitting was 0.4 eV, the 


splitting 0.3 eV, and the 
	 splittings less than 0.03 eV.
Hence, even in these cases where the local hexagonal
symmetry around the Mg vacancy was broken by the
presence of C or N, the rate of the 
	 scattering was 2
orders of magnitude smaller than those of the 

 and 		
scatterings. Furthermore, although the defects considered
above are plain substitutions, we do not expect any in-
plane relaxation to act qualitatively differently. The effect
of some buckling of the B planes may, in principle, be
different. However, a considerable buckling of the hard B
plane because of a Mg vacancy seems unlikely.

Let us now investigate how the relation (2) influences
the transport properties. These depend both on the impurity
scattering and on the electron-phonon interaction (EPI).
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The interband anisotropy should be taken into account both
in the impurity scattering (as outlined above) and in the
EPI. The latter can be characterized by two sets of four
spectral functions each: the standard Eliashberg functions
"2Fnn0 �!�, which define the superconducting properties
and thermodynamical properties such as the electronic
specific heat and the de Haas–van Alphen mass renormal-
izations, and the transport Eliashberg functions "2trFnn0 �!�.
Of the calculated "2Fnn0 �!� functions [15] (the details
of the calculations are as in Ref. [13]), "2F

�!� ex-
hibits a large peak at ! � 70 meV. Defining $nn0 �
2
R
!�1"2Fnn0 �!�d!, we obtain the partial EPI constants,

shown in Table I, which are similar to those obtained in [2].
In the following we assume that �inter � 0, so the clean
limit is appropriate (Tc is independent of the intraband
�’s). The superconducting properties in the clean two-
band model have been investigated in detail [15,16].
Therefore we shall now concentrate on the normal
transport.

The explicit expression for the conductivity in the two-
band model is [17] (omitting Cartesian indices)

1=�DC�T� �
1

4	

X
n�
;	

!2pl n=Wn�0; T�;

W
�0; T� � �
 	
	
T

Z 1

0
d!

!

sinh2�!=2T�

� �"2tr�!�F

�!� 	 "
2
tr�!�F
	�!��; (3)

where �
 � �

 	 �
	, �	 � �		 	 �	
, and �nn0 ’
2�nn0 . Equation (3) is essentially the standard parallel-
conductor formula. Our assumptions are that �	
 � 0
and �
 differs much less than �	 between ‘‘good’’ (e.g.,
Ref. [6]) and ‘‘bad’’ samples (e.g., Ref. [9]).

The role of multiband anisotropy, clearly visible in
Table I, is different in superconductivity and electric trans-
port. For instance, the critical temperature is given by the
maximum eigenvalue of the $ matrix [14,17] (i.e., mostly
by its maximum element), while the conductivity (3) is
the sum of the partial conductivities. At high temperature,
therefore, the slope d�=dT is determined by

P
n !

2
pln=$trn

i.e., by the smallest $trn �
P
n0 $trnn0 .

In Fig. 3 we show the temperature dependence of the DC
resistivity for (a) a clean case with �
 � �	 � 2 meV and
(b) a dirty case with �
 � 54 meV and �	 � 1:2 eV [18].
In the two cases, all plasma frequencies are the same. The
model is seen to describe both cases well. Note that �
 and
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FIG. 3. The DC resistivity in the clean (a) and dirty (b) case
compared to experimental data for dense wires [6] and for
c-oriented films [9], respectively. The lines are calculated in
the effective two-band model with the indicated scattering and
ab initio plasma frequencies !ab
 � 4:14 eV, !ab	 � 5:89 eV,
!c
 � 0:68 eV, and !c	 � 6:85 eV.
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�	 determine not only the residual resistivity, but also the
temperature dependence of the resistivity. In a one-band
model, it would be impossible to reconcile the data of
Refs. [9,10] with those of Ref. [6] if they differ only by
impurity concentrations, and the corresponding violation
of Matthiessen’s rule would be totally inexplicable.

Why is the temperature dependence of the resistivity so
different in these two cases? Let us compare the clean
limit, �
 � �	 � 0, with the dirty-Mg-layer’s limit, �	 �
1, �
 � 0. Of the two parallel conducting channels, in the
former case the 	 bands are responsible for conductivity at
high temperatures, as was mentioned above, and even at
T � 0 the conductivity is mostly due to the 	 bands, their
plasma frequency being higher than that of the 
 bands.
Since the EPI constant for the 	 bands is small, the
temperature dependence of the resistivity is weak. On the
contrary, in the dirty case, the 	 bands do not conduct, due
to an overwhelming impurity scattering, and the electric
current is carried only by the 
 bands. It is the strong EPI
for this band that causes the temperature dependence of the
resistivity in dirty samples.

To conclude, we suggest a new model for electric trans-
port in MgB2. The main ingredients of the model are
(i) interband impurity scattering in MgB2 is small, even
in low-quality samples, (ii) intraband impurity scattering
in the 
 band is small relative to the intraband 	 band
scattering, (iii) high-resistivity samples differ from good
samples mostly by the intraband	 band scattering rate. Of
course, (iv) the phonon scattering is stronger in the 
 band.
This model explains well such seemingly inexplicable
experimental facts as (a) absence of direct correlation
between the residual resistivity and the critical tempera-
ture, expected in the two-gap model and (b) a strong
correlation between the residual resistivity and the slope
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d�=dT in the normal state. Finally, we would like to point
out that the existence of two qualitatively different scatter-
ing rates in the two bands should manifest itself in other
experiments, such as optical and microwave spectroscopy,
or Hall effect. In particular, seemingly mysterious obser-
vations of the anomalously small Drude weight in infrared
absorption [9,10,12] are probably due to overdamping of
the Drude contribution from the 	 bands, so that the
observed Drude peak comes essentially from the 
 bands.
The latter have small plasma frequencies and are addition-
ally renormalized by the electron-phonon coupling. At the
same time, the overdamped Drude peak from the 	 elec-
trons manifests itself as a broad background extending to
high frequencies.
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