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NMR relaxation rates and Knight shifts in MgB ,
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We calculateab initio the NMR relaxation rates and the Knight shifts in MgBVe show that the dominant
relaxation mechanism at theB nucleus is the interaction with the electronic orbital moment, and we give a
simple explanation of that using a sim@e tight-binding model. When Stoner enhancem@is$o calculated
ab initio) is accounted for, we obtain good agreement with reported experimental values. Edvigheucleus,
we predict that the dominant relaxation mechanism is the Fermi-contact interaction, which also dominates the
Mg Knight shift.
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Recent discoveryof superconductivity in MgB created In the present work we report LDA calculation of the
substantial interest. It was suggested that the underlyingelaxation rates and of the Knight shifts. We will show that
mechanism is electron-phonon interaction in the bororfor B the relaxation is due to the states, and therbital
sublattice; which was subsequently confirmed by observa-relaxation rate is about 3 times larger than digole rate and
tion of a sizeable boroh; but not magnesiufhisotope ef- 10 time larger than th&ermi-contactrate. After an appro-
fect. State_of the art local-density approximatigtDA) priate Stoner renormalization is included, the agreement with
calculations™ produced electron-phonon coupling constantsiye experiment is very good. On the other hand, the main
A ranging from 0.75 to 0.87. Lacking single crystals, experi-goyrce of Knight shift is the hyperfine coupling wistelec-

mental determination ok relies on the specific heat renor- {515 Also thefyet unmeasuredelaxation on Mg is mainly
malization measuremerftsUsing the LDA density of states e 6 the Fermi-contact interaction with thetates.

(DOY), these experiments giva~0.6—0.8; however, if
there is any many-body renormalization of the LDA DOS
these experiments should be reanalyzed.

Nuclear magnetic resonan¢dMR) is a common probe

The hyperfine interaction-#y,l-H is the coupling be-
"tween the nuclear magnetic moméng,| and the hyperfine
field H produced at the site of the nucleus by the conduction

of the DOS. The measured quantities, the spin-lattice relax(-al?c”ons' In c_)rder to discuss separately thg diffgrent rellax-
ation rate, IT;, and the Knight shiftK, are related to the ation m_echanlsms, we neglect _the_small spin orbit coupling
spin susceptibility, and thus are not subject to a phonor@nd Sp"tdthe thperfm_e interaction into three terms} y,|
renormalization. Measurements of the relaxation rates and H°+H®+H"]. The first term is the coupling with the elec-
the Knight shift of 1B already exist~*2From the electronic tronic orbital moment; the second and the third terms are,
structure of MgB, one can conjectufé® that the main respectively, the dipole and the Fermi-contact interaction
source of relaxation should be the hyperfine coupling bewith the electronic spin. Thus the total hyperfine field is
tween the nuclear spin and conductiorpRlectrons. How-  given by

ever, a full microscopic understanding of the NMR dat

laxation rates and Knight shiftsis still missing. While B 8ms

different source®''? reasonably agree among themselves H_Z'“B[ 3 B Ta(r)]'

about the relaxation rates, reportingT{I between 5.6 ) N ]

%102 and 6.5¢10 3 1/(K se0, there is considerable con- wherer, s, andl are the electronic position, spin, and angular
troversy about the Knight shifts. Some autHbreeport a ~momentum operator. In the case256¥B, I=3/2 and y,
small average shifk =(K,+2K,,)/3=0.0175%, and give —0-89%y, while in the case of™Mg 1=5/2 and y,

S r(r-s

r3 r5

an upper bound on its anisotropy.,=(K,~K)/3 =017, with VNZ’?,/mpC- _
<0.0030%. Other authdts report even smaller K According to.Fermls golden rule, the relaxation rate,
—0.006%) shift and they attribute the shift to the Fermi-1/T1, may be written &

contact interaction. Note that the Korringa relation, 1 27

=K?(T,T)(yn/2ug)?(47kgh)~1, wherey, is the nuclear —=— > f(ed[l-f(exe)]8(€xs— €xrsr)
gyromagnetic ratio, is not satisfied here, as the measurements Ti % gosdmm

give r~0.2. Finally, a tiny negative shift=—0.0005%) _ ) rel |2

was measured by Toet al,'® and attributed to core polar- X[{ksml =iyl -H]k's'm’)]

ization. These discrepancies might arise from the difficulties (m[l,my—(m’[1,Jm’}))?

in measuring the''B shift, due to its smallness, and, possi- X , @

2
bly, from the selection of the reference matefifl.There- s
fore, in order to clarify the microscopic origin of the NMR wheref(¢) is the Fermi-Dirac distributions is the spin in-
relaxation process and of the Knight shi initio calcula-  dex, andm) are the eigenstates bf. Herek stands for both
tions are highly desirable. the wave vector and band index. Expansion of the Fermi
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TABLE I. Knight shift, K, in %. Both unrenormalized and Stoner-enhanced values are included, as discussed in the text. The label
=XY,z indicates the direction of the external magnetic field.

dipole (xy) dipole(z) orbital Fermi-contact core Totéky/2  Total (renormalizedd Expt.? Expt.b Expt.©
Mg 0.0005 —0.0010 0 0.0260 0.0003 0.0271/0.0256 0.0361/0.0341
B —0.0004 0.0008 0 0.0027 —0.0007 0.0016/0.0028 0.0024/0.0042 0.0175 0.006 0.0005

%Reference 11. °Reference 9. °Reference 10.

function and integration over the nuclear spin yields, for a 1
polycrystalline sample, the following expressidn > >

1 8
Tr< [HON|?=2 3
3 3TE

T,T

1 _ - _
2mkgh vy Tr§|HN|2}, XD L INL A2 DA L A NaL

where we introduced the density-of-states operator, ©
(k sIN|k" s')=8sy S S(ex—Eg). The prefactor is simi-
lar to that of the Korringa relation,C=(4wkg/%)
X(vnl7ve)?. In the present cas€~1.4x 10%/(K sec) for
Mg and C~3.9x10°/(K sec) for B. The interaction
cross terms in Eq.(1), i.e., the terms proportional to
TrH°NHIN], TTH°NHFN] and TfHFNHIN] all vanish,
the first two exactly, because[E=0 and the third vanishes
exactly for polycrystals because [§f—3(s-r)?]=0, and
approximately for single crystals, when theslectron DOS  _ JATIB[ Y4, ()Y (F)* Y, (F)d2r.
is small[cf. Ref. 16, Eq.24)]. Thus, without the core polar- In the saryﬁe way, the Knight shift can be written ks
ization, whi_ch will be discus_sed later, j[he relaxation rate has_ 2usTr(1|H,N|1) wherea is the direction along which
three contributions: the orbital, the dipole and the contactihe external magnetic field is applied. As the relaxation rate,
field term. Note that in the terminology of Ref. 16, all crosshe rejative shift may also be expressed as a function of the
terms, diagonal in interaction but off-diagonal in angular mo-pog matrix and the radial integrals, expanding the Bloch
mentum, are included in the calculation. More details on thig,ction in the LMTO basis set.
derivation can be found in Ref. 15. The DOS matrix was calculated by the linear tetrahedron
In order to evaluate the relaxation rate, we adopt thenethod. We found that the results were already very well

2

> 2

1
Tr|HIN[?=4uf
3 M==2 AATLL!
_ 2 _ 2
X(r 3>A'>\CLerL'A'<|’ 3>II’CA7\'NAL-

(6)
Here DY, =(L'[l L), lo=1,, l.1=1./42, and CZ,

tight binding LMTO-ASA method (LMTO47 Stuttgart
code.*

converged with a mesh of 370 irreducitiepoints. In order

This method has been already used with succesg, minimize the linearization error and thus to obtain accu-

; 15
to calculate 1Ir;, e.g, in ACg.™ Thus we express raie wavefunctions at the Fermi level, the linear partial wave

the Bloch function as|iks)= g (r|x&)CrLiklS), with
|X|;{L>:|q)RL>+2R’L’|(DR/L’>h;'|_/,R|_- Here (r|®gy)
= dri(€,r1,1)YL(TR), Wheregg, is the radial solution of the
Schralinger equation at the energyg, , ¢gy IS its energy
derivative,Y| is a spherical harmonic with=Im. For sim-
plicity, in the following we will write only the contributions
from ¢g,, although in the calculation we have, of course,

included all terms. Thus the three contributions td;1¢an
be expressed as a function of

\Y
NLL,:@X fd3kCL,ik5(Eik)C:',ik’ (2)

and of the radial integrals involvingg(€,r,")

<r73>|’|:f¢RI(€vRIar)r73¢RI/(6yRI’1r)r2dr- ®)

expansion was performed with, g =€e. The convergence

of the sums over the angular momentum was also very good.
We find that we can truncate afte+2. The reason is that
the radial integralg(ay/r)3),: (ao is the Bohr radiusde-
crease quickly whehandl!’ increases. For Mg we find, e.g.,
((a0/r)*)11=4.8, ((ap/r)%2,=0.16, and ((as/r)%)ss
=0.09, and in for B,{(ay/r)%;=1.1 and{(ag/r)3),
=0.2.

What is the dominant mechanism that gives rise to the
magnetic relaxation at B and Mg nuclei? In most metals it is
the Fermi contact one, defined by the DOS of stedectrons
at the Fermi level. However, in the case of Mgie states
near the Fermi level are mainly B. We find that the ratio
Ngs(M@)/N;oi(Mg) ~1/4, andNg((B)/N,o(B) ~1/50. There-
fore, at least in the case of B, the ratio is very small, and the
Fermi contact term could become comparable or even
smaller than the dipole or the orbital term. We have calcu-
lated all three contributions for both elements and show the

The Fermi-contact, the orbital, and the dipole contributiongesults in Tables | and II.

may then be written, respectively, as

1 1 4 2
Tf§|HFN|2=§M§(§¢§(EVR|,0)NSS) : (4)

We also calculat@b initio the core polarization. For this
purpose we applied in the calculations an external magnetic
field B, and then calculateth,(0), the spin density of the
nth core shell at the nucleus. Then the core polarization
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Knight ~ shift ~can be  obtained as Kg, —~—2K,=2uf CiJ.4r %)11(N,/3)~0.0011%. Again, all

= up(87/3)Z,(m,(0)/B), and the corresponding contribu- these numbers are rather close to the all-electron results
tions to the relaxations rate can be computed from the Korshown in the Tables. The ratia{) gip/(T1) oo~ (2/3)Tr[ 1

ringa relations for the core stat¥sFor Mg, the contribu- .|]/2Mmm,((;ifr:1 1m,)2~3.3. The reason for which the orbital
tion of the core polarization is negligible and the Fermi-term dominates over the dipole term is that all thpearbit-
contact interaction dominates. FAfB, we find that the gais are present at the Fermi level, as opposed, for instance, to
contribution of the 5 shell is of the same order, but of op- ne fullerened® where only thep, orbital has a sizable
posite sign, as the theszhell contribution. Their total effect \yeight at the Fermi level, and thus the orbital term is
is thus small. Also, since the Fermi-contact contribution forgtrongly reduced.

B is much smaller than in Mg, the relative effect of the |5 terms of the linear response theory, both the Knight
dipole term is larger, leading to a noticeable anisotropy of thehift and the relaxation rate are defined by the electronic spin
Knight shift (about 30%, while the Mg Knight shift is es-  gysceptibility!” y(g,), specifically, K=Rex(0,0), and
sentially isotropic. . _ 1T =lim  S.Imx(g,0)/w. Electron-hole excitations

In order to understand the numerical results, we first cal- ©—0 ) - ) )
culate analytically the shifts and the relaxation rate for a'énormalized the spin susceptibility, and in the simplest pos-
model Hamiltonian which includes only 8and Bp orbitals. sible approximation one writes
We start with the contribution of electrons, i.e., the contact
term. The contact shift may be written aX X(0,@)~xo(G,®)/[1—=1xo(q,®)],

2 . .
NMB(4/3)|¢S(O)!2NSS’ where Nss is the s-projected DOS where x, is the bare(noninteracting susceptibility,| is the
per atom per spin. We finNss~0.002 stages/ eViper B atom. s, _calied Stoner factor, characterizing intraatomic exchange,
Using }sh? free B atom value|¢(0)|*/(4m)~1.648, and the calculations described above correspond to total ne-
(2.16, " in MgB,) we find K~0.002% and ;T~0.15  glect of the Stoner renormalization. One can estinhdtem
x10™% 1/(Ksec). Both numbers are very close to those ob{ SDA calculation with fixed total spin moment by fitting the
tained from the full calculationéTables | and IJ. total energy to the Stoner expressioB,,(M)=M?2/4N

We now consider the contribution of B electrons. The  —M2j/4, whereM is the spin moment andll is the total
states at the Fermi level are70% Bp-like. N, , ~0.035  pQS per spin. In this way, we fountN=1(0,0)~0.25.
stategfspin eV atom, and NPZlPZNO'OA'S stategépin eV Thus we can estimate renormalized Knight shift lds

atom. Thus N, , ~N, , ~Ny/3, whereN,, is the total ~Ko/(1—IN)=1.3X,. The renormalized values are also

p-projected DOS per spin per atom. Therefore we find theShown in the Table I.

following approximate expression of the orbital contribution Th_e renormalization _Of_ Jr/l_ IS spm_ewhat_ more difficult to :
to the relaxation rate take into account, and it is, in principle, site dependent. It is

easy to sho@? that in the Stoner approximation

1 JAME o N, 2 ,
ﬁ~4wksﬁ7n7|<r Daal “Troll-1] 3 Im x(9,@)~1m xo(q,0)/[1-IRexo(d,@)]%  (7)
where Tr [I-1]= (21 +1)I(1+1)=6. We find N,/3~0.038 however, averaging this expression ogé require_s knowl-
states/eV per B atom anf{a,/r)%)~0.82 for the free B edge of theg-dependence ofy. Generally speaking, renor-
atom (1.14 in MgB,), and therefore I,T~1.6 malization factor lies between 1/(IN) and 1/(1-IN)2.

X 10~ 3/(K sec). The orbital part of the Knight shift is zero in Using the Lindhard susceptibility ,and a sphere for the Fermi

this model because nondiagonal elements of the DOS matrixIface, Shastry and Abrahafhfound that in the 3D case

vanish.
In the same way the dipole term can be written as < Im x0(q, w) > (Im xo(9,))

[1—1 Rexo(q.@)]?/ (1-IN)(1-2IN/3)’

which is a good approximation fdiN=<0.7. By integrating
5 _ numerically Eq.(7) with the Lindhard function, we found a
where 2, mmw (C1h 1 )?=6/5. Thus we find that the B petter approximation, good for essentially 8N, and pre-
electron contribution to the dipole relaxation rate i, serving the correct small IN limit, namely
~0.4x10"% 1/(Ksec). For the Knight shift we finKk?  (Im yo(q,®))/(1—IN)%3. Thus we used the factor 1.%3

1 Np) 2
==~ 8akeh Yaudl(r 3?2 (Ciﬁ:’lm,)z =,
T,T 3

pmm’

TABLE Il. Relaxation rate I, T in 10 %/(K sec). Both unrenormalized and Stoner-enhanced values are
included, as discussed in the text.

orbital dipole Fermi-contact core Total Totaknormalizedd Expt.? Expt.® Expt.°

Mg  0.02 0.01 1.0 0.0001 1.0 1.6
B 2.6 0.8 0.28 0.02 3.7 4.3-5.9 5.6 6.5 6.1

aReference 12. °Reference 11. °Reference 9.
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~1.6 for 1T,. For the 2D free electron gas, there is qo find|¢(0)|?/4m=4.54a, %, and(r ~3),,=4.8a, °. Hence we

dependence ifyo(q, @) for g<2k, and thus the renormal- find R~5. Instead, in the case of Bg(0)|*/4m=2.16a,°

ization factor is 1/(+IN)2. and(r~%);;=1.1a, 3, and thusR~0.35. The coupling with
The many-body renormalization of the orbital susceptibil-nons electron competes with or dominates over the coupling

ity is even more complicated than that of the spin susceptiwith s electrons wherR<1. .

bility. In the scalar-relativistic LDA it vanishes, however, the ~ Finally, we would like to mention that the presented val-

effects beyond LDA and the spin-orbit interaction enhance!€S for 1T, T include contributions from both quasi-2p,

the xor,. While we cannot compute this renormalization @1d 3Dp; bands. If, as suggestédwo different gaps open

within the methodology used in this paper, in order to get2€/ow T¢ in these bands, the temperature dependence of

some idea of the scale of the renormalized relaxation rate, W%:;J-T at low temperature should be computed taking the

show in the Table Il a range of value, first neglecting the erent character of these bands in the normal states. It is
renormalization ofy,,, entirely, and then setting it to that of hot obviousa priori that the corresponding weights will be

just the densities of states. Calculations similar to those de-

qui_”h'e larger value of T,T, namely 5.%10°% 1/(K sec) scribed above, but band decomposed are needed.
g 1 Yo ' To summarize, we report first-principles calculations of

is in a good agreement with the reported experimental num; . . . .
ber. This means that the DOS, calculated within LDA, is ait:eMN'\éR ;_er::xraet;%rlltsra;?: %ng thoeolgnég?ésrr:fetitovr\]/it?lomesgf
good approximationimaybe a slight underestimatef the 9bo. 9 9

bare DOS, and thus the values for the electron-phonon Cmp_eriment, provided that the dipole and the orbital hyperfine

lina constantx. obtained from the specific heat measure_mteractions are taken into account, as well as the Stoner
pmer?ts are reliable P renormalization of susceptibility. NMR relaxation atB

ucleus is dominated by the orbital interaction, and that at
To the best of our knowledge, there are at present nghe Mg nucleus by the Fermi-contact one. The Knight shift

experimental data for Mg. We predict that the magnetic shi ) . o
is isotropic and that the principal relaxation mechanism is th s dominated by the Ferm'l contact polarization on both B and
g. After these calculations were completed, we learned

Fermi-contact  interaction, despite of the fact thatabout similar calculations from the Ames grotipwith the
Ngs/ 2~ 0N ~1/3. The reason is that the quantities that one groupy

has to compare are not the partial DB andN,; but rather results consistent with those reported here.

the dimensionless couplings £2/3)|¢5(0)|*Nss and Useful discussions with O.K. Andersen, V. P. Antropov,
waZ-o(r %) Ny, and thus the relevant ratio iR  K.D. Belashchenko, P. Carretta, E. Koch, and A.l. Liechten-
=(2/3)| s(0)|°Ngo/ (2= 0(r 3);N;). In the case of Mg we stein are gratefully acknowledged.
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