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NMR relaxation rates and Knight shifts in MgB 2
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We calculateab initio the NMR relaxation rates and the Knight shifts in MgB2. We show that the dominant
relaxation mechanism at the11B nucleus is the interaction with the electronic orbital moment, and we give a
simple explanation of that using a simplesp tight-binding model. When Stoner enhancement~also calculated
ab initio! is accounted for, we obtain good agreement with reported experimental values. For the25Mg nucleus,
we predict that the dominant relaxation mechanism is the Fermi-contact interaction, which also dominates the
Mg Knight shift.
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Recent discovery1 of superconductivity in MgB2 created
substantial interest. It was suggested that the underly
mechanism is electron-phonon interaction in the bo
sublattice,2 which was subsequently confirmed by observ
tion of a sizeable boron,3,4 but not magnesium4 isotope ef-
fect. State of the art local-density approximation~LDA !
calculations5–7 produced electron-phonon coupling consta
l ranging from 0.75 to 0.87. Lacking single crystals, expe
mental determination ofl relies on the specific heat reno
malization measurements.8 Using the LDA density of states
~DOS!, these experiments givel;0.620.8; however, if
there is any many-body renormalization of the LDA DO
these experiments should be reanalyzed.

Nuclear magnetic resonance~NMR! is a common probe
of the DOS. The measured quantities, the spin-lattice re
ation rate, 1/T1, and the Knight shift,K, are related to the
spin susceptibility, and thus are not subject to a phon
renormalization. Measurements of the relaxation rates
the Knight shift of 11B already exist.9–12 From the electronic
structure of MgB2 one can conjecture9,10 that the main
source of relaxation should be the hyperfine coupling
tween the nuclear spin and conduction Bp electrons. How-
ever, a full microscopic understanding of the NMR data~re-
laxation rates and Knight shifts! is still missing. While
different sources9,11,12 reasonably agree among themselv
about the relaxation rates, reporting 1/T1T between 5.6
31023 and 6.531023 1/~K sec!, there is considerable con
troversy about the Knight shifts. Some authors11 report a
small average shiftK5(Kz12Kxy)/350.0175%, and give
an upper bound on its anisotropy,Kax5(Kz2Kxy)/3
,0.0030%. Other authors9 report even smaller (K
50.006%) shift and they attribute the shift to the Ferm
contact interaction. Note that the Korringa relation,r
5K2(T1T)(gn/2mB)2(4pkB\)'1, wheregn is the nuclear
gyromagnetic ratio, is not satisfied here, as the measurem
give r;0.2. Finally, a tiny negative shift (K520.0005%)
was measured by Touet al.,10 and attributed to core polar
ization. These discrepancies might arise from the difficult
in measuring the11B shift, due to its smallness, and, poss
bly, from the selection of the reference material.9,10 There-
fore, in order to clarify the microscopic origin of the NMR
relaxation process and of the Knight shift,ab initio calcula-
tions are highly desirable.
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In the present work we report LDA calculation of th
relaxation rates and of the Knight shifts. We will show th
for 11B the relaxation is due to thep states, and theorbital
relaxation rate is about 3 times larger than thedipolerate and
10 time larger than theFermi-contactrate. After an appro-
priate Stoner renormalization is included, the agreement w
the experiment is very good. On the other hand, the m
source of Knight shift is the hyperfine coupling withs elec-
trons. Also, the~yet unmeasured! relaxation on Mg is mainly
due to the Fermi-contact interaction with thes states.

The hyperfine interaction2\gnI•H is the coupling be-
tween the nuclear magnetic moment\gnI and the hyperfine
field H produced at the site of the nucleus by the conduct
electrons. In order to discuss separately the different re
ation mechanisms, we neglect the small spin orbit coupl
and split the hyperfine interaction into three terms,2\gnI
•@Ho1Hd1HF#. The first term is the coupling with the elec
tronic orbital moment; the second and the third terms a
respectively, the dipole and the Fermi-contact interact
with the electronic spin. Thus the total hyperfine field
given by

H52mBH 2
l

r 3
1F s

r 3
23

r ~r•s!

r 5 G2
8ps

3
d~r !J ,

wherer , s, andl are the electronic position, spin, and angu
momentum operator. In the case of11B, I 53/2 and gn
50.89gN , while in the case of 25Mg I 55/2 and gn
520.17gN , with gN5e/mpc.

According to Fermi’s golden rule, the relaxation rat
1/T1, may be written as13

1

T1
5

2p

\ (
kk8ss8mm8

f ~eks!@12 f ~eks8!#d~eks2ek8s8!

3u^ksmu2\gnI•Huk8s8m8&u2

3
~^muI zum&2^m8uI zum8&!2

TrI z
2

, ~1!

where f (e) is the Fermi-Dirac distribution,s is the spin in-
dex, andum& are the eigenstates ofI z . Herek stands for both
the wave vector and band index. Expansion of the Fe
©2001 The American Physical Society04-1
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TABLE I. Knight shift, Ka in %. Both unrenormalized and Stoner-enhanced values are included, as discussed in the text. Thea
5xy,z indicates the direction of the external magnetic field.

dipole ~xy! dipole ~z! orbital Fermi-contact core Total~xy/z! Total ~renormalized! Expt.a Expt.b Expt.c

Mg 0.0005 20.0010 0 0.0260 0.0003 0.0271/0.0256 0.0361/0.0341
B 20.0004 0.0008 0 0.0027 20.0007 0.0016/0.0028 0.0024/0.0042 0.0175 0.00620.0005

aReference 11. bReference 9. cReference 10.
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function and integration over the nuclear spin yields, fo
polycrystalline sample, the following expression15

1

T1T
52pkB\gn

2FTr
1

3
uHNu2G ,

where we introduced the density-of-states opera
^k suNuk8 s8&[dss8dkk8d(ek2EF). The prefactor is simi-
lar to that of the Korringa relation,C5(4pkB /\)
3(gn /ge)

2. In the present caseC;1.43104/(K sec) for
25Mg and C;3.93105/(K sec) for 11B. The interaction
cross terms in Eq.~1!, i.e., the terms proportional to
Tr@HoNHdN#, Tr@HoNHFN# and Tr@HFNHdN# all vanish,
the first two exactly, because Tr@s#50 and the third vanishe
exactly for polycrystals because Tr@s223(s•r )2#50, and
approximately for single crystals, when thed-electron DOS
is small@cf. Ref. 16, Eq.~24!#. Thus, without the core polar
ization, which will be discussed later, the relaxation rate
three contributions: the orbital, the dipole and the conta
field term. Note that in the terminology of Ref. 16, all cro
terms, diagonal in interaction but off-diagonal in angular m
mentum, are included in the calculation. More details on t
derivation can be found in Ref. 15.

In order to evaluate the relaxation rate, we adopt
tight binding LMTO-ASA method ~LMTO47 Stuttgart
code!.14 This method has been already used with succ
to calculate 1/T1, e.g., in A3C60.15 Thus we express
the Bloch function asu iks&5(RL^r uxRL

k &cRLi,kus&, with

uxRL
k &5uFRL&1(R8L8uḞR8L8&hR8L8,RL

k . Here ^r uFRL&
5fRl(enRl ,r )YL( r̂R), wherefRl is the radial solution of the
Schrödinger equation at the energyenRL , ḟRl8 is its energy
derivative,YL is a spherical harmonic withL5 lm. For sim-
plicity, in the following we will write only the contributions
from fRl , although in the calculation we have, of cours
included all terms. Thus the three contributions to 1/T1 can
be expressed as a function of

NLL85
V

8p3 (
i
E d3kcL,ikd~e ik!cL8,ik

* , ~2!

and of the radial integrals involvingfRl(enRl ,r )

^r 23& l 8 l5E fRl~enRl ,r !r 23fRl8~enRl8 ,r !r 2dr. ~3!

The Fermi-contact, the orbital, and the dipole contributio
may then be written, respectively, as

Tr
1

3
uHFNu25

1

2
mB

2 S 4

3
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2~enRl,0!NssD 2
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(
LL8LL8

3^r 23&llDLL8
2m NL8L8^r

23& l l DL8L
m NLL ,

~5!

Tr
1

3
uHdNu254mB

2 (
m522

2

(
LL8LL8

3^r 23&l8lCLL8
2m NL8L8^r

23& l l 8CLL8
2m NLL .

~6!

Here DLL8
m

5^L8u l muL&, l 05 l z , l 615 l 6 /A2, and CLL8
2m

5A4p/5*Y2m( r̂ )YL( r̂ )* YL8( r̂ )d2r̂ .
In the same way, the Knight shift can be written asKa

52mBTr^↑uHaNu↑& wherea is the direction along which
the external magnetic field is applied. As the relaxation ra
the relative shift may also be expressed as a function of
DOS matrix and the radial integrals, expanding the Blo
function in the LMTO basis set.

The DOS matrix was calculated by the linear tetrahed
method. We found that the results were already very w
converged with a mesh of 370 irreduciblek points. In order
to minimize the linearization error and thus to obtain acc
rate wavefunctions at the Fermi level, the linear partial wa
expansion was performed withenRl[eF . The convergence
of the sums over the angular momentum was also very go
We find that we can truncate afterl 52. The reason is tha
the radial integralŝ (a0 /r )3& l l 8 (a0 is the Bohr radius! de-
crease quickly whenl andl 8 increases. For Mg we find, e.g
^(a0 /r )3&1154.8, ^(a0 /r )3&2250.16, and ^(a0 /r )3&33
50.09, and in for B, ^(a0 /r )3&1151.1 and ^(a0 /r )3&22
50.2.

What is the dominant mechanism that gives rise to
magnetic relaxation at B and Mg nuclei? In most metals i
the Fermi contact one, defined by the DOS of thes electrons
at the Fermi level. However, in the case of MgB2 the states
near the Fermi level are mainly Bp. We find that the ratio
Nss(Mg)/Ntot(Mg);1/4, andNss(B)/Ntot(B);1/50. There-
fore, at least in the case of B, the ratio is very small, and
Fermi contact term could become comparable or e
smaller than the dipole or the orbital term. We have cal
lated all three contributions for both elements and show
results in Tables I and II.

We also calculateab initio the core polarization. For this
purpose we applied in the calculations an external magn
field B, and then calculatedmn(0), the spin density of the
nth core shell at the nucleus. Then the core polarizat
4-2
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Knight shift can be obtained as Kcp
5mB(8p/3)(n(mn(0)/B), and the corresponding contribu
tions to the relaxations rate can be computed from the K
ringa relations for the core states.18 For 25Mg, the contribu-
tion of the core polarization is negligible and the Ferm
contact interaction dominates. For11B, we find that the
contribution of the 1s shell is of the same order, but of op
posite sign, as the the 2s shell contribution. Their total effec
is thus small. Also, since the Fermi-contact contribution
B is much smaller than in Mg, the relative effect of th
dipole term is larger, leading to a noticeable anisotropy of
Knight shift ~about 30%!, while the Mg Knight shift is es-
sentially isotropic.

In order to understand the numerical results, we first c
culate analytically the shifts and the relaxation rate fo
model Hamiltonian which includes only Bs and Bp orbitals.
We start with the contribution ofs electrons, i.e., the contac
term. The contact shift may be written asK
;mB

2(4/3)ufs(0)u2Nss, where Nss is the s-projected DOS
per atom per spin. We findNss;0.002 states/eV per B atom
Using the free B atom value,ufs(0)u2/(4p);1.64a0

23

(2.16a0
23 in MgB2) we find K;0.002% and 1/T1T;0.15

31023 1/(K sec). Both numbers are very close to those
tained from the full calculations~Tables I and II!.

We now consider the contribution of Bp electrons. The
states at the Fermi level are;70% B p-like. Npx ,px

;0.035

states/~spin eV atom!, and Npz ,pz
;0.045 states/~spin eV

atom!. Thus Npx ,px
;Npz ,pz

;Np/3, where Np is the total
p-projected DOS per spin per atom. Therefore we find
following approximate expression of the orbital contributi
to the relaxation rate

1

T1T
;4pkB\gn

2
4mB

2

3
u^r 23&11u2Trm@ l• l#S Np

3 D 2

,

where Trm@ l• l#5(2l 11)l ( l 11)56. We find Np/3;0.038
states/eV per B atom and̂(a0 /r )3&;0.82 for the free B
atom ~1.14 in MgB2), and therefore 1/T1T;1.6
31023/(K sec). The orbital part of the Knight shift is zero i
this model because nondiagonal elements of the DOS m
vanish.

In the same way the dipole term can be written as

1

T1T
;8pkB\gn

2mB
2 u^r 23&11u2 (

mmm8
~C1m,1m8

2m
!2S Np

3 D 2

,

where (mmm8(C1m,1m8
2m )256/5. Thus we find that the Bp

electron contribution to the dipole relaxation rate is 1/T1T
;0.431023 1/(K sec). For the Knight shift we findKz

d

14050
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;22Kxy52mB
2 C10,10

20 ^r 23&11(Np/3);0.0011%. Again, all
these numbers are rather close to the all-electron res
shown in the Tables. The ratio (T1)dip /(T1)orb;(2/3)Tr@1
• l#/(mmm8(C1m,1m8

2m )2;3.3. The reason for which the orbita
term dominates over the dipole term is that all threep orbit-
als are present at the Fermi level, as opposed, for instanc
the fullerenes,15 where only thepz orbital has a sizable
weight at the Fermi level, and thus the orbital term
strongly reduced.

In terms of the linear response theory, both the Knig
shift and the relaxation rate are defined by the electronic s
susceptibility,17 x(q,v), specifically, K}Rex(0,0), and
1/T1} lim

v→0
(qIm x(q,v)/v. Electron-hole excitations

renormalized the spin susceptibility, and in the simplest p
sible approximation one writes

x~q,v!'x0~q,v!/@12Ix0~q,v!#,

wherex0 is the bare~noninteracting! susceptibility,I is the
so-called Stoner factor, characterizing intraatomic exchan
and the calculations described above correspond to tota
glect of the Stoner renormalization. One can estimateI from
LSDA calculation with fixed total spin moment by fitting th
total energy to the Stoner expression,Etot(M )5M2/4N
2M2I /4, whereM is the spin moment andN is the total
DOS per spin. In this way, we foundIN[Ix(0,0)'0.25.
Thus we can estimate renormalized Knight shift asK
'K0 /(12IN)51.33K0. The renormalized values are als
shown in the Table I.

The renormalization of 1/T1 is somewhat more difficult to
take into account, and it is, in principle, site dependent. I
easy to show20 that in the Stoner approximation

Im x~q,v!'Im x0~q,v!/@12IRex0~q,v!#2, ~7!

however, averaging this expression overq’s requires knowl-
edge of theq-dependence ofx0. Generally speaking, renor
malization factor lies between 1/(12IN) and 1/(12IN)2.
Using the Lindhard susceptibility ,and a sphere for the Fe
surface, Shastry and Abrahams20 found that in the 3D case

K Im x0~q,v!

@12I Rex0~q,v!#2L '
^Im x0~q,v!&

~12IN !~122IN/3!
,

which is a good approximation forIN&0.7. By integrating
numerically Eq.~7! with the Lindhard function, we found a
better approximation, good for essentially allIN, and pre-
serving the correct small IN limit, namely
^ Im x0(q,v)&/(12IN)5/3. Thus we used the factor 1.335/3
are
TABLE II. Relaxation rate 1/T1T in 1023/(K sec). Both unrenormalized and Stoner-enhanced values
included, as discussed in the text.

orbital dipole Fermi-contact core Total Total~renormalized! Expt.a Expt.b Expt.c

Mg 0.02 0.01 1.0 0.0001 1.0 1.6
B 2.6 0.8 0.28 0.02 3.7 4.3–5.9 5.6 6.5 6.1

aReference 12. bReference 11. cReference 9.
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'1.6 for 1/T1. For the 2D free electron gas, there is noq
dependence inx0(q,v) for q,2kF , and thus the renormal
ization factor is 1/(12IN)2.

The many-body renormalization of the orbital susceptib
ity is even more complicated than that of the spin susce
bility. In the scalar-relativistic LDA it vanishes, however, th
effects beyond LDA and the spin-orbit interaction enhan
the xorb . While we cannot compute this renormalizatio
within the methodology used in this paper, in order to g
some idea of the scale of the renormalized relaxation rate
show in the Table II a range of value, first neglecting t
renormalization ofxorb entirely, and then setting it to that o
xspin .

The larger value of 1/T1T, namely 5.931023 1/(K sec),
is in a good agreement with the reported experimental n
ber. This means that the DOS, calculated within LDA, is
good approximation~maybe a slight underestimate! of the
bare DOS, and thus the values for the electron-phonon c
pling constantl, obtained from the specific heat measu
ments, are reliable.

To the best of our knowledge, there are at present
experimental data for Mg. We predict that the magnetic s
is isotropic and that the principal relaxation mechanism is
Fermi-contact interaction, despite of the fact th
Nss/( l .0Nll ;1/3. The reason is that the quantities that o
has to compare are not the partial DOSNss andNll but rather
the dimensionless couplings (2mB

2/3)ufs(0)u2Nss and
mB

2( l .0^r
23& l l Nll , and thus the relevant ratio isR

5(2/3)ufs(0)u2Nss/(( l .0^r
23& l l Nll ). In the case of Mg we
L.
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find ufs(0)u2/4p54.54a0
23, and^r 23&1154.8a0

23. Hence we
find R;5. Instead, in the case of B,ufs(0)u2/4p52.16a0

23

and ^r 23&1151.1a0
23, and thusR;0.35. The coupling with

non-s electron competes with or dominates over the coupl
with s electrons whenR<1.

Finally, we would like to mention that the presented va
ues for 1/T1T include contributions from both quasi-2Dps
and 3Dpp bands. If, as suggested,7 two different gaps open
below Tc in these bands, the temperature dependence
1/T1T at low temperature should be computed taking t
different character of these bands in the normal states.
not obviousa priori that the corresponding weights will b
just the densities of states. Calculations similar to those
scribed above, but band decomposed are needed.

To summarize, we report first-principles calculations
the NMR relaxation rates and the Knight shifts on both si
in MgB2. The results are in a good agreement with the
periment, provided that the dipole and the orbital hyperfi
interactions are taken into account, as well as the Sto
renormalization of susceptibility. NMR relaxation at11B
nucleus is dominated by the orbital interaction, and tha
the 25Mg nucleus by the Fermi-contact one. The Knight sh
is dominated by the Fermi contact polarization on both B a
Mg. After these calculations were completed, we learn
about similar calculations from the Ames group,19 with the
results consistent with those reported here.

Useful discussions with O.K. Andersen, V. P. Antropo
K.D. Belashchenko, P. Carretta, E. Koch, and A.I. Liechte
stein are gratefully acknowledged.
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