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Effect of magnetic and nonmagnetic impurities on highly anisotropic superconductivity
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We generalize Abrikosov-Gor’kov solution of the problem of weakly coupled superconductors with impu-
rities to the case of a multiband superconductor with arbitrary interband order parameter anisotropy, including
interband sign reversal of the order parameter. The solution is given in terms of the effective~renormalized!
coupling matrix and describes not onlyTc suppression but also renormalization of the superconducting gap
basically at all temperatures. In many limiting cases we find analytical solutions for the critical temperature
suppression. We illustrate our results by numerical calculations for two-band model systems.
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I. INTRODUCTION

Recent advances in the field of high-temperature su
conductivity, in particular the discovery of the strong anis
ropy of the order parameter, have stimulated interest in
old problem of the effect of~magnetic and nonmagnetic!
impurity scattering on superconductivity with high aniso
ropy. In a number of theoretical papers published within
last few years qualitatively new phenomena we
uncovered.1–6Moreover, detailed experimental studies of t
effect of impurities in high-temperature superconductors
underway~see, e.g., Refs. 7–10 and references therein!.

A specific, but representative case of anisotropic sup
conductivity is multiband superconductivity~e.g., Refs. 2
and 11–15!, where the order parameter is different in diffe
ent bands. Allen showed in 1978~Ref. 16! ~see also Ref. 17!
that a superconductor with a general anisotropy can
treated within the same mathematical formalism as a mu
band superconductor, if one expands the order param
pairing interaction, and impurity scattering in terms of t
Fermi surface harmonics. In this paper we derive a gen
formula, analogous to the Abrikosov-Gor’kov formula fo
isotropic superconductors,18 but valid for an arbitrary multi-
band system. According to Allen’s formalism, this result
easily generalizable to superconductivity with arbitrary a
gular anisotropy. We will also show explicit results for va
ous limiting cases to illustrate the physics of the interp
between impurity scattering and gap function anisotropy.
will illustrate the results on a model system with strong
terband anisotropy, namely, one where superconductivit
one of two bands is induced by the interband proximity
fect. We will use the Born scattering limit for the impurit
scattering cross section, since this approximation capt
correctly the effect of impurities and the relation to the e
isting literature is most transparent.

II. GENERAL THEORY

Following the standard way of including impurity scatte
ing in BCS theory in Born approximation,18 one writes the
550163-1829/97/55~22!/15146~7!/$10.00
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equations for the renormalized frequencyṽn and order pa-
rameterD̃n (n is the Matsubara index!, which completely
define the superconductive properties of the system:

\ṽan5\vn1(
b

\2ṽbn

2Qbn
~gab1gab

s !, ~1a!

D̃an5Da1(
b

\2Dbn

2Qbn
~gab2gab

s !, ~1b!

Da52pT (
b,n

0,vn,vD

LabD̃bn /Qbn . ~1c!

The general form of these equations for strong coupling
general anisotropy in terms of the Fermi surface harmon
can be found in Ref. 17. Note that according to Allen’s te
minology we work in the disjoint representation, whe
Fermi surface harmonics are defined separately for e
sheet of the Fermi surface, and take into account only
lowest harmonic for each sheet. Other notations in Eqs.~1!
have their usual meaning:vn5(2n11)pT, Qan

5Aṽan
2 1D̃an

2 , gab5UabNb is the scattering rate matrix
due to nonmagnetic impurities, andgab

s 5Uab
s Nb is the same

for magnetic impurities. The coupling matrixL is defined in
the same way as Allen’s matrixlaa8,

16 Laa85Vaa8
pairingNa8.

HereNa is the partial density of states at the Fermi level
the banda. The scattering potentialU and the pairing po-
tential Vpairing are symmetric matrices, whileg, gs, andL
are not. We shall also introduce the following useful no
tions:

la5(
b

Lab , l5(
a

laNa /N, N5(
a

Na , ~2!

whereN is the total density of states,la are partial electron-
phonon coupling constants, which define the electron m
renormalization in the banda, andl is the total isotropic
coupling constant, which enters the BCS and Eliashb
equations for isotropic constant gap superconductiv
Analogously, we shall introduce the partial scattering rate
15 146 © 1997 The American Physical Society
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Ga
65(

b
Gab

6 , Gab
6 5gab6gab

s , gab
6 5dabGa

62Gab
7 .

~3!

At temperatures close toTc one can linearize Eqs.~1!
with respect toD. To do so, we introduce, as usual, th
renormalization functionZ and the gap functionD8:

Zan5ṽan /vn , Dan8 5D̃an /Zan , Zan511Ga
1/2vn ,

Dan8 ~11Ga
1/2vn!5Da1(

a8
Da8n

8 Gaa8
2 /2vn , ~4!

which we can solve forD8:

Dan8 5(
a8

Da8~daa81gaa8
1 /2vn!

21. ~5!

Now from Eq.~1c! it follows that

Da52pT (
bn

0,vn,vD

Labvn
21(

g
DgS dgb1

ggb
1

2vn
D 21

. ~1d!

For weak (g!2pTc) and for intermediate (g!vD) scatter-
ing the usual trick with subtracting the clean limitg50 can
be applied, and extending summation to infinity@a useful
matrix formula is (Î1Â)215 Î2Â(Î1Â)21], one gets

Da5(
bg

Lab@Ldbg2Xbg#Dg ,

Xab52pTc(
n

(
g

~ggb
1 /2!vn

21~vndag1gag
1 /2!21, ~6!

whereL5 ln(2g*vD /pTc).g*'1.78 is the Euler constant. B
introducing the eigensystem ofg1, gab

1 5(gRag
21dgRgb , we

can expressX in terms of the difference between the tw
incomplete gamma functions@c(x)[(n>0(n1x)21#:

Xab52pTc(
g

Rag
21(

n
vn

21~dg/2!~vn1dg/2!21Rgb

5(
g

Rag
21x~dg/4pTc!Rgb , ~7!

with x(x)5c(1/2)2c(1/21x), which is the standard defi
nition of the matrix functionX̂5x(ĝ1/4pTc).

This result is analogous to the classic one of Abrikos
and Gor’kov18 ~AG!, but includes arbitrary anisotropy. Now
solving Eqs.~6! for L, we find

Da5(
g

~Lag
211Xag!21LDg , ~8!
v

which means that nowTc is defined by theeffectivematrix
Leff5(L211X)21. As is well known in multiband super
conductivity theory,19 in this caseTc is defined by the usua
BCS equationTc5(2g*vD /p)exp(21/lmax), wherelmax is
the maximal eigenvalue of the matrixL ~in our case, of the
matrixLeff). As can be seen immediately from Eqs.~6!–~8!
and the definition ofgab , diagonal nonmagnetic scatterin
ratesgab have dropped out from Eq.~8!. This is the mani-
festation of the Anderson theorem for a many band ca
intraband scattering does not influenceTc ~in the considered
Born limit!. As will be discussed below, this argument wor
only for intraband nonmagnetic scattering, while all othe
are, in principle, pair breaking.

Up to the second order inL ~assuming thatLX is small!,

Leff5L2LXL. ~9!

If we recall thatD forms the eigenvector ofL corresponding
to its maximal eigenvalueleff , we can immediately write the
lowest-order correction toleff :

dleff52leff
2 (

ab
DaXabDb /(

a
Da
2 . ~10!

In the strong scattering case~here and below ‘‘strong scat
tering’’ means a scattering rate which is strong in the sup
conducting energy scale,g@vD , but not as strong as to
violate the Born approximation! this formalism cannot be
used. Instead, one should use Eq.~1d! directly.

III. CRITICAL TEMPERATURE

A. Weak scattering

Let us consider explicitly some interesting limiting case
For weak scattering (gab ,gab

s !Tc) one can use Eq.~10!,
and expandx(x→0)5p2x/2 and write

dTc /Tc5dleff /leff
2 52

(abDaXabDb

(aDa
2

'2
p(abDagab

1 Db

8Tc(aDa
2 . ~11!

When all D ’s are equal ~isotropic case!, the standard
Abrikosov-Gor’kov ~AG! result is recovered:dTc /Tc
52p(ab(Gab

1 2Gab
2 )/8Tc052(p/4Tc0)(gs; that is, non-

magnetic scattering falls out. On the other hand, in the
isotropic case only the intraband nonmagnetic scattering f
out of Eq.~11!, as, for instance, in the two-band case:
dTc /Tc52
p

8Tc
D̂ • S 2g11

s 1g12
s 1g12 g12

s 2g12

g21
s 2g21 2g22

s 1g21
s 1g21

D •D̂/D̂•D̂
52

p@D1
2~2g11

s 1g12
s 1g12!1D1D2~g12

s 1g21
s 2g122g21!1D2

2~2g22
s 1g21

s 1g21!#

8Tc~D1
21D2

2!
. ~12!
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The main point of the AG theory18 is thatgs enters equa-
tions forv andD with opposite signs. That is why the mag
netic impurities appear to be pair breakers and the nonm
netic ones not. The above solution shows explicitly that
the multiband case of Eqs.~1! only intraband nonmagnetic
scattering does not influenceTc (gab drops out!. In an inter-
esting limit of two bands, in which one band is supercon
ducting and another is not,l11Þ0, l125l215l2250, it
follows from Eq.~12! that

dTc /Tc52
p

8Tc
~2g11

s 1g12
s 1g12!, ~13!

where the first term is the usual AGTc suppression, and the
last two show that the pair-breaking influence of the nons
perconducting band is the same both for magnetic and no
magnetic scattering. However, the sign of the order para
eter, induced in the second band, is different: the same
nonmagnetic and the opposite for magnetic scattering~cf. the
l250 curves in Fig. 2!. Such a sign reversal is discussed i
more detail later in the paper.

In the next order inlb,aÞ1 the additional correction to
dTc /Tc is (dTc /Tc)15(2p/8Tc)@(g21

s 2g21)l12

1(g12
s 2g12)l21#/(l112l22) ~this corresponds to the so-

called interband tunneling, specific cases of which are co
sidered in the literature15!. In the limit of g i j

s 50 the above
expression coincides with that derived in Ref. 15. Sinc
g12/g215l12/l215N2 /N1, the last expression can also be
written as

~dTc /Tc!152
p

4Tc
~g12

s 2g12!l21/~l112l22!. ~14!

FIG. 1. Tc suppression by interband scattering. Dots on the rig
axis show the asymptotic value ofTc at g→`, according to Eq.
~22!.
g-
n

-

-
n-
-
or

n-

e

Note that if l2150, suppression ofTc is independent of
l22, as long asl11.l22. It is clearly seen, for instance, in
the left-hand part of Fig. 1, where the suppression rate fo
l2150 and variousl22 is shown, and is practically indepen-
dent ofl22. For producing this figure we have solved Eqs.
~1! numerically for two bands, assumingl215l1250,
gab
s 5g115g2250, and g125g21. In full agreement with

Eqs. ~13! and ~14!, Tc is first suppressed linearly with the
rate pg12/8Tc0 ; then, atg12;Tc it starts to deviate from
linearity and, as will be proved later in the paper, saturates a
some value depending onl22.

Another important limiting case, also often considered in
the literature, is the limit of weak anisotropy. Let us assume
thatDa5D1dDa , whereudDau!D. The pair-breaking ef-
fect of magnetic impurities is then given by isotropic AG
theory, and so it is sufficient to consider only nonmagnetic
scattering. Let us also take, for simplicity, an isotropic scat
teringgab

1 5g(dab21). Then Eq.~11! gives

dTc /Tc52
pg tot

8Tc

~D22D̄2!

D2
'2

pg tot

8Tc

dD2

D̄2
, ~15!

whereg tot is the total nonmagnetic scattering, summed ove
all bands~or Fermi harmonics!. Thus in the case of weak
anisotropy theTc suppression is given by the AG formula
with an effective scattering rategeff

s 5gs1(dD2/D̄2)g. This
result has often been obtained for angular gap
anisotropy.20,21,3

t

FIG. 2. Dependence of the order parametersD1,n50 and
D2,n50 in two bands in a two-band model withl125l2150 and
different ratiosl22/l11, on the interband impurity scattering. Solid
lines show the order parameter in the first~‘‘superconducting’’!;
dashed and dotted lines show the order parameter in the seco
band, where superconductivity is induced by impurity scattering
Dashed lines correspond to nonmagnetic interband scattering, do
ted lines to magnetic interband scattering.
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B. Interband sign reversal of the order parameter

Returning to the two-band case, we observe that Eq.~8! is
invariant with respect to a simultaneous change of signs
l12 andl21 and an interchange of nondiagonal magnetic a
nonmagnetic scatteringg12→g12

s , g21→g21
s . This remark-

able property is the consequence of the symmetry of
matrix L̂eff with respect to the above transformations with
simultaneous reversal of the relative signs of the order
rametersD1 ,D2 . One manifestation of this phenomenon
discussed above for induced superconductivity. Another
lustration is given by the symmetric casel115l22[l i and
l125l21[l' . Then it follows from Eq.~8! that with a sign
change ofl' the role of magnetic and nonmagnetic inte
band scattering is completely reversed. Namely, for posi
l' (D1 andD2 have the same signs! only magnetic inter-
band scattering suppresses Tc according to
(Tc02Tc)/Tc'p(g12

s 1g21
s )/8Tc . In the opposite case o

negativel' (D1 andD2 have different signs! the magnetic
impurities do not influenceTc but the nonmagnetic ones su
press it according to (Tc02Tc)/Tc'p(g121g21)/8Tc . The
case of arbitraryl22/l11 is shown in Fig. 2, where we show
the numerical solution of Eqs.~1! for the same model as w
used in Fig. 1:l1150.5 is fixed, andl22 changes from 0 to
0.4. Both magnetic (g12

s Þ0, g1250) and nonmagnetic
(g12

s 50, g12Þ0) impurities are considered. In the first ban
the order parameter is suppressed equally by magnetic
nonmagnetic impurities: The solid curves in Fig. 2 are
same for both cases. The order parameter in the second
has the same absolute value for pure magnetic or for p
nonmagnetic scattering, but its sign is different in the t
cases. Moreover, even ifl12,l21Þ0, but l12,l21
!l11,l22, there still is a possibility of the interband sig
reversal of the gap due to magnetic impurities. This happ
when nondiagonal elements in the effectiveL matrix in Eq.
~8! become negative, l12

eff5l121pl11l22(g122g12
s )/

8Tc0 , which does happen ifg12
s is sufficiently large. Then

the order parameters in different bands have different sig
i.e., a solution with sgn(Db)52sgn(Da) corresponds to a
minimum energy. This sign reversal leads to an interes
effect: If one starts from a pure superconductor with we
interband coupling and suppressesTc by adding interband
magnetic impurity scattering, at some critical scatter
strength the suppression rate drops drastically. The fi
comment to Fig. 2 is that it shows either solely magnetic
solely nonmagnetic scattering. When both kinds of scatte
are present, the order parameter in the second band is m
smaller than in either pure case and becomes zero when
netic and nonmagnetic scatterings are equally strong. A
merical illustration of this effect can be found in Ref. 2.

This situation is closely analogous to the known case
d pairing, where isotropic nonmagnetic impurity scatteri
leads to an AGTc suppression, but with a factor of 2 small
coefficient~cf. Refs. 22 and 23!. If we label those parts of the
Fermi surface that have positive order parameter as 1
those which have negative order parameter as 2, then on
the ‘‘interband channel’’ are the nonmagnetic impurities p
breaking, while the magnetic impurities are pair break
only in the ‘‘intraband channel.’’ Correspondingly, the effe
tive pair-breaking scattering rate will beg11

s 1g22
s 1g12

1g215(g tot1g tot
s )/2. Note that isotropic mag
of
d
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netic scattering results in exactly as much pair breaking
terms ofTc as isotropic nonmagnetic scattering, contrary
the popular misconception that only nonmagnetic impurit
are suppressingTc in d-wave superconductors. Interestingl
if isotropic magnetic and nonmagnetic scatterings are b
present and have equal strength, theTc suppression rate is
the same for thes- and d-wave superconductors. If only
magnetic scattering is present,Tc is suppressed twice faste
in ans superconductor. In fact, most of these statements
not specific ford pairing, but are true for any superconduct
with zero average order parameter and nonzero ave
square for the order parameter. Let us, for example, pr
that in such a superconductor isotropic magnetic and n
magnetic scatterings both have the same effect onTc . Ac-
cording to Eq.~11!, Tc suppression rate is proportional to

^Dkgkk8
1 Dk&k,k85^Dk

2Gk
1&k2^DkGkk8

2 Dk8&kk8

5^Dk
2^Gkk8

1 &k8&k2^DkGkk8
2 Dk8&kk8,

~16!

where we usedk and k8 for indices to emphasize that th
formalism is valid both for interband or for angular aniso
ropy. For isotropic scatteringgk,k85g, gk,k8

s
5gs, this equa-

tion reduces to

^Dk
2&~g1gs!2^DkDk8&~g2gs!

5~^Dk
2&1^DkDk8&!gs1~^Dk

2&2^DkDk8&!g. ~17!

For isotropic s-wave superconductors,̂Dk
2&5^DkDk8&

5D2, and theTc suppression rate does not depend ong. For
a superconductor wherêDkDk8&50, ^Dk

2&Þ0, a specific
case of which is ad-wave superconductor, the suppressi
rate is proportional to (g1gs), as we have conjectured be
fore.

C. Strong scattering

Let us now go beyond the weak scattering limit, so th
we cannot any more use the expansion inXL in Eq. ~8!. In
accordance with the AG result, the critical temperature v
ishes at some finite rate of intraband magnetic scatter
gab
s ;Tc0. The situation is qualitatively different with re

spect to interband scattering. We will show that in t
strongly anisotropic case ofl11,l22@laÞb the critical tem-
perature does not vanish even in the regime of very str
interband scattering. Let us first consider the intermed
scattering regimepTc!gab!vD . In this case one still can
use Eqs.~6!–~8!. Using expansion

x~x→`!5 ln~4g* x1const!,

we obtain that

Leff5L2L• ln~g* ĝ1/pT1const!•L,

which has a particularly simple form for the case we a
interested in,g115g2250,
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ĝ15S g12 2g12

2g21 g21
D :

Leff5L2~g121g21!
21ln@4g* ~g121g21!/pTc#L•ĝ

1
•L,

Tc
Tc0

5F pTc
2g* ~g121g21!

Gg12 /~g121g21!

, ~18!

where we assumed, to be specific, thatl11>l22. Solving for
Tc , we get

Tc
Tc0

5F pTc0
2g* ~g121g21!

Gg12 /g21

5F pTc0
2g* ~g121g21!

GN2 /N1,
~19!

whereN1,2 are the densities of states~DOS! in the two bands
~the last equality appears becausegab /gba5Nb /Na).

Equation~19! gives the limitTc→0 whengab→`. How-
ever, Eq.~8! becomes invalid in this regime, namely, whe
the interband scattering rategab exceeds the characterist
electronic energy scalevD which is relevant for Cooper pair
ing. In this case, we have to go back to Eq.~1d!. This equa-
tion can be solved analytically in an important regime of t
isotropic superstrong interband scattering,gab5g(1
2dab)Nb . In this regime, gab

1 5g(dabN2Nb), where
N5(aNa . To handle Eq.~1d! we first need to transform th
matrix

~2vndab1gab
1 !215@~2vn1gN!dab2gNb#21

5~2vn1gN!21@dab2gNb /

3~2vn1gN!#21

to a more tractable form. Expanding the square bracket
series ingNb /(2vn1gN) and collecting the appropriat
terms, we observe that

~2vndab1gab
1 !215~2vn1gN!21~dab1gNa/2vn!,

which in the sought limitg→` is simplyNa/2Nvn . Thus

Da5(
b

Lab(
k

NkDk

N (
n

2pT

vn
, ~20!

which has the solution

Da5laD̄(
n

2pT

vn
, ~21!

where la5(Lab is the mass renormalization paramet
and the average gapD̄5(aNaDa /N satisfies the regula
BCS equation with isotropically averaged coupling:

D5lD(
n

2pT

vn
, l5(

a
Nala/N. ~22!

So in the superstrong coupling regimeTc saturates at a lim-
iting value, which is actually the critical temperature calc
lated in fully isotropic BCS theory. This regime correspon
to the so-called Cooper limit investigated previously f
proximity-effect coupled systems.15,24Note that the order pa
rameters in the individual bands are nevertheless differ
specificallyDa5D̄la /l. This does not mean that the ob
in

,

-
s

t,

servable zero-temperature gaps are going to be differen
fact, they are the same, as discussed in the next section
illustrated in Fig. 3.

We illustrate the above discussion of theTc suppression
by a numerical solution of the Eq.~1d! for a two-band case
with strong interband anisotropy andl12,l21!l11,l22,
g21
s 5g12

s , corresponding to equal densities of states in
two bandsN15N2. We have chosenl150.2, l12,l2150,
andg21

s 5g12
s 50. The results of calculations ofTc vsg12 are

shown in Fig. 1 for various values ofl2. In accordance with
the above analytical results,Tc first drops steeply asg12
increases and then saturates at some finite value w
g12;vD . The saturation value depends onl2 in accordance
with Eq. ~22!. The suppression ofTc remains the same whe
nonmagnetic scattering is zero,g1250, butg12

s is finite, ex-
cept that the order parameterD2,n50 has the sign opposite to
that ofD1,n50, as discussed above and illustrated in Fig.
Both kinds of impuritiesg12

s and g12 suppress the critica
temperature in this case according to Eqs.~14!–~22!.

IV. DENSITY OF STATES AND SUPERCONDUCTING GAP

The discussion of the critical temperature suppression
based on the solutions of the linearized equations. To ob
the density of states, the nonlinear equations~1! should be
solved. In the presence of impurities there is no distinct g
in the sense that the minimal excitation energy does not
incide with the maximum in the density of states. The lat
is defined in terms ofDna8 . Namely, the superconductin
density of statesN(v) in units of the normal density of state
at the Fermi levelN0 is

FIG. 3. Superconducting density of states in a two-band mo
with l125l215l2250, l1150.5. Only interband nonmagneti
scattering is included. The solid lines show the DOS in band 2
the dashed lines in band 1. Note that both DOS coincide in
regime of strong scattering.
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N~v!

N0
5Re

v

Av22D82~v!
,

whereD8(v) is the analytical continuation ofDn8 . An ana-
lytical solution forDna8 is not straightforward to obtain; how
ever, some properties of the numerically obtained soluti
for Dna8 are already illustrated above in Fig. 2. Moreove
there are some rigorous statements that can be made a
Dna8 .

Let us consider again the limit of superstrong isotro
nonmagnetic scattering. We have shown above thatTc in this
case is reduced toTc of the equivalent BCS system with th
isotropic coupling constant. The same statement appea
be true for the gap in the excitation spectrum. Indeed,
lowing AG, we can defineuan5vn /D in8 , and, after the usua
transformationvn→2 iv, uan→2 iua , Dan8 →Da8 (v), we
can write down the multiband analog of Eq.~428) of AG:

v

Da
5ua2

1

Da
(
b

uaGab
1 2Gab

2 ub

A12ub
2

. ~23!

In the absence of magnetic impurities we
Gab

1 5Gab
2 5g, and take the limitg→`. Evidently, a solu-

tion of Eq. ~23! in this limit exists only if ua5ub , and
correspondinglyDa8 does not depend ona. We conclude that
in this limit the reduced density of states is the same in
bands, and in fact coincides with that of the isotropic BC
model with the gap determined from the nonlinear analog

Eq. ~22!: D5lD(n2pT/Avn
21D2, with l5(aNala /N.

The evolution of the densities of states in the multiba
nonmagnetic scattering case is shown in Fig. 3. Here,
show the results of numerical solution of Eqs.~1! in the
weak coupling regime withl150.5, l12,l21,l2250, and
gab
s 50. Only nonmagnetic interband scatteringg125g21 is

included. In the clean limit, the two bands show two diffe
ent excitation gaps. In accordance with earl
calculations,24,25 any weak, but finite impurity scatterin
mixes the pairs in the two bands, so that the first band~with
the larger gap, i.e., more superconducting! develops a tail in
the density of states which extends all the way down to
second-band gap. Except for this tail, which consists of
normal excitations of the second band, scattered into the
band by impurities, the density of states still looks similar
the clean-limit one. Upon the increase of the scattering r
the low-energy tail in the first-band density of states grow
and the minimal gap, the gap in the second band, grow
well. This reflects the fact that a larger number of pairs
scattered into the second band and induced the interb
proximity-effect superconductivity there. Thus thedecrease
in the critical temperature of the system is accompanied
an increaseof the minimal gap in the excitation spectrum

Next, let us include interband magnetic scattering into
~23!. Then in the considered regimeg→` we have
Gab

1 5g1gs, Gab
2 5g2gs, and ua5ub[u ~we assumed

gaÞb
s [gs). As a result, the densities of states in each ba

are given byN(v)5Reu/Au221, whereu is a solution of
the equation
s
,
out

to
l-

ll

f

d
e

r

e
e
st

e,
,
as
s
d-

y

.

d

v

D
5uS 12

2gs

D

1

A12u2
D . ~24!

An energy gap corresponds to a maximum real solution
u in the intervalu,1 and the pair-breaking rate is given b
2gs. Thus, with an increase of nonmagnetic scattering
have a crossover from the state with different signs of or
parameters in different bands~for zero g) to the isotropic
state~for g→`). This isotropic state may be normal, ga
less, or gapped, depending on the value of 2gs. Following
the AG analysis, we obtain that an energy gap atg→` will
exist if gs,exp(2p/4)D0/2, whereD0 is the BCS gap at
T50. This case is particularly interesting: Since in the is
tropic (g→`) limit there is a finite gap and a finite positiv
order parameter in both bands, and in the opposite limit
small g the order parameter in one band is negative, it
clear that at intermediate values of interband scatteringg a
gapless state should be crossed over. The last statemen
agreement with the result of Ref. 1 that for an order para
eter with a sign change and a nonzero Fermi-surface aver
a gapless state develops with an increase of impurity con
tration, but the gap is restored at a large concentration
impurities. To illustrate such a crossover, induced by m
netic scattering, we show in Fig. 4 the results of our nume
cal calculations for a weak coupling two-band mod
(l150.5,l12,l21,l2250, and g12

s 5g21
s 5Tc/2). The total

density of states is shown at different values of the interb
nonmagnetic scattering rateg. According to the discussion in
Sec. ISR, for a smallg both order parameters have differe
signs. In this casegs has no pair breaking effect, and sma
gap~negative order parameter! is induced in the second ban
by the magnetic scattering. On the contrary, the interb
g is in this situation pair breaking. The shape of the dens
of states shows two characteristic peaks, one, at ab
0.1 D0 , due to this induced energy gap in the second ba
and another just belowD0 from the gap in the first band.

With the increase of the nonmagnetic scattering rate
order parameter in the second band becomes smaller in
solute value, still remaining negative. The lower peak in
density of states gets washed out and the minimal energy

FIG. 4. Total superconducting density of states in a two-ba
model withl125l215l2250, l1150.5.
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becomes smaller. Wheng approachesgs this small gap van-
ishes, although there is still a distinguishable peak in
density of states coming from the gap in the first band.
largerg@gs both gaps have again the same sign, and no
is gs, which is pair breaking. As one again can see from F
4, a small gap is restored for the last two curves, correspo
ing to g52gs5Tc and g520gs510Tc . Note that at
g@Tc , the gap cannot any more be ascribable to any of
two bands, but corresponds to a fully isotropic supercond
tivity, as described by Eqs.~14!–~22!.

V. CONCLUSIONS

In conclusion, we generalized the Abrikosov-Gor’kov s
lution to the case of arbitrary interband anisotropy of t
pairing interaction, and arbitrary strength and anisotropy
magnetic and/or nonmagnetic impurity scattering. The
sults are illustrated on model two-band systems with in
band anisotropy and various kinds of impurity scattering.
the case of weak scattering, we found an analytic solut
analogous to the isotropic solution of Abrikosov a
.

ys

i,

l-
e
t
it
.
d-

e
c-

-

f
-
r-
n
n,

Gor’kov. For weak anisotropy, this solution yields the cri
cal temperature suppression proportional to the mean sq
variation of the order parameter, a fact earlier pointed out
several authors in various special cases. We also proved
lytically that the superconductivity suppression by isotrop
magnetic and isotropic nonmagnetic impurities is exactly
same when the average order parameter is zero~e.g., in case
of d pairing!. We also give an analytical solution forTc in
the two-band model in the case of intermediate strength s
tering. In the case of superstrong scattering we find a s
tion for Tc for arbitrary anisotropy. We also discussed t
evolution of the density of states with the increase of
impurities concentration~or scattering strength!.
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