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Effect of magnetic and nonmagnetic impurities on highly anisotropic superconductivity
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We generalize Abrikosov-Gor’kov solution of the problem of weakly coupled superconductors with impu-
rities to the case of a multiband superconductor with arbitrary interband order parameter anisotropy, including
interband sign reversal of the order parameter. The solution is given in terms of the effestivamalized
coupling matrix and describes not only, suppression but also renormalization of the superconducting gap
basically at all temperatures. In many limiting cases we find analytical solutions for the critical temperature
suppression. We illustrate our results by numerical calculations for two-band model systems.
[S0163-182607)09021-§

I. INTRODUCTION equations for the renormalized frequer®y and order pa-

_ _ . rameterKn (n is the Matsubara index which completely
Recent advances in the field of high-temperature superdefine the superconductive properties of the system:
conductivity, in particular the discovery of the strong anisot-

- : : ]
ropy of the order parameter, have stimulated interest in the KB an=ho,+ 2, 2_5“(7%3_,_ Y3p), (1a
old problem of the effect ofmagnetic and nonmagnetic B 2Qpn
impurity scattering on superconductivity with high anisot- 52A
ropy. In a number of thgorghcal papers published within the A=A+ 2 5 ﬁ”(yaﬁ_ 7’35): (1b)
last few years qualitatively new phenomena were B 2Qpn
uncovered:"® Moreover, detailed experimental studies of the 0<wy<op
effect of impurities in high-temperature superconductors are A =24T A A 10
underway(see, e.g., Refs. 7—10 and references thgrein a= T gﬁ apBpn/Qpn- (19

A specific, but representative case of anisotropic super-
conductivity is multiband superconductivitie.g., Refs. 2 The general form of these equations for strong coupling and
and 11-15 where the order parameter is different in differ- general anisotropy in terms of the Fermi surface harmonics
ent bands. Allen showed in 197Ref. 16 (see also Ref. 7 can be found in Ref. 17. Note that according to Allen’s ter-
that a superconductor with a general anisotropy can b#&inology we work in the disjoint representation, where
treated within the same mathematical formalism as a multiFermi surface harmonics are defined separately for each
band superconductor, if one expands the order parameté‘heet of the Fermi surface, and take into account only the
pairing interaction, and impurity scattering in terms of thelowest harmonic for each sheet. Other notations in Efjs.
Fermi surface harmonics. In this paper we derive a generdlave their usual meaning: w,=(2n+1)7T, Q,,
formula, analogous to the Abrikosov-Gor'kov formula for = @2 +AZ,, v,s=U,sNg is the scattering rate matrix
isotropic superconductof§ but valid for an arbitrary multi-  due to nonmagnetic impurities, a")@;a: Uwaﬁ is the same
band system. According to Allen’s formalism, this result is for magnetic impurities. The coupling matrix is defined in
easily generalizable to superconductivity with arbitrary an-the same way as Allen’s matrix,, ., A g = VPN,
gular_ar_u_sotropy. We W'" also show eXpI'.C't results for Varl- HereN, is the partial density of states at the Fermi level in
ous limiting cases to illustrate the physics of the interplay,

. ) . . . the bande. The scattering potentidl and the pairing po-
between impurity scattering and gap function anisotropy. .W‘?ential VPaIing are symmetric matrices, whilg, 5, and A

will |Ilustrat§ the results on a model system with strong IN- 56 not. We shall also introduce the following useful nota-
terband anisotropy, namely, one where superconductivity i ons:

one of two bands is induced by the interband proximity ef- '

fect. We will use the Born scattering limit for the impurity

scattering cross section, since this approximation captures )\a:%‘, Aag. F; NaNg /N, N:%: No, (2

correctly the effect of impurities and the relation to the ex-

isting literature is most transparent. whereN is the total density of states,, are partial electron-

phonon coupling constants, which define the electron mass

renormalization in the band, and\ is the total isotropic

coupling constant, which enters the BCS and Eliashberg
Following the standard way of including impurity scatter- equations for isotropic constant gap superconductivity.

ing in BCS theory in Born approximatiofi,one writes the Analogously, we shall introduce the partial scattering rates

Il. GENERAL THEORY
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At temperatures close td. one can linearize Egqg1)
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which means that now, is defined by theeffectivematrix
Aeg=(A"1+X)"1. As is well known in multiband super-
conductivity theory'? in this caseT, is defined by the usual
BCS equatiom .= (2y* wp / m)exp(—1/\ ma), Wherex pqis
the maximal eigenvalue of the matrix (in our case, of the

with respect toA. To do so, we introduce, as usual, the matrix Aoy). As can be seen immediately from E¢6)—(8)

renormalization functiorZ and the gap function’:

Zan A:zn:Kan/Zanv Zan:1+GZ/2wn1

=Wl ®p,

Al (1+G) 2w,) =A +2 A, T Ro,, (4
which we can solve foA':
Bin=2 Bor(Bge 8,0 1200) (5)
Now from Eq.(1¢) it follows that
0<w,<wp i, g;g -1
A,=2mT % A up0, }y‘, A 6,5+ g) . (10)

For weak (y<27T.) and for intermediate ¥<< wp) scatter-
ing the usual trick with subtracting the clean lingit=0 can
be applied, and extending summation to infinjgy useful

matrix formula is {(+A) “*=1-A(+A)"!], one gets

Aa:ﬁz Aaplldpy=Xpy]A,,
Y

Xap=27Tc 2 2, (955200 (0nday+90/2) 7 (6)

Y
whereL =In(2y* wp /7T).v*~1.78 is the Euler constant. By
introducing the_ eigensystem gf* . gzﬁzEy aydyRyﬁ,
can expresX in terms of the difference between the two
incomplete gamma functiofs/(x)==,-o(n+x) ]

xC,B:quTCEy Ry > o, (d/2)(w,+d,/2) 'R

=2 Roox(dJ4mTo)R,, (7
-

with x(x) = ¥(1/2)— (1/2+x), which is the standard defi-

nition of the matrix functionX=y(g*/47T,).

This result is analogous to the classic one of Abrikosov
and Gor'kov® (AG), but includes arbitrary anisotropy. Now
solving Egs.(6) for L, we find

and the definition ofy,;, diagonal nonmagnetic scattering
ratesy,z have dropped out from E@8). This is the mani-
festation of the Anderson theorem for a many band case:
intraband scattering does not influente(in the considered
Born limit). As will be discussed below, this argument works
only for intraband nonmagnetic scattering, while all others
are, in principle, pair breaking.

Up to the second order in (assuming that\ X is smal),

Agr= A —AXA. (9)
If we recall thatA forms the eigenvector of corresponding
to its maximal eigenvaluk ., we can immediately write the
lowest-order correction t@ g

Oeti= — N2 A Xoph gl X AZ. (10)
af a

In the strong scattering cagbere and below “strong scat-
tering” means a scattering rate which is strong in the super-
conducting energy scaley>wp, but not as strong as to
violate the Born approximatignthis formalism cannot be
used. Instead, one should use Etf) directly.

Ill. CRITICAL TEMPERATURE
A. Weak scattering

Let us consider epricitIy some interesting limiting cases.
For weak scattenng)(aﬁ ‘ya <T.) one can use Eq.l10),
and expandy(x— 0)= 7?x/2 and write

S50 X, A
ST/ To= SN g/ N 2= — %
8T.> A2

(11)

When all A’s are equal (isotropic casg the standard
VAbrikosov-Gorkov (AG) result is recovered: 5T, /T,
aﬁ(l“a —I',p)/8To=— (/4T )25, that is, non-
magnetic scattering falls out. On the other hand, in the an-
isotropic case only the intraband nonmagnetic scattering falls

A=, (AJE+X,,) LA, 8 _ ,
“ zy (Aay*Xay) 4 ® out of Eq.(11), as, for instance, in the two-band case:
|
7. [2Yt Vit v Y vi2 IR
OTelTe=—g=A - | s s -AJA-A
8T, Y21~ Y21 2yt Y1t Y21

71'[A1(23’11+ Yot 712 + A18o(¥io+ V3= V1o~ Y2 + AS(2¥5,+ o+ 721)]

(12

8T(AZ+AD)
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FIG. 2. Dependence of the order parametég,_, and
Ay, in two bands in a two-band model withy,=\,;=0 and
different ratiosk,,/\ 17, on the interband impurity scattering. Solid
tIines show the order parameter in the fif§superconducting’);
dashed and dotted lines show the order parameter in the second
band, where superconductivity is induced by impurity scattering.

] ) ] s Dashed lines correspond to nonmagnetic interband scattering, dot-
The main point of the AG theoljis thaty® enters equa-  ted lines to magnetic interband scattering.

tions for @ andA with opposite signs. That is why the mag-
netic impurities appear to be pair breakers and the nonmag-
netic ones not. The above solution shows explicitly that in
the multiband case of Egs¢l) only intraband nonmagnetic
scattering does not influendg (1, drops out. In an inter-
esting limit of two bands, in which one band is supercon-
ducting and another is nokh11#70, Nio2=A1=A5=0, it
follows from Eq.(12) that

FIG. 1. T, suppression by interband scattering. Dots on the righ
axis show the asymptotic value %, at y—, according to Eq.
(22.

ote that if A,;=0, suppression ofl . is independent of
Noo, @s long as\11:>>\,,. It is clearly seen, for instance, in
the left-hand part of Fig. 1, where the suppression rate for
N»;=0 and various\ ,, is shown, and is practically indepen-
dent of A 5,. For producing this figure we have solved Egs.
(1) numerically for two bands, assuming,;=\.,=0,
yiﬁ= v11= Y2o=0, and y;,=y,,. In full agreement with
Egs. (13) and (14), T, is first suppressed linearly with the
(13) rate 7y12/8Tco; th(_an, aty~T, it starts to deviate from
linearity and, as will be proved later in the paper, saturates at
some value depending ow,.
where the first term is the usual AG; suppression, and the Another important limiting case, also often considered in
last two show that the pair-breaking influence of the nonsuthe literature, is the limit of weak anisotropy. Let us assume
perconducting band is the same both for magnetic and northat A ,=A+ 8A,, where|5A ,|<A. The pair-breaking ef-
magnetic scattering. However, the sign of the order paramfect of magnetic impurities is then given by isotropic AG
eter, induced in the second band, is different: the same fatheory, and so it is sufficient to consider only nonmagnetic
nonmagnetic and the opposite for magnetic scattgihghe  scattering. Let us also take, for simplicity, an isotropic scat-
A,=0 curves in Fig. 2 Such a sign reversal is discussed intering g;ﬁz ¥(J,5—1). Then Eq.(11) gives
more detail later in the paper.
In the next order in\ 4 ., the additional correction to

5T/T——i2 S+ S+
c/lc= 8Tc( Y1t ¥t v12),

oT: /T, is (8T/Te)1=(— /8T ) (¥21— Y2D N 12 T Viot (A2— p) T Viot 5A2
+ (1~ Y12 21)/(N11—Npp) (this corresponds to the so- ST T=— —~— —, (15
called interband tunneling, specific cases of which are con- 8T, A2 8T, A2

sidered in the literatur®). In the limit of yisj =0 the above

expression coincides with that derived in Ref. 15. SinceWhere is the total nonmagnetic scattering, summed over
lv,1=N12/N21=N, /N4, the last expression can also be Yot ; 8 ‘ ’
vjxlllrizttgﬁlas 120t N2 P all bands(or Fermi harmonics Thus in the case of weak

anisotropy theT. suppression is given by the AG formula
with an effective scattering ratgis= y°+ (5A°/A?)y. This

™ .
ST AT = — —(VSo— VeI Aot/ (Aaa—Nor). (14 result has often been obtained for angular gap
(6Tc/Teo)y 4TC(712 Y12ha/(N1—N2).  (14) anisotropy?02L3
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B. Interband sign reversal of the order parameter netic scattering results in exactly as much pair breaking in

Returning to the two-band case, we observe that8dqs  €'MS of T, as isotropic nonmagnetic scattering, contrary to
invariant with respect to a simultaneous change of signs of® Popular misconception that only nonmagnetic impurities
X1, and\,; and an interchange of nondiagonal magnetic andi'® Suppressing in d-wave superconductors. Interestingly,
nonmagnetic scatteringy,— y3,, y21— 3. This remark- if isotropic magnetic and nonmagnetic scatterings are both
able property is the consequence of the symmetry of th&reSent and have equal strength, esuppression rate is

matrix A o with respect to the above transformations with athe same for thes- and d-wave superconductors. If only
. eff P . . magnetic scattering is presefit, is suppressed twice faster
simultaneous reversal of the relative signs of the order p

4h ans superconductor. In fact, most of these statements are

rametersA;,A,. One manifestation of this phenomenon is o -
discussed above for induced superconductivity. Another "_notspecn‘lc ford pairing, but are true for any superconductor

lustration is given by the Svmmetric case.—\-.—X: and with zero average order parameter and nonzero average
Moo hoi ) 9 Th n%tf I v%s from E (S)Qtlr:t\zlﬁhg ion square for the order parameter. Let us, for example, prove

12=An=A, . IN€ 00 om 4/ a ' SI9 that in such a superconductor isotropic magnetic and non-
change of\, the role of magnetic and nonmagnetic inter-

band scattering is completely reversed. Namely, for positivercn agnetic scatterings both have the same effect onAc-
\, (A, and A, have the same sighenly magnetic inter- ording to Eq.(11), T, suppression rate is proportional to

band  scattering  suppressesT. according to

(Teo—T)/Te~m(yi,+¥5)/8T¢. In the opposite case of <Akg;k’Ak>k,k’:<AEG:>k_<AKFkk’Ak’>kK’
negativer, (A; andA, have different signsthe magnetic —(AXT (AT A

impurities do not influenc@&, but the nonmagnetic ones sup- (AT gDk (Al e A
press it according toTgo— T.)/ Te~ 7(y12t+ ¥21)/8T.. The (16)

case of arbitrary\,,/\ 11 is shown in Fig. 2, where we show
the numerical solution of Eqg$l) for the same model as we where we usedk andk’ for indices to emphasize that the
used in Fig. 1\4,=0.5 is fixed, and\,, changes from 0 to formalism is valid both for interband or for angular anisot-
0.4. Both magnetic 3,#0, y;,=0) and nonmagnetic ropy. For isotropic scatteringy = v, yik,zys, this equa-
(v3,=0, y1.,#0) impurities are considered. In the first band tion reduces to ’

the order parameter is suppressed equally by magnetic and

nonmagnetic impurities: The solid curves in Fig. 2 are the (A (y+ ) — (A A Yy —7)

same for both cases. The order parameter in the second band

has the same absolute value for pure magnetic or for pure =((AD+H(AA ) Y+ ((AD—(AA))y. (17D
nonmagnetic scattering, but its sign is different in the two
cases. Moreover, even ifAj5,Np1#0, but Aqip,Npq
<)\11,N9p, there still is a possibility of the interband sign
reversal of the gap due to magnetic impurities. This happen
when nondiagonal elements in the effectivanatrix in Eq.

For isotropic s-wave superconductorg,A2)=(AA/)
=A?, and theT, suppression rate does not dependyorfror
% superconductor wheréA,A,)=0, (A2)#0, a specific
case of which is al-wave superconductor, the suppression

: eff _ _ .8
(8) become negative, )_‘132_,)‘12+ Tl Y12~ ¥ pate s proportional to ¢+ ), as we have conjectured be-
8T, which does happen i}y, is sufficiently large. Then 5.0

the order parameters in different bands have different signs;

i.e., a solution with sgnf )= —sgn@,) corresponds to a _

minimum energy. This sign reversal leads to an interesting C. Strong scattering

effect: If one starts from a pure superconductor with weak | et us now go beyond the weak scattering limit, so that
interband coupling and suppresses by adding interband we cannot any more use the expansioXih in Eq. (8). In
magnetic impurity scattering, at some critical scatteringaccordance with the AG result, the critical temperature van-
strength the suppression rate drops drastically. The fingkhes at some finite rate of intraband magnetic scattering,
comment to Fig. 2 is that it shows either solely magnetic oryS .~Te. The situation is qualitatively different with re-
solely nonmagnetic scattering. When both kinds of scatteringpect to interband scattering. We will show that in the
are present, the order parameter in the second band is mugfongly anisotropic case 0fy1, N 25 N o2 4 the critical tem-
smaller than in either pure case and becomes zero when magarature does not vanish even in the regime of very strong
netic and nonmagnetic scatterings are equally strong. A Nynterband scattering. Let us first consider the intermediate

merical illustration of this effect can be found in Ref. 2. gcattering regimerT, < Yap<wp. In this case one still can
This situation is closely analogous to the known case of;se Eqgs(6)—(8). Using expansion

d pairing, where isotropic nonmagnetic impurity scattering
leads to an AGI; suppression, but with a factor of 2 smaller
coefficient(cf. Refs. 22 and 23 If we label those parts of the
Fermi surface that have positive order parameter as 1 and
those which have negative order parameter as 2, then only iy
the “interband channel” are the nonmagnetic impurities pair A
breaking, while the magnetic impurities are pair breaking Aeg=A—A-In(y*g"/mT+consy- A,

only in the “intraband channel.” Correspondingly, the effec-

tive pair-breaking scattering rate will be3,+ y5,+v1,  which has a particularly simple form for the case we are
+ ¥01= (vt ¥i/2.  Note  that isotropic  mag- interested inyy ;= y,,=0,

x(Xx—)=In(4y*x+cons},

e obtain that
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§]+—< Y12 _712). T T T T T T
— Y21 Y21 .

Aei= A= (y12% v21) " N[4¥* (y12+ v20)/7TJA-gF- A,

w
T, 7T, v12/(v12+ 720) = ol
— =l , (19 @
Teo |27 (712F 720) g
where we assumed, to be specific, thaf=\,,. Solving for _ 0
<)
T., we get =2
E:{ 7Teo }712/721: 7Teo }NZ/Nl %
Teo 127" (vt v20 2y* (12 v20) A o—= —
(19 i
whereN; , are the densities of statéBOS) in the two bands ol WO A i
(the last equality appears becaugg;/ vz, =Ng/N,). : T ]
Equation(19) gives the limitT;—0 wheny,z—«. How- [
ever, Eq.(8) becomes invalid in this regime, namely, when 0 e
the interband scattering ratg,; exceeds the characteristic 0.0 0.5 s}-o 1.5 2.0
electronic energy scalep which is relevant for Cooper pair- Ao

ing. In this case, we have to go back to Efd). This equa-

tion can be solved analytically in an important regime of the FIG. 3. Superconducting density of states in a two-band model
isotropic  superstrong interband  scatteringy,z=y(1  With Az=Az=A3=0, \;;=0.5. Only interband nonmagnetic
—38,5)Ng. In this regime, gZB: ¥(8,sN—Np), where scattering is included. The solid lines show the DOS in band 2 and

N=3_N,. To handle Eq(1d) we first need to transform the the dashed lines in band 1. Note that both DOS coincide in the
o regime of strong scattering.

matrix
(an5aﬁ+92ﬂ)’l=[(2wn+ YN)Sup— VN,B]fl servable zero-temperature gaps are going to be different. In
=(2w,+ yN) Y8, ,— YN 4/ fact, they are the same, as discussed in the next section and
A p A illustrated in Fig. 3.
X (2wy+yN)] 1 We illustrate the above discussion of tifig suppression

iRy a numerical solution of the Eqld) for a two-band case

to a more tractable form. Expanding the square brackets in’ _ .
with strong interband anisotropy anBl;s,Ao1<<N\11,\20,
S

series inyNg/(2w,+ yN) and collecting the appropriate

terms, we observe that ¥51= Y12, corresponding to equal densities of states in the
two bandsN;=N,. We have chosen;=0.2, A\5,A»;=0,
(2008apF up) '=(2wn+ YN) " H(8apt YN, L20), andy3,= y3,=0. The results of calculations f, vs y;, are

shown in Fig. 1 for various values af,. In accordance with

which in the sought limity—« is simply N,/2Nw,,. Thus : -
the above analytical resultg,. first drops steeply a%/»

N A 27T increases and then saturates at some finite value when
A =2 Aaﬁ’zk zn: o (20 y,,~wp. The saturation value depends opin accordance
p " with Eq. (22). The suppression df. remains the same when
which has the solution nonmagnetic scattering is zerg,,=0, but y3, is finite, ex-

2T cept that the order paramet#s,_o has the sign opposite to

' (21) that of A, ,_o, as discussed above and illustrated in Fig. 2.
wn Both kinds of impuritiesy3, and y,, suppress the critical
temperature in this case according to Ed<)—(22).

Ap=N A
n

where A ,=ZA .5 is the mass renormalization parameter,

and the average gap=3_,N,A,/N satisfies the regular

BCS equation with isotropically averaged coupling:
IV. DENSITY OF STATES AND SUPERCONDUCTING GAP

—  — 27T
A=NADY - N=2 NN, (22 The discussion of the critical temperature suppression was
n n o . . . . .
based on the solutions of the linearized equations. To obtain
So in the superstrong coupling regirfig saturates at a lim- the density of states, the nonlinear equati¢hsshould be
iting value, which is actually the critical temperature calcu-solved. In the presence of impurities there is no distinct gap,
lated in fully isotropic BCS theory. This regime correspondsin the sense that the minimal excitation energy does not co-
to the so-called Cooper limit investigated previously forincide with the maximum in the density of states. The latter
proximity-effect coupled systerts:?*Note that the order pa- is defined in terms ofA;,. Namely, the superconducting
rameters in the individual bands are nevertheless differentiensity of statedl(w) in units of the normal density of states

specifically A ,= A\ ,/\. This does not mean that the ob- at the Fermi leveN, is
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N(w w
():Re

No  Va?—27(a)’

whereA’(w) is the analytical continuation of; . An ana-
lytical solution forA |, is not straightforward to obtain; how-
ever, some properties of the numerically obtained solutions
for A;, are already illustrated above in Fig. 2. Moreover,
there are some rigorous statements that can be made abgc
Al

Let us consider again the limit of superstrong isotropic
nonmagnetic scattering. We have shown aboveThat this :
case is reduced td. of the equivalent BCS system with the o Ll
isotropic coupling constant. The same statement appears 1 .
be true for the gap in the excitation spectrum. Indeed, fol-

lowing AG, we can define,,= w,/Aj,, and, after the usual

Total density of statesN(g)/No(g)

transfoirmationwn—>—icu,. Ugn— ~iUg, Apn—AL (@), we FIG. 4. Total superconducting density of states in a two-band
can write down the multiband analog of E42’) of AG: model With A ;o= X 2;=X,=0, A1,=0.5.
® 1 u J’,—T .u 1) 2y* 1
at af aBYB _
—=U,— > P (23 ——U(l——— . (29
a YA A A 1,2
Aa Aa B V1 UB 1-u

An energy gap corresponds to a maximum real solution for
u in the intervalu<1 and the pair-breaking rate is given by
29°. Thus, with an increase of nonmagnetic scattering we

dinahd’ d td d W ude that have a crossover from the state with different signs of order
correspon inghA., does no epend om. YVe conclude tha arameters in different bandfor zero y) to the isotropic
in this limit the reduced density of states is the same in al

bands, and in fact coincides with that of the isotropic BCS{ tate(for y—o). This isotropic state may be normal, gap-

In the absence of magnetic impurites we let
;=T ,,=7, and take the limity—c. Evidently, a solu-
tion of Eq. (23) in this limit exists only if u,=us, and

model with the gap determined from the nonlinear analog o ﬁzslxngna;;;?;g' \?vngggirr]]gtr?;t ;r:]ee\;]aelggey Zfa;:;”oc:v:/,:,“?

EqQ.(22: A=NAS 27 T/\wi+A?, with A= N A, /N. exist if yS<exp(—m/4)Ay/2, whereA, is the BCS gap at
The evolution of the densities of states in the multibandT=0. This case is particularly interesting: Since in the iso-
nonmagnetic scattering case is shown in Fig. 3. Here, Weopic (y— o) limit there is a finite gap and a finite positive
show the results of numerical solution of Ed4) in the  order parameter in both bands, and in the opposite limit of
weak coupling regime withh;=0.5, N15,A21,A2,=0, and  small y the order parameter in one band is negative, it is
yjﬁ=0. Only nonmagnetic interband scatteripg,=y,; IS clear that at intermediate values of interband scattefiray
included. In the clean limit, the two bands show two differ- gapless state should be crossed over. The last statement is in
ent excitation gaps. In accordance with earlieragreement with the result of Ref. 1 that for an order param-
calculations*?® any weak, but finite impurity scattering eter with a sign change and a nonzero Fermi-surface average,
mixes the pairs in the two bands, so that the first bavith  a gapless state develops with an increase of impurity concen-
the larger gap, i.e., more superconductidgvelops a tail in  tration, but the gap is restored at a large concentration of
the density of states which extends all the way down to thémpurities. To illustrate such a crossover, induced by mag-
second-band gap. Except for this tail, which consists of thenetic scattering, we show in Fig. 4 the results of our numeri-
normal excitations of the second band, scattered into the firgial calculations for a weak coupling two-band model
band by impurities, the density of states still looks similar to(\;=0.5\15,A»;,A2,=0, and y;,= y5;=T./2). The total
the clean-limit one. Upon the increase of the scattering ratejensity of states is shown at different values of the interband
the low-energy tail in the first-band density of states growsnonmagnetic scattering rage According to the discussion in
and the minimal gap, the gap in the second band, grows asec. ISR, for a smaly both order parameters have different
well. This reflects the fact that a larger number of pairs issigns. In this case® has no pair breaking effect, and small
scattered into the second band and induced the interbangap(negative order parametds induced in the second band
proximity-effect superconductivity there. Thus thecrease py the magnetic scattering. On the contrary, the interband
in the critical temperature of the system is accompanied by, is in this situation pair breaking. The shape of the density
anincreaseof the minimal gap in the excitation spectrum. of states shows two characteristic peaks, one, at about
Next, let us include inte_rband magr_1etic scattering into Eqq 1 A, due to this induced energy gap in the second band
(23.. Then in the considered regimg— we have and another just below, from the gap in the first band.
FZBZ y+v% Top=v—7° and u,=uz=u (we assumed With the increase of the nonmagnetic scattering rate the
Yarp=7"). As aresult, the densities of states in each banarder parameter in the second band becomes smaller in ab-
are given byN(w)=Reu/\/u?—1, whereu is a solution of  solute value, still remaining negative. The lower peak in the
the equation density of states gets washed out and the minimal energy gap
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becomes smaller. Whep approaches? this small gap van- Gor'kov. For weak anisotropy, this solution yields the criti-
ishes, although there is still a distinguishable peak in theal temperature suppression proportional to the mean square
density of states coming from the gap in the first band. Atvariation of the order parameter, a fact earlier pointed out by
larger y> v° both gaps have again the same sign, and now iseveral authors in various special cases. We also proved ana-
is v, which is pair breaking. As one again can see from Figlytically that the superconductivity suppression by isotropic
4, a small gap is restored for the last two curves, correspondnagnetic and isotropic nonmagnetic impurities is exactly the
ing to y=29°=T, and y=20y°=10T.. Note that at same when the average order parameter is (&, in case
y>T,, the gap cannot any more be ascribable to any of thef d pairing. We also give an analytical solution fdr, in

two bands, but corresponds to a fully isotropic superconducthe two-band model in the case of intermediate strength scat-

tivity, as described by Eq$14)—(22). tering. In the case of superstrong scattering we find a solu-
tion for T, for arbitrary anisotropy. We also discussed the
V. CONCLUSIONS evolution of the density of states with the increase of the

. ) ) impurities concentratioffor scattering strengih
In conclusion, we generalized the Abrikosov-Gor’kov so-
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