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Abstract. We analyse the self-energy operator of the Dyson equation in solids in comparison 
with the Kohn-Sham local potential of the density-functional theory (DFT). This allows us 
to explain why there is little difference between the DFT one-particle spectra and the spectra 
of actual one-electron excitations (OEE) in metals and why this difference is considerable in 
insulators. We can identify the terms responsible for this difference. This allowsus to propose 
a very simple method for deriving the OEE spectra from the DFT calculation. In particular, 
the calculations of the energy gaps in semiconductors (C, Si), large-gap dielectrics (Ne, Ar, 
Kr) and ionic solids (MgO, LiF, NaC1) provide an agreement with experiment well within 
5 % ,  as well as the pressure dependence of the gap in Xe up to metallisation. The calculational 
effort involved islittle different from that requiredin the usual self-consistent DFTCalCUkitiOn. 

1. Introduction 

Recently great progress has been achieved in the computational electronic theory of 
solids. The theoretical basis of most calculations is provided by the density-functional 
theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965). This formalism is 
exact for the ground-state properties (total energy, pressure, cohesive energy, etc.), 
However, the one-particle spectrum of the DFT non-interacting reference system may 
differ from the spectrum of the actual one-electron excitations (OEE) in a solid, defined 
by the poles of the one-particle Green function. Nevertheless, the D F ~  spectrum in 
metals turns out to be very close to the OEE one?. 

The situation is different in insulating crystals. A well known problem is due to the 
fact that DFT heavily underestimates the dielectric gap, sometimes by more than 50%, 
and this underestimation remains even in very accurate DFT calculations (e.g. Godby et 
a1 1987). At  the same time, many-body perturbation theory gives quite reasonable 
results for the gaps (Pickett and Wang 1984, Strinati et a1 1982, Hybertsen and Louie 
1986). It has been noted by Perdew and Levy (1983) and by Sham and Schluter (1983) 
that the effective potential of the DFT is defined only with an additive constant which 
may depend on the total number of electrons in the system. The variation of this constant 
when the electron number changes from N to N + 1 gives an additional contribution 

t This is confirmed both by many-particle calculations (e.g. Hedin 1965, MacDonald 1980, Schreiber and 
Bross 1983, and others) and by comparison with experiments. The discrepancy is usually less than 10%. 
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(the so-called ‘energy derivative discontinuity’) to the calculated value of the gap. 
However, the calculation of this contribution is as complicated as the full many-body 
calculation of the QEE spectra. 

The main practical question in this connection is the following one: Is it possible to 
retain the simplicity of the DET while extending it to describe accurately enough the 
dielectric gap and the whole spectrum of OEE in insulating crystals? In order to answer 
this question we have performed a comparative analysis of the DFT equations and 
the corresponding equations for the Green function. This allowed us to extract the 
contributions which are responsible for the qualitative difference between metals and 
insulators. It turns out that the corrections to the DFT quasi-particle spectrum may be 
calculated by use of a simple formula. The accuracy is about 5% in a wide range of ionic 
and covalent dielectrics and semiconductors. Our microscopic analysis also helps to 
understand better the causes of successes and failures of some other approaches. 

2. Description of one-electron spectra in density-functional theory and Green function 
method 

The one-particle equations of the density-functional theory (Kohn and Sham 1965) are 

[-(h2V2/2m) + V,,(r)]&(r) = E&(r) (1) 
where 

Veff ( r )  = Vex, ( r )  + V H  ( r )  + Vxc ( r )  

V H  is the Hartree potential, Vxc(r)  = 8Exc{n(r ) } /8n(r ) ,  and Exc{n(r)} is the usual 
exchange-correlation energy. The OEE spectrum, defined by the poles of the one-particle 
Green function, is given by the Dyson-type equation 

In contrast with Vxc(r) ,  the self-energy operator Zxc ( r ,  r ’ ,  E )  is non-local, i.e. depends 
on both rand r ’ ,  and is also energy-dependent. Such a difference leads to some important 
consequences. For instance, in the homogeneous electron gas Veff(r)  = const, because 
of the translational invariance. Therefore the DIT spectrum coincides with the spectrum 
of the non-interacting electrons. However, the OEE spectrum is always different from 
the non-interacting one. In particular, in the Hartree-Fock approximation, where the 
exchange is non-screened and consequently long-range, the non-locality of Zxc leads to 
the vanishing density of states at E = p (p is the chemical potential). The screening of 
the exchange interaction makes Zxc more local (more short-range) and the renor- 
malisation of the spectrum in the vicinity of p is strongly suppressed, being only a few 
per cent (Hedin and Lundqvist 1969). The origin of the above-mentioned similarity 
between the DFT and the OEE spectra in metals also lies in the full screening, as we shall 
see. 

We shall use for our analysis the lowest-order approximation to equation (2), i.e. 
the so-called GW approximation. In this approximation &(r, r ’ ,  E )  is given by the 
following equation: 

Zxc(r ,  r ‘ ,  E )  = - (i/2n) d E ’  G(r, r ’ ,  E - E‘)W(r, r ’ ,  E‘). ( 3 )  J 
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Here G(r,  r ’ ,  E )  is the one-particle Green function and W is the dynamically screened 
Coulomb interaction. G(r ,  r ’ ,  E )  is expressed in terms of the eigenfunctions vi and 
eigenvalues Ej  of the Dyson equation (2). However, as a first approximation, in the 
calculation of Zxc one can use Gj and Ej  instead of vi and E j .  

Numerous investigations of the homogeneous electron gas (Hedin and Lundqvist 
1969), metals (MacDonald 1980, Schreiber andBross 1983) andsemiconductors (Strinati 
et a1 1982, Hybertsen and Louie 1986) have demonstrated that the GW approximation is 
accurate enough for the calculation of the OEE spectrum. Further we shall concentrate 
on the non-locality and energy dependence of E,, in the framework of this approach. 

Let us use the spectral representation for the dielectric function C ’ ( r ,  r ’ ,  E )  
2 

E - ’ ( ? ,  r ‘ ,  E )  = d(r - r ’ )  - - .lo E 2  -E‘* + id 
a E‘ Im . ~ - ‘ ( r ,  r ‘ ,  E’) 

(4) 

The first term in ( 5 )  is called the screened exchange and is due to the pole of the one- 
particle Green function. The second one, known as the Coulomb hole, is due to the 
plasmon pole in the dielectric function. When can equation ( 5 )  be reasonably approxi- 
mated by alocalpotential like Vxc(r)d(r  - r’)? Apparently, Z x c ( r ,  r ’ ,  E )  should decrease 
sufficiently fast with J r  - r’l and should not depend considerably on the energy. Let us 
see if these conditions are satisfied in real systems. 

Im . ~ - l ( r ,  r ’ ,  E’)  has a sharp maximum at an energy E’ - nu, where up is the plasma 
frequency (in the well known plasmon pole approximation this function has a pole at 
E’ = nu,). So the main contribution to the Coulomb hole term in ( 5 )  comes from the 
region E’ - _hop % E,. In this region the sum Ej  + E’ only depends slightly on E j .  If 
we neglect Ej  - Ej in comparison with E‘ in the denominator, then, because of the 
completeness of the eigenfunction set Gj,  we shall have 

Zgh(r, r ’ ,  Ej )  - tji(r)?j,* ( r ’ )  = 6 ( r  - r ’ ) .  
i 

Such a reasoning has been used by Hedin and Lundqvist (1969) in connection with the 
homogeneous electron gas, but we see that it is true also for real metals as well as for 
insulators. Surely this part of Z,, is well approximated by the corresponding part of V,, 
and here there is no substantial difference between DFT and Green function method. 

The situation with the dynamically screened exchange is different. Here there is a 
great difference between metals and insulators owing to the different kinds of screening 
in these systems. As we shall see, it is the full screening that makes Zz in metals quasi- 
local, as well as in the homogeneous gas. In insulators Z F  has a strongly non-local part 
which cannot be described by the local DFT potential and should be included separately 
in the calculations of OEE spectra. 

The contribution of the dynamically screened exchange to the OEE energy Eki in a 
band il with a wavevector k may be written as follows: 

2 
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x Pk*fq,i . ' .k ,* (4  + G ) P k + q , h ' , k , h  (4  + G ' )  
GG' 

W ( q + G , q + G ' ,  E k A - E k + q , i . ' )  (6) 
where G and G' are reciprocal-lattice vectors, and / j k + q , h ' , k , h ( q  + G )  is a form factor 
defined as 

P k + q , d , , k , i ( q  + G )  = J d r  $k*+q,,,<r> e ~ + ~ ) r 4 k i ( r ) .  (7)  
52 

The non-locality of ZXc(r, r ' ,  E k h )  is due to the fact that it decreases too slowly at long 
distances Ir - r' I. The long-range asymptotics of Zxc are defined by the terms with G = 
G' = 0 and small q in (6). Specifically, the long-range contribution in Z g  (if any) arises 
when the effective interaction W(q + 0, q + 0,O) diverges at q -+ 0 like the bare Cou- 
lomb interaction 4ne2/q2. 

It follows from the orthonormality of Gkl that at q + 0 

P k + q , h ' . k . h  ( 4  + 0) = 62.h' f - 6 h h ' )  iqp!h + o(q2) (8) 
where PiA, is the matrix element of the dipole transition between the states A and A ' :  

It is easily seen from (6)-(8) that in components with 3, #A' of (6) the Coulomb 
divergence l /q2  cancels out due to the factor q in (8). The resulting interaction is short- 
range in comparison with the bare Coulomb interaction. In the tight-binding limit 
equation (6) may be considered at lr - r'I + CC as a dipole-dipole interaction con- 
tribution to E?, taking into account (8) and ( 9 ) f .  The components with h # A' are 
qualitatively the same both in metals and in insulators. In both cases at q + 0 the effective 
interaction corresponds to the energy IEkA' - Ekh/ which is the energy of the inter-band 
transitions. At  such energies the full screening does not exist, so that at large distance 
Ir - r'j 

W(r,  Y ' ,  Ek, - E k j , , )  - V c ( r  - r ' ) & - ' ( U j , ~ , )  

where udA, = IEkh - Ekh,l/h. Owing to the fact that the interacting objects here are 
'dipoles', the effective interaction decreases with distance comparatively fast, as 1/ 
lr - r'I3. In many crystals the dipole-dipole interaction vanishes due to symmetry so 
that only 'quadrupoles' contribute to the effective interaction, which decreases in this 
case even faster. 

Thus we see that the non-locality in terms A # A' is weak. Let us turn to the diagonal 
terms A = A '  which exist when the band A is fully or partly occupied. Form factors (7) in 
this case do not depend onq at q + 0 and hence these terms correspond to the interactions 
of unit charges J drlyjkl(r)I2 = 1. The energy argument of the effective interaction 
W(r, r ' ,  Ekh - Ek+q,h)  at q + 0 tends to zero as q V k , / h ,  where v k ,  is the electronvelocity. 
In insulators limq,o &-l(q + 0, q + 0, qV/h)  = E ~ ,  eo being the usual static macroscopic 
dielectric constant. Thus at large distance 

W(r, r ' ,  qV/h) - V c ( r  - r ')&i1 = e2.zi1/lr - r ' / .  
lr - r'i+ x 

The corresponding contribution in Z E  is therefore long-range. It should be noted that 
f Sterne and Inkson (1984) have discussed the problem of the dielectric gap in the tight-binding limit and 
have come to a similar conclusion. 
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Table 1. Energy gap (eV) in the Penn model. E, is the initial gap, DFT is the local DFI 
result, HF is the Hartree-Fock approximation, equation (4) is the ‘exact’ value and equation 
(11) is our formula. E,, is the static macroscopic dielectric constant. 

E, Eo DFT HF Equation (11) Equation (4) 

1.36 47.3 1.9 6.8 2.01 2.45 
2.72 15.6 3.4 10.2 3.83 4.35 
4.08 8.4 4.9 12.65 5.82 6.12 
5.44 5.8 6.8 14.7 8.16 7.62 
6.8 4.06 8.43 16.32 10.06 9.52 
8.16 3.2 9.93 19.04 12.78 11.15 

this contribution may be written in terms of the Hartree-Fock exchange self-energy 
as 

2 EF / E  0.  (10) z t ~ m - l o c a l  = 

In other words, the non-local contribution in &(r, r ’ ,  EkA) stems from the dynamically 
screened exchange part but can be represented by the statically screened bare (Fock) 
exchange interaction. In fact only the diagonal part of 2 2  is substantially non-local, but 
the non-diagonal part is quasi-local both in 2 2  and in XEF,  so we may hope to correct 
the DFT spectra relying on equation (10). 

Indeed, it is well known that the Hartree-Fock (HF) approximation overestimates 
the dielectric gap, sometimes by more than 100%. Supposing that the non-local part of 
xXc may be described by use of HF approximation with (lo), and that all other parts are 
reasonably described by the DFT potential V,,, we get the following simple formula: 

N 

A E ~ *  = ( ~ A I X , ~ ( ~ ,  r l ,  - vXc(t-p(r - r’)lLl) = ( E ~ - E ~ D * ) / & ~ .  (11) 
This formula must give reasonable results both in the strong screening limit and in the 
opposite one. Indeed, in materials &il + 0 so that the OEE spectrum calculated from 
(11) coincides with the DFT spectrum. As has been mentioned above, it is a good 
approximation in metals. In the tight-binding limit (&il + 1) (11) gives the HF spectrum 
which is agood approximation for atomic systems. Moreover in the intermediate regime, 
e.g. in semiconductors, the gap overestimation of HF approximation is of the same order 
as the DFT underestimation. In this case reasonable results are very likely too. The 
simplest semiconductor model (Penn 1962) has been investigated recently by Guinea 
and Tejedor (1980). We use their results to convince ourselves that our formula (11) 
indeed gives good results (table 1). Then we check it for real solids. 

3. One-electron spectra in real solids 

Using the data of different authors we have calculated using equation (11) gaps and 
valence band widths of various semiconductors and dielectrics (table 2)1. For gaps 
equation (11) gives excellent results, in spite of its simplicity. The maximal error is lo%,  
the average one is less than 5%,$ i.e. an order better than DFT or HF method separately. 
t We do not distinguish between the conventional and exchange-only LDA band structures because the 
difference is usually not very large; however, in case of small-gap semiconductors (Ge) one should use the 
exchange-only (Gaspar-Kohn-Sham) potential in equation (11). 
$ The only exception is Ge where equation (11) underestimates the direct gap by 25%. It is known, 
however, that the band structure of Ge is especially sensitive to calculational details. For instance, in the 
many-body calculations of Hybertsen and Louie (1986), the error for Ge was greater than for other 
materials. Further investigation should show if our approach is applicable to other small-gap semiconductors 
with the same accuracy as to Si, C, etc. 
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Table 2. The direct gap E, (eV) and the valence band width W (eV) in different solids. 

EO DFT HF Equation (11) Expt 

Ge 
C 
Si 
Ne 
Ar 
Kr 
LiF 
NaCl 
MgO 

15.8 
5.84 

11.90 
1.23 
1.62 
1.82 
1.94 
2.38 
3.01 

0.5a 4.3b 0 
5.6c 15.0' 7.2 
2.6' 9.4c 3.2 

21.2c 25.1' 22.5 
8.3' 18.5' 14.6 
6.8' 16.4= 12.1 

10.0d 22.4e 16.3 
5.05d 12.1' 8.0 
4.2d 18.09 8.8 

l . O b  
7.3' 
3.4' 

21.4' 
14.3' 
11.6' 
14.9d 
8.97d 
7.6d 

W 

EO DFT HF Equation (11) Expt 

Ne 1.23 0.61h 0.5' 0.52 1.31h 
Ar 1.62 0.85h 1.21' 1.07 1.66h 
C 5.84 20.41 29.01 21.9 24.2' 
Si 11.90 11.9' 16.9' 12.3 12.Sk 

a Our calculations. g Pantelides et a1 (1974). 
Trickey et a1 (1981). Svane (1987). 

Horsch (1985). 
Carlsson (1985). 1 Strinati et a1 (1982). 

1 Dagens and Perrot (1972). 

e Perrot (1972). ' ' Lipari and Kunz (1971). 
Hybertsen and Louie (1986). ' Ohkosi (1985). 

Let us note that our test included semiconductors (Si) as well as wide-gap insulators (Ne, 
Ar, Kr) and ionic crystals (LiF, NaCl). The valence band width of classical semi- 
conductors-Si and C-also agrees well with the experiment. The narrow valence bands 
in Ne and Ar cannot be described by this method, probably because the simple GW 
approximation, which was the starting point of our analysis, is not valid here. An 
indication of this is the fact that in rare-gas crystals both the HF method and DFT 
underestimate this quantity. 

It is interesting to test our approach on the band structure in several points of 
the Brillouin zone. The necessary HF data for diamond exist (Strinati et a1 1982). 
Unfortunately, the experiments are not sufficiently accurate, so we compare our results 
with the many-particle calculations of Strinati et a1 (1982) (table 3). 

Such a high accuracy of the very simple formula (11) may seem a little strange. We 
think that it is due to the fact that in (11) we have saved the high accuracy of the DFT in 
describing the short-range effects and have also taken into account the main factor 
responsible for the renormalisation of the gap, namely the long-range screened exchange 
interaction. 

Another interesting consequence of our analysis is due to the so-called 'self-inter- 
action correction' (SIC) method. This method was proposed by Perdew and Zunger 
(1981), who noted that the usual LDA approximation in DFT is wrong for a system of one 
electron, namely it includes the non-physical self-interaction to describe also any one- 
electron system, so Perdew and Zunger have proposed the scheme that had been devised 
as a 'correction' to the LDA (but not to the DFT itself). In this scheme, however, the 
effective potential is orbital-dependent, in contradiction with the DFT: 

vSIc(r) = v""(r>{n(r)>v,(r){ni(r>> - VZ"(r){ni(r>> (12) 
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Table 3. Inter-band transition energies (eV) in diamond. The time-dependent Hartree- 
Fock approximation (TDHF) is taken as 'exact' for those transitions where the experimental 
values are not available. 

Transition DFI HF Equation (11) TDHF Expt 

21.7 29.0 22.9 
5.6 15.0 7.2 
7.9 11.0 8.44 
6.5 8.0 6.73 

23.3 40.0 26.3 
2.06 6.1 2.75 

22.6 38.0 25.3 
0.43 2.0 0.7 

24.7 44.1 28.0 

25.2 24.0 
7.4 7.3 

10.2 8.0 
6.85 

29.25 
4.7 

37.6 
1.6 

32.3 

where ni(r) is the density of the ith orbital. This approach has given some improvements 
in the total energy of atoms and considerable improvements of the OEE spectra. Later it 
has been generalised for solids (Heaton et al1983), however somewhat artificially, with 
similar results. Later new approximations in the DFT have been devised that are self- 
interaction-free in the Perdew-Zunger sense?. Recent calculations (e.g. Manghi et a1 
1985, Godby et all987) gave nearly the same results for gaps as the LDA. We shall not 
go into details but it is almost clear now that in most cases even the exact DFT cannot 
give the results of the same accuracy for the excitation spectra as SIC does. The answer 
is that SIC is not an improvement of the LDA in the framework of the DFT, but a 
very indirect approximation for the self-energy in the Dyson equations$. Our analysis 
confirms this: indeed, the non-local part of X x c  is due to the intra-band interaction 
between occupied states with nearly equal wavevectors. These are just the same terms 
that are affected by the SIC method. The difference is, however, in how these terms are 
handled in both cases 

The last problem due to the use of equation (11) lies in the HF eigenenergies that 
enter this equation. The full HF calculation for a solid is an extremely tedious procedure. 
Fortunately, there is a very simple procedure, based on the quasi-classical WKB method, 
that yields accurate enough HF spectra. 

4. Quasi-classical approximation in the Hartree-Fock method 

Sham and Kohn (1966) have proposed a quasi-classical ('local') approximation for the 
self-energy X x c .  In this approximation the non-local operator Xxc is approximated by 
a local energy-dependent operator: 

In order to find the local momentum p ( r ,  E )  one should write the wavefunction in the 
quasi-classical form eb(r%E)r where p is slowly varying with Y .  Then 

Z x c ( r ,  r ' ,  E)+ Xg(p(r, E ) ,  E ) S ( r  - Y ' ) .  (13) 

fi2p2(r) fi2k2,(r) 
- E k i  - E F  - [Xg ( p ( r ,  EkA), E k i )  - vxc(r)] (14) 2m 2m 

t Formally in the DFT there is no such notion as self-interaction, so for many-electron systems it is not 
possible, strictly speaking, to discuss self-interactions. It has been mentioned, for instance, by Pickett 
(1985). 
$ The question if SIC is a correction to the LDA or a kind of approximation to ZXc(r ,  r ' ,  E )  has been recently 
discussed by Perdew (1986). 
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12 h Figure 1. Pressure dependence of the 
minimum energy gap in Xe. Curve A 
represents full relativistic DFT cal- 
culations. Curve B is WKB-HF approach 
described in $ 4 .  Curve C is obtained 
from the first and second ones after 
equation (11). The fitting for c0 uses 
experiments of Itie a n d  Le Toullec 
(1984) and Makarenko and Weil 
(1982). Circles denote available exper- 
imental data (Makarenko and Weil 

0 600 1200 

P 1982, Syassen i982) 

where the local Fermi momentum kF(r) is related to the local density n(r) and E )  
is the well known self-energy operator in the homogeneous electron gas. Equation 
(14) has been used successfully in metals (e.g. Liberman 1971). However, it has 
been mentioned (Levine and Louie 1982, Horsch 1985) that for an insulator the 
homogeneous electron gas is a poor reference system. It is much better to use as a 
reference system, for instance, the Penn (1962) model. In this model the electron 
spectrum possesses spherical symmetry and has a gap over the Fermi sphere. This gap 
is a parameter of the model. The wavefunction is given by the linear combination of 
two plane waves: 

q p ( y )  = ap eipr + b ,  ei(2kF-p)r. (15) 

The quasi-classical approach to this model demands the substitution of p in equation 
(15) by the local momentum p ( r ,  E) .  The equation for p has the following form: 

where c?[p ( r ) ]  is calculated in the Penn model. A very similar approach has been 
used by Horsch (1985), but he has simply used instead ofp(r)  the value o f p  averaged 
over the Wigner-Seitz cell. 

The results of the quasi-classical calculation (15) for Ne and Ar (table 4) dem- 
onstrate the sufficient accuracy of this method. Usage of the quasi-classical HF approach 
combined with equation (11) demands negligible computer time in comparison to the 
DFT band structure calculations themselves. 

It is worth noting that in some cases, namely in rare-gas crystals, the WKB-HF band 
structure depends strongly on the Penn gap E:"" used in construction of 2p (in Si 
this dependence is weak enough). However, this parameter may be fixed in the 
following manner. 
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Table 4. Inter-band transition energies (Ryd) in Ar and Ne calculated by the HF method 
and in the quasi-classical HF approximation (WKB-HF). 

~ ~ ~ 

Ar Transition H P  WKB-HF~ 

rvi5-rcl 1.36 1.44 
r c i - r c z 5 '  0.61 0.65 
x v 4 ' - X c l  1.63 1.73 

1.68 1.70 L'Z -Lci  

Lcl-LC3 0.33 0.42 

Ne Transition H F ~  WKB-HFE 

rv15-rc i  1.87 1.86 
1.33 1.29 r c i -rc25' 

X v 4 1 - X c l  2.38 2.40 
L " z ' - L c I  2.35 2.27 
Lcl-Lc3 0.77 0.87 

a Dagens and Perrot (1972). 
EPenng = 1 Ryd. 
EPenng = 1.6 Ryd. 

Let us neglect the difference between the Hartree-Fock approximation (HFA) and 
exchange LDA wavefunctions. The energy spectrum in the HFA we shall approximate 
by the WKB-HF method as described above. The total energy in the HFA must be equal 
to the total energy in the exchange-only DFT which is well represented by the exchange- 
LDA total energy. Then, for these energies we have 

occ 

= E r F  - 6 1 V,(r)n(r) d r  - 1 V,,,(r)n(r) d r  
1 

- 6 1 VF(r, r')$,l* (r>Vi(r ' )  d r  dr '  

occ 

EEF = x E ~ f l - & ~ V H ( r ) n ( r ) d r - V , , , ( r ) n ( r ) d r  i 

+ [EFFT{n(r)} - V:"{n(r)}]n(r) dr .  (18) 

In the WKB-HF approach we assume that 

(19) 

(as far as we neglect the difference between the wavefunctions). Then, equality of 
(17) and (18) gives: 
occ occ 

i 
occ 

= EDFT + j [EF"{n(r)} - V,D"{n(r)}]n(r) dr .  
i 
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Table 5 .  Determining the gap parameter (EPenn& in WKB-HF approach by use of equation 
(24). Brackets denote averaging over occupied bands (three k-points used). Condition 
(24) demands that (Ea=' - EHF) be equal to zero. All energies are in Ryd. 

('#=I - ~ e = 2 / 3  ) = -0.53 
Argon 

r 
E WKB-HF ) E Pen" ('WKB-HF - ~ a = l  

0.2 0.30 
0.4 0.12 
0.6 0.09 
0.8 0.03 
1.0 0.00 
1.2 -0.04 

1.04 
1.20 
1.30 
1.36 
1.42 1.36 
1.46 

Moreover, in the WKB-HFA: 

EFF -E:= = [ V , ( r ) - V ~ F - r ( r ) ] l ~ I ( r ) / 2  d r  i 
and hence 

occ 

t 7 j vL(r)lv,(r)12 d r  = j w T n ( r > > n ( r >  dr.  

In LDA (exchange-only) %,(n) = 2Vx(n), then 

j vI(r)lqI(r)lz d r  = 2 V,(r)n(r) dr .  1 
In other words 

occ occ 

EFF - EfFT = 
I I 

This means that the well known Slater result that the average Fock potential is equal 
to 4 of the KS exchange-only potential is true not only for a homogeneous electron gas 
but (in WKB approximation) for any density distribution. In fact, for occupied bands 
the main effect of changing (Y in the Xa approach is the rigid displacement of bands; 
shape variations are much more subtle, so only a few energies are sufficient in sums 
in (24). Table 5 illustrates how equation (24) may be used to fix the Penn gap parameter 
in the WKB-HF procedure. 

5. Application to the pressure dependence of dielectric gaps 

In recent years, calculations of the gap pressure coefficients and the metallisation 
pressures have attracted much attention. Some authors (Rodrigues et a1 1985, Van 
Camp et a1 1986, and others) state that despite the error in the gap itself, its pressure 
coefficients dE,/dp and even d2E,/dp2 are reproduced well by the LDA calculation. 
Others believe that the metallisation pressure pM is correct in the LDA (Satpathy et a1 
1985, and others). Obviously, both statements cannot be true simultaneously. For 
example, if pM is correct one would expect an error in dE,/dp of the order AE,/p,, 
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where AE,  is the error of E,. However, these two statements have never been 
applied to the same system: pressure coefficients are usually calculated for classical 
semiconductors (Si, GaAs, etc.) while pM calculations were performed for such 
materials as Xe, CsI, etc. 

We have calculated pressure coefficients for Si using equation (11) and quasi- 
classical HF and have found a very small correction to the LDA. This was due to the 
fact that eo for Si is large and does not depend greatly on pressure. The difference 
between the pressure dependence of the HF and LDA gaps was also small. So for Si 
(as well as for other classical semiconductors) it is possible to use LDA for pressure 
coefficients. This is not the case, for instance, for large-gap insulators. We have 
calculated the pressure dependence of the minimal gap in Xe, up to metallisation, 
using a simple fit to available experimental points for eo (figure 1). In this case 
EHF , - EkDA does depend on pressure, as well as eo. Hence, dE,/dp differs con- 
siderably from dEiDA/dp. Moreover, the metallisation pressure for Xe is under- 
estimated in LDA: at 920 kBar Xe becomes metallic in LDA but a 5.4 eV gap remains 
in the HF approximation, and our approach gives a 1.2 eV gap at the same pressure. 
We estimate the metallisation pressure for Xe as 1200 kbar. 

6. Conclusions 

The analyses of the structure of the exchange-correlation part of the self-energy 
Xxc(r, r’, E )  of the Green function allows us to make the following conclusions. 

In metals all parts of X x c  are comparatively short-ranged and thus the electron 
spectrum may be reasonably described by use of the potential of density-functional 
theory. 

In insulators there is a long-range contribution that corresponds to the statically 
screened exchange interaction between the states lkA) and Ik’A’) where A = A’ and 
k = k’ .  This contribution cannot be described by any local potential. 

This non-local (long-range) part of Zxc will coincide with the analogous part of the 
XFF in the Hartree-Fock approximation if the latter is divided by E ~ ,  the macroscopic 
dielectric constant. 

The practical results that stem from these facts are as follows. 
Correct description of the electron spectrum, particularly of the dielectric gap, in 

insulators and semiconductors is impossible without taking into account the long-range 
part of X x c .  

In the first approximation the correction to a DFT spectrum may be derived by 
equation (11), which is in fact a kind of interpolation between the DFT and the Hartree- 
Fock method. The accuracy of this prescription is an order higher than that of the HF 
or of the DFT methods themselves. This is true for semiconductors, wide-gap insulators 
and ionic crystals. 

The necessary HF spectrum may be derived accurately enough by the very simple 
quasi-classical technique. The total computer time for the calculation of the correction 
to the band structure is negligible; the corresponding program is very simple. 

This method does not make use of any adjustable parameters; it is necessary, 
however, to know from an experiment the dielectric constant E ~ .  
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