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Using noncollinear first-principles calculations, we perform a systematic study of the magnetic order in several
families of ferropnictides. We find a fairly universal energy dependence on the magnetization order in all cases. Our
results confirm that a simple Heisenberg model fails to account for the energy dependence of the magnetization
in a couple of ways: first, a biquadratic term is present in all cases and, second, the magnetic moment softens
depending on the orientation. We also find that hole doping substantially reduces the biquadratic contribution,
although the antiferromagnetic stripe state remains stable within the whole range of doping concentrations, and
thus the reported lack of the orthorhombicity in Na-doped BaFe2As2 is probably due to factors other than a sign
reversal of the biquadratic term. Finally, we discover that even with the biquadratic term, there is a limit to the
accuracy of mapping the density functional theory energetics onto Heisenberg-type models, independent of the
range of the model.
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I. INTRODUCTION

Fe-based superconductors are only the second family, after
cuprates, of known high-Tc superconductors (HTSCs). The
parent compounds of these materials exhibit magnetic ordering
at low temperatures and, in their phase diagrams, the magnetic
phase is proximate to the superconducting phase. The two
orders are intimately related as the superconductivity emerges
when magnetism is suppressed, for instance, by doping. There-
fore, it is generally believed that magnetic fluctuations in these
systems are the likely driver of the pairing mechanism [1,2].
Magnetic order is also accompanied (with a notable exception
discussed later) by a structural phase transition, and there are
compelling arguments that this is also driven by magnetism:
(1) density functional calculations quantitatively reproduce the
observed orthorhombic distortions, including the amplitude
and the counterintuitive sign, and also reproduce a qualitatively
different distortion in FeTe [3], and (2) the same calculations
fail to produce any distortion in the absence of magnetism. The
seemingly counterintuitive fact that the structural instability
sometimes occurs at a temperature slightly above the magnetic
transition is, in fact, consistent with this concept because
long-range magnetic order is sufficient, but not necessary, for
breaking the global C4 symmetry: it is enough to unequally
populate magnetic fluctuations with different k vectors. These
can be described as fluctuating domain walls in an itinerant
picture [4] or as “order from disorder” in the local-moment
picture (see Refs. [5–7]; for a review, see Ref. [8]). This picture
is also consistent with observations of fluctuations breaking
charge [9] and spin [10] C4 symmetry locally, well above the
Néel temperature.

The local-moment picture has the advantage of being
analytically solvable and simple; Heisenberg-like models are
a popular way to approach the magnetism of Fe-based HTSCs.

This can be considered a reasonable approach since, with
a sufficient number of parameters, any sort of magnetic
interaction can be mapped onto a local-moment model. The
simplest possible model is a Heisenberg-type interaction
between the first and second nearest neighbors [5–7]. This
model has the desired property that symmetry breaking
always occurs above the Néel temperature, although this
splitting diminishes as the magnetic interaction becomes more
three dimensional. While the model replicates some physical
properties of Fe-based HTSCs, there is a serious problem that
is often overlooked. The essential physics of this approach
can be described as follows [8]: an Fe plane can be viewed
as a bipartite lattice where the only interaction within each
sublattice is the second-nearest-neighbor exchange J2, while
the only interaction between the sublattices is J1. As illustrated
in Fig. 1, exchange interaction constant J2, if J2 > J1/2,
generates a checkerboard antiferromagnetic (AFM) pattern in
each sublattice, while the interaction between the sublattices
cancels completely, which holds not only for an arbitrary
J1 but also for any Heisenberg interaction of an arbitrary
range. In Ref. [5], it was shown that after integrating out
quantum fluctuations, a nearest-neighbor biquadratic term of
the form K(Si · Sj ) appears in the effective Hamiltonian,
with K > 0 and of the order of 10−4J . This lifts the infinite
degeneracy of the ground state, leaving a double-degenerate
state of ferromagnetic stripes running along one of the two
crystallographic directions with AFM alternation, matching
the ground state of the ferropnictides of interest. However, the
small amplitude of K is unphysical, making this result purely
academic and not applicable to any real material.

There is another profound problem with the Heisenberg
model. Even though it formally generates the correct ground
states for ferropnictides, it fails to explain the double stripe
structure of FeTe; to do so requires introducing the third-
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FIG. 1. (Color online) Schematic view of the two-dimensional
Fe planes in the Fe-based superconductors. The first- (J1) and
second- (J2) nearest-neighbor exchange interactions are shown in
solid and dashed lines. The moments on the two sublattices form an
antiferromagnetic checkerboard pattern and, in our calculations, the
moments on one sublattice are rotated by an angle θ relative to the
other. The antiferromagnetic stripe patterns correspond to θ = 0◦ and
θ = 180◦.

nearest-neighbor exchange J3, which is found to be of the
same order as J1 and J2, which is a result inconsistent with
the superexchange picture. Even worse, in order to fit both the
ground-state and the spin-wave spectra, one needs to split the
nearest-neighbor exchange into two inequivalent parameters,
J1a and J1b. The two parameters end up being different from
each other, sometimes even changing sign [11]. This implies
that not only do the exchange constants change qualitatively
from compound to compound, but that they have a strong,
counterintuitive dependence on temperature; the inequivalent
parameters J1a and J1b, above the Néel temperature, become
equivalent as required by symmetry, i.e., J1a = J1b. This
bizarre and inconsistent behavior is the death knell for using the
superexchange theory to model the Fe-based HTSCs, as there
is no plausible physical mechanism that can explain the dra-
matic temperature dependence of the superexchange constants.

Density functional theory (DFT) calculations, when
mapped onto the same Heisenberg model, yield similar
exchange constants, including the splitting of the nearest-
neighbor exchange [12,13]. This indicates that DFT is correct
in its description of the Fe-based HTSCs (it can quantitatively
explain the spin-wave spectrum, for example), suggesting
that this methodology can be used to resolve the exchange
constants conundrum. In fact, the necessary calculations have
been reported at a very early stage, yet were largely overlooked
[14]. Instead of an unphysical model with only superexchange
terms, the same DFT calculations can be mapped with good
accuracy onto an isotropic (J1a = J1b) Heisenberg model
which includes a biquadratic term (formally the same as
found in Ref. [5]) with an amplitude of K ∼ J1,J2. Moreover,
noncollinear DFT calculations with one magnetic sublattice
rotated with respect to the other (see Fig. 1) can only be mapped
onto this model. It was then shown that this biquadratic,

isotropic Hamiltonian with temperature-independent param-
eters is an excellent model of the magnetic properties of
Fe-based HTSCs at any temperature, including the spin-wave
spectra [15]. The model also is consistent with an orthorhombic
transition occurring above the magnetic one.

These discoveries yielded a much more robust description
of the magnetic behavior of the Fe-based HTSCs, which in-
cludes a consistent explanation of the orthorhombic distortion.
Instead of a minuscule “order-from-disorder” term appearing
to drive the physics of these systems, we have a sizable
biquadratic term on the mean-field level. So what is missing at
this point? To date, there is no body of information about the
biquadratic term. Important questions include the following:
How variable is it from compound to compound? How does
it depend on doping? Can it change sign, leading to a non-
collinear ground state while preserving tetragonal symmetry?
At the present moment, only some answers are available.
In Ref. [14], only two compounds were studied and the
uncontrollable atomic spheres approximation was used. While
there is no question that the obtained results were qualitatively
correct, their quantitative accuracy remained unclear. Beyond
that, in Ref. [16], it was demonstrated that the biquadratic term
depends on the details of a material’s band structure. Using
accurate full-potential DFT calculations with linear muffin-tin
orbitals, it was shown that the biquadratic term is negative in
stoichiometric KFe2Se2, which is a hypothetical material. The
term is also dependent on the size of the local Fe moment
(or, equivalently, the Fe-As/Se bond-length distance), again
indicating the necessity for accurate calculations. Finally, the
ultimate question that can be posed is whether the total energy
is mappable onto the pair interaction at all, linear or quadratic,
in Si · Sj . This is always taken for granted, but there is no a

priori reason for that to be true in an itinerant system.
In DFT, the change in energy between different magnetic

patterns accumulates via integration over the entire occupied
portion of the Fe band, which extends several eV below
the Fermi energy. Profound orbital reordering induced by
magnetism leads to the observed stripe order being lower in
energy compared to other patterns [17,18] and, by extension,
affects the exchange constants obtained by mapping. These
complex changes in the electronic structure are responsible
for the anisotropy in the J -only model and for the large
biquadratic term in the J -K model, and also for the longer-
range interactions in FeTe. This contrasts with the simplistic
superexchange model where both K and J3 appear only
as higher-order terms and must be much smaller than J1

and J2.
Resolving the incomplete understanding of the biquadratic

term has become even more important after an intriguing
experimental report that the orthorhombic distortion disap-
pears in a small part of the Ba1−xNaxFe2As2 phase diagram,
while magnetic order remains [19]. The authors favor the
plausible explanation that the biquadratic term changes sign
in that region, generating the noncollinear structure shown in
Fig. 1(c) of Ref. [19]. An alternative explanation would be
that the magnetoelastic coupling that drives the orthorhombic
distortion becomes small and the (still existing) C2 symmetry
breaking goes undetected.

The former explanation, that the biquadratic term changes
sign upon doping, was supported by the calculations of
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TABLE I. Summary of the crystallographic symmetry groups, lattice structure (lattice constants a and c and fractional coordinates z of the
nonmagnetic planes), Fe-Fe/Fe-As(Se) bond lengths, the fitted parameters of Eqs. (2) and (3), and the energy change due to the softening of
the magnetic moment for all of the studied compounds.

Sym. a c zAs,Se (zLi, Na,La) dFe-Fe dFe-As(Se) M(0) K J⊥ E(0)|M(90) − E(0)|M(0)

Compound Group (Å) (Å) (frac.) (Å) (Å) (μB ) (meV) (meV) (meV)

FeSe P 4/nmm 3.803 6.084 0.2708 2.689 2.516 2.72 9.67 −0.04
LiFeAs P 4/nmm 3.793 6.366 0.2365 (0.6541) 2.682 2.421 1.85 9.75 4.21
NaFeAs P 4/nmm 3.949 7.040 0.2028 (0.6460) 2.793 2.437 2.18 15.43 7.30
LaFeAsO P 4/nmm 4.037 8.742 0.1513 (0.6415) 2.854 2.413 2.09 13.24 4.97
SrFe2As2 I4/mmm 3.930 12.324 0.3604 2.779 2.390 1.94 10.57 0.79 2.78
CaFe2As2 I4/mmm 3.896 11.683 0.3665 2.755 2.376 1.83 9.39 1.33 1.58
KFe2As2 I4/mmm 3.842 13.860 0.3525 2.716 2.389 2.46 6.36 0.40 9.48
KFe2Se2 I4/mmm 3.914 14.037 0.3434 2.767 2.355 2.47 −3.29 −0.05 0.48
BaFe2As2 I4/mmm 3.942 13.021 0.3545 2.791 2.397 1.99 10.84 0.23 3.33
Ba0.9Na0.1Fe2As2 ” ” ” ” ” ” 1.96 9.85 0.21 4.04
Ba0.8Na0.2Fe2As2 ” ” ” ” ” ” 1.94 8.73 0.22 4.73
Ba0.7Na0.3Fe2As2 ” ” ” ” ” ” 1.93 7.80 0.26 5.30
Ba0.6Na0.4Fe2As2 ” ” ” ” ” ” 1.93 7.16 0.30 7.04
Ba0.5Na0.5Fe2As2 ” ” ” ” ” ” 1.94 5.56 0.24 5.37
Ba0.4Na0.6Fe2As2 ” ” ” ” ” ” 1.96 4.42 0.21 6.15
Ba(Fe0.5Co0.5)2As2 ” ” ” ” ” ” 1.27 0.94 0.04

Chubukov and Eremin [20], who derived a biquadratic term
in the linear response regime. The problem with this approach
is that it contradicts the DFT finding [3,17,18] that the energy
associated with magnetic interaction accumulates over a large
energy window, and that the local moments of Fe remain
large throughout the entire phase diagram. On the other hand,
knowing that magnetic ordering has a strong effect on the
density of states and the orbital composition of the Fe bands,
it is plausible that the sign of the biquadratic interaction
parameter is not fixed and could change upon doping. As
previously discussed, the results of Ref. [16] show that for the
hypothetical KFe2Se2 compound, which can be viewed as a
case of extreme hole doping, the biquadratic term does indeed
change sign.

Our goal in this paper is to make a systematic investigation
of the biquadratic interaction in representative Fe-pnictide
and Fe-chalcogenide families to address the variability of
the biquadratic interaction. For this investigation, we use
the all-electron, full-potential linear augmented plane waves
(FLAPW) method. We find that the biquadratic parameter can
vary within large limits, but that it does not change sign in
the accessible ranges of doping. We conclude, in particular,
that the observed lack of an orthorhombic distortion in the
Na-doped BaFe2As2 compound in Ref. [19] is likely due to
the inaccessibility of the tetragonal symmetry breaking by the
experimental tools used in that work.

II. METHODS

We investigate the magnetic order in representative
compounds from different families of the iron-based su-
perconductors: FeSe for the 11 family; LiFeAs and
NaFeAs for the 111 family; BaFe2As2, BaFeCoAs2,
CaFe2As2, SrFe2As2, KFe2As2, and KFe2Se2 for the
122 family; and LaFeAsO for the 1111 family. The
magnetic order is modeled using the J1-J2-K model

Hamiltonian,

H = J1

∑
nn

Si · Sj + J2

∑
nnn

Si · Sj − K
∑
nn

(Si · Sj )2. (1)

We use the experimentally determined crystal structures when
available [21]; for the hypothetical material KFe2Se2, we
used the lattice constants from Ref. [16]. A summary of the
symmetry groups, lattice constants, and Fe-Fe and Fe-As(Se)
bond lengths for all of the materials is found in Table I.
The FeAs(Se) planes are stacked along the c axis separated
by a nonmagnetic filler plane, except for the 11 compound
FeSe, which consists only of FeSe planes. The Fe layers
form a two-dimensional square lattice and the ground-state
magnetic order has been confirmed both experimentally [22]
and theoretically [14] to be AFM stripe order, as schematically
represented in Fig. 1 (stripe order corresponds to θ = 0 or
θ = 180◦). In all cases, in order to accommodate the AFM
stripe pattern, we double the cell in the xy plane (

√
2 × √

2).
In order to study the biquadratic coupling, we allow the

angle θ between the two Fe sublattices to vary. The angle
θ , as depicted in Fig. 1, gradually interpolates between
two equivalent stripe states with q = (1,0) and q = (0,1).
According to the biquadratic model in Eq. (1), the angular
energy dependence �E(θ ) = E(θ ) − E(0) of the 11, 111, and
1111 families is predicted to be

�E(θ ) = 4K sin2 θ. (2)

The 122 family belongs to a centered symmetry group, and
therefore rotating θ by 180◦ takes the system from one stripe
pattern to another, inequivalent one. The two differ by the
stacking order along c and the energy difference is proportional
to the interplanar exchange constant J⊥. Taking this into
account, the angular energy dependence for the 122 family
is

�E(θ )122 = 4K sin2 θ − 16J⊥ sin2

(
θ

2

)
. (3)
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FIG. 2. (Color online) The energy E(θ ) − E(0) and the normalized moment M(θ )/M(0) as a function of the relative angle θ of the two
magnetic subsystems. Note that in all instances, the lines are a guide to the eye and do not represent a fit. (a) The angular dependence of the
energy for compounds belonging to the 11, 111, 122, and 1111 families of superconductors. (b) The angular dependence of the normalized
moments belonging to the 11, 111, 122, and 1111 families of superconductors. (c) The angular dependence of the energy for different doping
levels of the 122 compound BaFe2As2. (d) The angular dependence of the normalized moments for different doping levels of the 122 compound
BaFe2As2.

This splits the degeneracy of the θ = 0 and θ = 180◦ states by
16J⊥.

In order to calculate the angular energy dependence, we
perform fully noncollinear first-principles calculations using
the ELK code [23]. ELK implements density functional theory
(DFT) within a FLAPW basis set with local orbitals. In
our calculations, we use the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [24]. ELK allows constrained
magnetic-moment calculations where the moment direction
and/or magnitude can be fixed. To study the effect of hole
doping on BaFe2As2, we use the virtual crystal approximation
(VCA) in the standard way, in which homogeneous doping is
achieved by replacing the Ba atoms with fictitious atoms of
fractional nuclear charge between those of Ba and Cs. The
density of states (DOS) around the Fermi energy of BaFe2As2

is dominated by Fe and As states, and so using VCA has the
primary effect of shifting the Fermi energy and removing a
fractional number of electrons from the valence band.

Convergence was checked as a function of the size of the k-
point mesh. Different size Monkhorst-Pack k-point grids were
used for the different families of compounds: 9 × 9 × 8 for
11; 9 × 9 × 8 for 111; 8 × 8 × 9 for 122; and 6 × 6 × 4 for

1111, respectively. Due to the small energy differences, the
energy convergence criterion was set to 10−7 Ha.

III. RESULTS AND DISCUSSION

We checked the relative energies of the different magnetic
orders. In all cases, we obtained that in the FM configuration,
the magnetic moment collapses and this configuration is much
higher in energy than the AFM configurations. The energy of
the checkerboard AFM configuration was found to be higher
in energy than the AFM stripe ground state; hole doping
decreased the relative energy difference, although the AFM
stripe state remained as the ground-state configuration.

The angular dependence of the energy difference �E(θ ) =
E(θ ) − E(0) for different compounds is plotted in Fig. 2(a).
It is clear that biquadratic coupling is present in all of these
compounds. We fitted these results to Eq. (2) for the 11, 111,
and 1111 families and Eq. (3) for the 122 family. The fitted
parameters are summarized in Table I.

The angular energy dependence of the materials, with
the exceptions of KFe2Se2 and Ba(Fe0.5Co0.5)2As2, follow a
similar pattern, with the energy difference between the ground
stripe state and the least favorable θ = 90◦ configuration
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varying between 30–60 meV/Fe. Our results for LaFeAsO,
BaFe2As2, and KFe2Se2 agree well with previous calculations
[14,16]. The biquadratic interaction constant K is fairly large
and positive in most materials (again excepting KFe2Se2 and
Ba(Fe0.5Co0.5)2As2) and of the same order as J1 and J2 [13,14].
One of the factors that influences K is the Fe-Fe bond length,
as K tends to be larger in compounds which have a greater
Fe-Fe distance such as LaFeAsO, NaFeAs, and BaFe2As2.
The interlayer coupling J⊥ in the 122 family is about an order
of magnitude smaller than K , and the constant varies from
material to material.

Ba(Fe0.5Co0.5)2As2 and KFe2Se2 are exceptions to the
above trends. Ba(Fe0.5Co0.5)2As2 was calculated using the
VCA and represents electron doping of BaFe2As2. This doping
softens the ground-state moment by 36% and destabilizes the
local moment for angles 45◦ < θ < 150◦, in which range it
collapses. This level of electron doping also suppresses the
biquadratic and interplanar interactions, reducing both by an
order of magnitude. KFe2Se2, on the other hand, exhibits a
negative biquadratic interaction term, in agreement with the
Ref. [16] results [25]. While it exhibits a negative K , bulk
KFe2Se2 is a hypothetical material that cannot be stabilized in
experiment [26], so here it just serves as a proof of concept
that a negative K is possible.

The softening of the moments shown in Fig. 2(b) contributes
to �E(θ ) in a nontrivial way. Modeling the variation of the
magnetic moments necessitates the inclusion of J2 exchange
terms in Eqs. (2) and (3), as well as on-site Hund’s exchange
terms such as IM(θ )2 (I is the Hund’s exchange constant).
A simpler way to estimate the importance of the moment
softening is to calculate E(0)|M(90) − E(0)|M(0) in the collinear
AFM stripe state configuration, i.e., the energy change from
reducing the ground-state moment to the self-consistent
amplitude at θ = 90◦, where the softening is greatest. The final
column in Table I reports these calculations. For pnictides, the
difference is positive and only a few meV in magnitude. For
chalcogenides, the moment softening is slight and accordingly
the energy contribution from the softening is also small. For
FeSe, the moment amplitude grows slightly at θ = 90◦, and
there is a corresponding small gain in energy. In all cases, we
see that most of the energy change in Fig. 2(a) is driven by
the biquadratic term, with only a modest contribution coming
from the moment softening.

The angular energy dependence for various levels of hole
doping in Ba1−xNaxFe2As2 via the VCA is depicted in
Fig. 2(c). A discussion of the validity of using the VCA
to address the effect of hole doping on the biquadratic
term is included in the Appendix. As is clear in the figure,
the biquadratic interaction constant K strongly depends on
the degree of hole doping in the material. Going from an
undoped system to x = 0.6 results in a 60% decrease in K .
Extrapolating the hole doping of BaFe2As2 to the extreme
x = 1 case, the biquadratic constant K , however, does not
invert and instead nearly vanishes. Because of the similarity of
results in other materials, we expect that doping via the VCA
would yield similar results in other materials. Of course, in
the case of extreme hole doping, it is necessary to allow the
lattice constant and atomic positions to relax. Here, KFe2As2

is an example of extreme hole doping and if the experimental
lattice constants are used, the biquadratic term is 6.3 meV,

(a) (b)

FIG. 3. The two magnetic configurations, in a 4 × 4 two-
dimensional cell, which are degenerate for any pairwise Hamiltonian
of arbitrary range. The closed circles correspond to spin-up moments
and the crosses correspond to spin-down moments. (a) The double
stripe configuration, which is the ground state of FeTe. (b) The square
configuration.

in contrast to the vanishing biquadratic term inferred from
extrapolating the VCA results discussed above. The Fe-Fe and
Fe-As(Se) bond lengths, influenced by the hole-doping level,
play a role in determining K . This is in line with the results
of Ref. [16], where K for KFe2Se2 depended strongly on the
internal coordinate zSe.

Regarding the question of whether it is valid to assume
that magnetic interactions can be accurately mapped to a
pairwise Hamiltonian by just including an arbitrary number
of terms, one can address this issue by comparing the two
magnetic patterns shown in Fig. 3. It was pointed out [27]
that these configurations are degenerate on the mean-field
level for any Heisenberg model of arbitrary range. Being
collinear, the configurations remain degenerate after the
inclusion of the biquadratic interaction term, which can be
lifted by either magnetoelastic coupling or by integrating out
fluctuations [27]. We calculated the energy difference between
these two configurations for FeTe using the experimental
high-temperature structure (tetragonal) and found that the
experimentally observed double stripe pattern is lower in
energy than the square pattern by 8 meV/Fe, which is a
small, but by no means irrelevant or negligible, number. The
degeneracy is only lifted on the level of the fourth-order
(square) ring exchange, which in the localized Hubbard limit
is of the order of t4/U 3, as compared to the nearest-neighbor
superexchange terms which are of the order of t2/U.

Another consequence of attempting to map to the classical
Heisenberg J1-J2-J3 model is that it does not predict the double
stripe or square pattern to be the ground state of FeTe, instead
predicting spiral phases for large J3. In Ref. [27], it was pointed
out that for some parameter range, collinear structures may be
stabilized over the spiral ones because of quantum fluctuations.
In contrast, our calculations clearly indicate that the sizable
biquadratic interactions, present in the parent Fe-based HTSC
compounds, completely exclude spiral phases already on the
mean-field level. Moreover, DFT calculations strongly favor
double stripes over squares, despite the fact that fluctuations
work in the opposite way [27]. Our calculations strongly
suggest that the fact that the experimental structure in FeTe
appears to be double stripe is not related to magnetoelastic
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coupling, as suggested in Ref. [27], but is instead due to
itinerant effects not captured by the Heisenberg Hamiltonian.

Returning to the experiment from Ref. [19], we can use
our results to comment upon the experimental data for the
hole-doped compound Ba0.76Na0.24Fe2As2, which appeared
consistent with a reentrant C4 phase transition and also would
require a change in the magnetic order to conform with
the C4 symmetry. The authors of Ref. [19] argue that their
measurements are consistent with a noncollinear magnetic
configuration, implying that the biquadratic term can change
sign upon doping. However, our results do not support the
proposed noncollinear magnetic configuration in Na-doped
BaFe2As2. Why might this be? One possibility is that, as
discussed in Sec. I, there might not be a reentrant C4 transition
in Na-doped BaFe2As2 and so it would be unnecessary to
argue for a change in the magnetic state. The argument for
the reentrant C4 transition is based on nuclear diffractogram
measurements in which an apparent recombination of the
nuclear Bragg peaks at low temperatures is observed. However,
the Bragg peaks are quite broad, and so a reduction, but not a
complete removal, of the orthorhombic distortion would also
be consistent with the data. Another possibility is that the
reentrant C4 transition is not accompanied by a noncollinear
magnetic configuration. The authors of Ref. [19] put forth a
model of the C4 transition with two magnetic configurations
fitting well to measured x-ray diffraction data: the noncollinear
configuration presented in the main body of the paper and also
a collinear stripe state. The noncollinear model is preferred
as it already has C4 symmetry. The authors comment that a
linear combination of spin density waves that produce stripes
along the x and y directions also restores C4 symmetry. Without
more information, there is no reason to prefer one magnetic
configuration over the other.

Therefore, in light of our results, there remain two
plausible interpretations of the reentrant C4 transition of
Ba0.76Na0.24Fe2As2 described in Ref. [19]. The first is that
the orthorhombic distortion of Na-doped BaFe2As2 is reduced
at lower temperatures, but ultimately retains C2 symmetry.
This is the interpretation we prefer, as it is the simpler way in
which C2 symmetry would be preserved. A higher-resolution
measurement of the temperature dependence of the nuclear
Bragg peaks is necessary to rule this interpretation out. The
second is that the C4 transition does occur, but that the magnetic
order remains striped and modulates between x- and y-oriented
stripe patterns. Additional follow-up studies are necessary to
ultimately resolve this question.

IV. CONCLUSIONS

We confirmed that biquadratic coupling is universally
present in Fe-based superconductors. It is of the same order
of magnitude as the superexchange interactions. In the studied
materials, the biquadratic term is modestly affected by the
softening of the magnetic moment, is influenced by the Fe-Fe
and Fe-As bond lengths, and is dependent upon the doping,
which underlines the biquadratic term’s itinerant origin. We
find that even in the case of extreme hole doping, no
experimentally realized material exhibits a change of sign
in the biquadratic term, so the collinear AFM stripe state
is energetically preferred in all instances. Therefore, the

apparent experimental observation of a reentrant C4 transition
in Na-doped BaFe2As2 is likely to be an artifact due to
the inaccessibility of measuring the C2 symmetry at low
temperatures with the experimental tools.

Our results show that in the realm of Fe-based supercon-
ductors, the naive Heisenberg model is a rather poor approxi-
mation. The biquadratic exchange plays an essential role and
cannot be neglected in any model calculation describing these
compounds. In addition, there are deviations, as observed
for FeTe, from the general pairwise interaction model for
linear and biquadratic terms of an arbitrary range. In FeTe,
it is these terms that stabilize the experimentally observed
double stripe in the calculations, and not the magnetoelastic
coupling, as conjectured before [27]. It remains to be seen
whether these interesting features are specific to the parent
compounds of Fe-based HTSCs or are more common than
previously expected. Further calculations and studies should
aid in answering this question.
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APPENDIX A: VALIDITY OF THE VIRTUAL CRYSTAL
APPROXIMATION (VCA)

We confirmed the validity of the VCA by doing the
following test calculations using BaFe2As2. To begin, we
directly substituted a Na atom for a Ba atom (the two Ba
sites are equivalent via symmetry), keeping the lattice and
internal parameters set to the values taken from experiment,
and calculated �E(π/2). For Ba0.5Na0.5Fe2As2, we obtained
�E(π/2) = 11.4 meV, which is about a factor of two smaller
than the VCA x = 0.5 result of 21.5 meV.

To see how structural deformations affect �E(θ ), we
relaxed the structures in the pseudopotential-based software
suite VASP [28,29]. In VASP, we used projector augmented
wave (PAW) pseudopotentials [30,31] and the Perdew-Burke-
Ernzerhof generalized gradient approximation [24] to DFT.
Our BaFe2As2 calculations in the main text took the internal
parameter zAs from experiment. We wanted to make a
proper comparison between VCA and a relaxed structure
with Na substitutions, so in order to do this we relaxed
the internal parameter zAs for both undoped BaFe2As2 and
doped Ba0.5Na0.5Fe2As2 in VASP and imported the coordinates
into ELK. We then calculated �E(π/2) for BaFe2As2 in the
VCA with x = 0.5 using the relaxed atomic positions found
for undoped BaFe2As2, and then calculated �E(π/2) for
Ba0.5Na0.5Fe2As2 using both the relaxed structure for undoped
BaFe2As2 and the relaxed structure for Ba0.5Na0.5Fe2As2.
The VCA result with the undoped structure is �E(π/2) =
10.3 meV. The Ba0.5Na0.5Fe2As2 result using the relaxed un-
doped structure is �E(π/2) = 3.28 meV and the result using
the relaxed structure for Ba0.5Na0.5Fe2As2 is �E(π/2) =
7.58 meV. If the cell volume of Ba0.5Na0.5Fe2As2 is fixed
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and both the internal parameter zAs and a and c parameters
are relaxed and then imported into ELK, then �E(π/2) =
3.08 meV for Ba0.5Na0.5Fe2As2.

Overall, the VCA overestimates �E(θ ), but this does not
affect the qualitative behavior, i.e., the biquadratic term K

does not change sign. Furthermore, using relaxed structures

illustrates the sensitivity of the biquadratic interaction to the
distance between the Fe and As(Se) planes, but these subtle
changes do not materially change the overall trends. We con-
clude that the VCA is an appropriate method for investigating
whether doping can affect the qualitative behavior of the
biquadratic term.
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