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Because of the variational character of the most of the modern band structure calcu- 
lation methods, including LMTO, the calculated electron energies are much more 
accurate than the wave functions. This affects greatly the optical matrix elements 
calculations. We investigated the problem of the accurate calculation of the matrix 
elements in the frameworks of usual band structure methods, basing on the continuity 
equation for the charge density operator. We have derived an analytical expression for 
corrections to the common-used formulas for the optical matrix elements. These allow 
to compute the matrix elements with the same accuracy as the band structure so that 
the intraband matrix elements are exactly equal to the band electron velocities. A 
specific prescription is proposed for the optical matrix elements calculation in the 
frameworks of the LMTO  method. The imagine parts of the dielectric functions are 
calculated for Cu and Pd in the energy range 0.1-20eV, which agree well with available 
experimental data. 

I. Introduction 

The ab initio calculation of the optical properties of 
metals is a complicated but interesting and impor- 
tant problem. In recent years some papers on this 
subject have been published, e.g. [1-51 where 
one has used the KKR,  APW, LCAO and model 
Hamiltonian methods, respectively. There is also 
a good deal of papers in which the calculations of 
the optical properties of simple metals have been 
made by the pseudopotential method (see reviews [-6, 
7]). Sometimes the results obtained by various au- 
thors differ greatly though the energy structure is 
proved to be nearly independent on the band struc- 
ture calculation method. So the accuracy of the 
band structure calculation cannot serve as a good 
criterion of the accuracy of the optical properties 
calculations. The usual way to judge of the correct- 
ness of the calculation is to compare them to experi- 
ment, but it is desirable to verify the accuracy of 
the optical properties calculation in a self-consistent 
way, e.g. by checking the fulfillment of some sum 
rules. 
It is desirable also because of the following: First, all 
modern band structure calculations are based on the 

density functional formalism. Strictly speaking, they 
refer to a system of some fictious particles which are 
to be used only for the calculations of the equilib- 
rium properties of the real metals and their static 
response functions. It is not yet clear if it is possible 
to describe in such a manner the dynamical response 
functions which define the optical properties. 
Second, the electron gas in metals is not uniform so 
that screening is described by the dielectric matrix 
e(co, G, G'), where G and G' are the reciprocal lattice 
vectors. It is difficult to say how important is the 
difference between the inversed element of the 
dielectric matrix 1/e(~o, 0, 0) which is usually calculat- 
ed and the element of the inversed matrix 
[~-1(o, G, G')]G=G,= o, which is measured in experi- 
ments. 
To find out how important these factors are, one 
could compare the calculated and experimental val- 
ues. As we shall see, in some cases the error of 
approximations may be so large that such a compari- 
son cannot be informative. 
The goal of this article is the calculation of the 
optical properties of metals using LMTO  - one of 
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the most effective methods of band structure calcu- 
lations proposed by Andersen [8]. 
The weakest point of the one-particle calculations of 
the optical properties of metals is the matrix element 
computation. It will be shown below that they are 
extremely sensitive to the accuracy of the wave func- 
tions. The second section of our paper is concerned 
to the difficulties arising in optical matrix element 
computations and some ways are proposed to over- 
come them. In the third section we propose a pre- 
scription for the computation of the matrix element in 
the frameworks of the LMTO method. As an exam- 
ple the results of our LMTO calculations of the 
imaginary part of the dielectric function of Cu and 
Pd in the energy region 0.1-20eV are presented in 
the fourth section. 

II. Matrix Elements of Current Density Operator 
and the Accuracy of the Wave Functions 

The optical properties of metals are defined by the 
dielectric function e(c0,q=0). In the frameworks of 
the random phase approximation it is given for cu- 
bic metals by 

e (co, q --> O) 

8~e 2 
= ~intra((D' q --~ 0) -]- 3C0~ 

IjkA ~ (Eke,- Ek~)f~(1 --L~') 
2 (Ek;c__Ek~)a__h2~2+i6 k,X~2' 

(1) 

where ~intra is the dielectric function with only in- 
traband transitions included, fkx is the Fermi distri- 
bution function, Ekx is the energy of the electron in 
the band 2 with the wave vector k, j~ ,  is the matrix 
element of the current density operator (CDO). We 
shall deal in this paper only with cubic metals where 
there is no difference between the longitudinal and 
transverse dielectric functions, so we shall suppose 
that j k  in (1) refers to the longitudinal current 
which is easier to deal with. 
It is known that it is possible to write a number of 
equivalent expressions for the CDO matrix element 
[10], but this equivalence is just only for the exact 
wave functions, so it is an important question which 
expression to choose. We think that the most logi- 
cal way is to start from the continuity equation 
relating the q-component of CDO to the time de- 
rivative of the q-component of the electron density 
operator: 

--  i /)q = qjq (2) 

The left side of (2) may be derived from the equation 
of motion 

- i h pq = [ H ,  pq]  (3) 

h2V 2 
where H = -  2 ~ +  V(r), is the one-particle Hamil- 
tonian. 
With regard to (2) and (3) we can define the CDO as 

lira jq = lira ~ [H, pq]  : h V 
q~0 q~0 ira" (4) 

Therefore in many papers such an expression as 

hV 
J~a, = <k21 ~ IkA') (5) 

tm  

is used directly for the numerical computation of 
CDO matrix element. 
How adequate is such an approach when [k2) are 
approximate wave functions computed within the 
frameworks of a band structure method? 
Usually in band structure calculations the wave 
function is obtained as a linear combination of basis 
functions [k n) which we shall suppose orthonormal- 
ized, for the sake of simplicity, 

Ik 2) -- y '  a~ ~~ lk t7), (6) 

Then the variational principle provides the matrix 
equation* for the eigenvectors a~ ~ and eigenvalues 
Ek;~ 

~ k v / 1  l./t akA ..k.~ Hlk ) , ,  =Ek;~% (7) 
n 

where the sum is cut off because of the finite number 
of the basis functions. It means that the solution of 
the SchrSdinger equation is searched not in the 
whole Hilbert space but in the subspace spanned by 
the finite number of the basis functions [kn). This 
subspace may be obtained by the action of the pro- 
jection operator P = ~ l k n ) ( k n [ ,  which differs from 

kn 
the unity operator because of the incompleteness of 
the basis Ikn). The functions Ik2) are the exact 
eigenfunctions of the projected Hamiltonian /~ 
=PHP. The electron density operator in this sub- 
space is given by ~q=PpqP. 
Defining now the CDO as in (4), we have 

(8) 

k;. is usually * In the KKR method the equation for Eka and a n 
derived in terms of the multiply scattering theory, but it may be 
formulated also in the same manner [11] 
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Generally speaking the projection of the commu- 
tator of two operators is not equal to the com- 
mutator of their projections, so the operator defined 
by (8) is not equal to the PjqP, i.e. 

]'~,v + (k21  h V [kA'). 
l m  

Let us concentrate our attention on this question 
and compute the commutator 

~ [ T  [-/~,/~q 
lim J 
q~0 

= lira q H . . . .  (k  1 n21 , q~O ~ E [ I k ~ , h }  kl 
k ~ k2 

ik2 + q , % }  p k ~  (k2 GI] 
l I k  k 8H.., 8pq,nln, 

C p q  . . . .  H k l . ,  (kn'l 
8q 

(9) 

k _ (knl H Ikd} and k - (k where H,,,  - -  f lq ,  nn' - -  

+q, nlpqlkn'}, where pq=e iq~ and we have taken 
into account that 

k ! Pq: O. nn' = <k nlk ~ > = 6,,,. 

Equation (9) may also be obtained if the current 
density is defined in the gradient-invariant way 

j =  lira 6/t(A) 
IAI~O ~ -  ( - C  ) (10) 

where A is the vector potential. Derivation of the 
CDO elements gives 

j~x, = (kXlf lk2 ' )  

ak;~ , ak x, (SH~,, 
E ( , ) . ,  ,) 

h k, nn' [ ~ 

.a k 
�9 lim OPq, nn' 
q~0 8q 

(11) 

It may be noted that Smith [-5] has used the matrix 
elements without the second term in (11). This ap- 
proach is not self-consistent and may give rise to 
considerable errors. 
It is convenient to rewrite the wave function in 
Bloch form 

Ik 2 )  = e ikr  lUk,~), 
Ik n) = e ikr [b/kn ) .  

Then 

k 
H?ln' 

8k 

and 

ih 2 V Ikn' 
- - ( k n l -  T } 

/ (?Uk~ 
+ \  8k e- ik 'Hlkn ' }  +(knl 

lim 0pqk , /~Ukn t X 
0q 

He ik~ OUk"\ (12) 
0k / 

(13) 

From (12) and (13) it follows that 

~k -k + "k 
J,u/=J2;/ c3j;~, 

+ ( k R I ( H - E  ,_~ur 8Ul, ,~ (14) 
kJdC 8k / ] '  

The last two terms in (14) are the corrections to the 
commonly used expression (5) for the CDO matrix 
elements. These corrections may be written as 

1 ' k~ * k2' 

�9 ~/eUk. e - l k r ( I_e ) (H_Ekz , ) i k2  ') 
~ \  8k 

>1} + (k21 ( H - E k ~ ) ( I - P ) e  ikr OK (15) 

where I is the unity operator and P is the projection 
operator. 
Let us discuss these results. The corrections 6j~, 
obviously vanish when the basis Ikn} is complete 
(operator P is then equal to I), i.e. when the func- 
tions Ik2) are the exact eigenfunction of the Hamil- 
tonian H. They vanish also when the function lUk, ) 
does not depend on k, as in the plane waves basis 

1 c i G  r lUkn ) = ~ ~ 

G, is a reciprocal lattice vector. Usually neither of 
these cases takes place. For example, the corrections 
do not vanish for many methods which use the basis 
function in form of the linear combination of local- 
ized orbitals: 

lUk, ) = ~  e - i k ( r -  R) @n(r--R).  
R 
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The existence of the correction is not strange at all 
but probably it seems more unusual that the matrix 
elements calculated without this correction may be 
very inaccurate in spite of the accuracy of the eigen- 
energies. Often such a discrepancy is caused by the 
discontinuity of the wave functions. There are two 
interesting examples: 
It is well known that the K K R  method with /max =2 
provides good accuracy of the band structure of 
simple and transition metals, Chen 1-2] have calcu- 

lated matrix elements (k;qn.v Ik2 > for copper by 
l m  

K K R  method with /max=2 and /m~x=4. In the first 
case the matrix elements are 2-3 times less while the 
energies differ very little. The continuous wave func- 
tion must have included all spherical harmonics, so 
if/max=2 the function is discontinuous, and the dis- 
continuity is much more than if /max=4. Such a 
discontinuity leads to unexpectably great error. Even 
more shocking is the example of the "canonical 
bands" method which is a variant of Andersen's 
LMTO method 1,-8]. 
In this method the wave function of d-electron in- 
cludes only the spherical harmonics with l=2.  It is 
known that such a model provides a good qualita- 
tive description of the band structure in the d-band 
energy region. But the matrix elements of the gra- 
dient are exactly zero and without the corrections 
(15) any calculation of optical properties is im- 
possible�9 
The role of the corrections 6j~z, may be demonstrat- 
ed also by following reasoning: 
From the equation of motion for f3 and the con- 
tinuity equation (2) it is easy to obtain the ex- 
pression: 

(Ek+q,z -- Eke) (k  + q, 21 e iqr [k, 2> 

: h q ( k  +q,2l jqlk ,2) .  

In the limit of q-~0 the usual expression for the 
electron velocity may be derived: 

~k .k .k 1 dEkx 
l~;=l~z+C3lzz-~ ~ -  - -Vk2 (16) 

which is valid however only for the corrected CDO 
matrix elements. It means that the corrected CDO 
matrix elements are as accurate as the energy struc- 
ture. 
The equation (16) may be used as a good test of the 
accuracy of the diagonal matrix elements when they 
are calculated without the corrections. We have 
done this in our LMTO calculation as it is described 
below (in the optical properties calculations the non- 
diagonal matrix elements are used but it is natural 

to suppose that their accuracy is of the same order 
as of the diagonal ones). 
Some authors make use of other expressions for the 
matrix elements , which are equivalent to (4) when 
the wave functions are exact, namely 

j~z, = (kAI ~ Ikz'> • (EkA--Ekg,), (17) 

jk , = ( k  ) l i h V V i k s  ) 1 
m Ek; -Ek~ , "  (18) 

It is easy to show that the proper formulas of this 
kind must include the correction of the same type as 
(15) and also some other corrections, namely, 

~{<k21 ( H -  E k ; ) ( I - P ) r  IkA'> 

p - (k2[ r(I - ) (H-Eke: )Ik2  )} 

for (16) and 

ih 
--{(k2L ( H -  Ek~)(I -P) VV Ik2> 
m 

- (k)~l V V ( I - P ) ( H - E k x ,  ) [k2')} 

for (17). So the formulas (17) and (18) are not more 
accurate than (5). 
It must be noted that the problem of the self-con- 
sistent definition of the CDO and its matrix ele- 
ments arises not only in the optical properties calcu- 
lation, but in the calculations of the oscillator 
strengths in atoms [12], of the X-ray absorption and 
in some other problems. For example, Volkov et al. 
[14] have discussed the question of the self-con- 
sistent definition of the CDO in the Kohn-Luttinger 
representation for the finite number of energy bands 
in connection with the problem of exitonic insulator. 

III. The LMTO Calculation 
of the Optical Matrix Element 

Let us survey briefly the LMTO calculation of the 

matrix element -k (k21/~Vlk2'). The LMTO J ,;~ 2' = trn 
wave functions are given by [8]" 

L 

where k _ zL(r)--~eika)~L(r--R ) are the Bloch sums of 
R 

the MT-orbitals. In the atomic sphere approxima- 
tion (ASA) they may be written as 
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Table 1. Test of diagonal matrix elements in ASA 
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2 1 2 3 4 5 6 7 8 

Ez(Ima x = 2 )  0.107 0.335 0.381 0.397 0.428 0.456 1.981 2.435 
~Z(/m,~ = 2) 0.987 - 0.233 - 0.524 0.439 0.863 0.486 0.644 0.580 
E~.(Im~ ~ = 3) 0.107 0.331 0.377 0.393 0.424 0.452 1.810 2.158 
~Z(/max = 3) 1.011 0.984 0.776 1.101 1.040 1.010 0.659 0.499 

Z 9 10 11 12 13 14 15 16 

E ~(lma x =2 )  2 .826  . . . . .  
~Z(Imax = 2 )  0 . 5 0 6  . . . .  
E~(lm~ • = 3) 2.679 2.780 3.253 3.737 4.083 4.241 4.785 5.480 
r = 3) 0.498 -- 0.277 -- 0.088 0.072 0.279 0.307 -- 1.575 0.079 

[' ~/max 
~k (ASA)(r) __ c , - , -  Z [ ~ ' L O L ' ( r , E ~ ) + f 2 [ ' L ~ L ' ( r , E ~ ) ]  . (20) 

L' 

The coefficients rc~, L and 0~, L are given in the 
Andersen 's  paper  ([8];  see formulas  (4.21a) and 
(4.21b)). The  function Oz(r,E,) is the solut ion of the 
radial  Schd5dinger equat ion for the energy E~ and 
~bL(r,E~) is its energy derivative�9 The  matr ix  elements 
j~x, in the a tomic  sphere approx ima t ion  are given 
by: 

jk(ASA) [,qk)o3* nk)-'/,Tk(ASA) ~ ]XL' ) (21) 2)s = E ~/V k(ASA) 
\ ~ L  ] ~ L '  \ A , L  

LL '  l m  

where the acute-angle  brackets  denote  the inte- 
gra t ion  over  the a tomic  sphere. They  m a y  be easily 
derived by use of the wel l -known formula  for the 
gradient  of  the spherical  ha rmonics  [15]. It  should 
be noted that  AL'~'k(ASA) is well-defined only inside 
a tomic  sphere of  the radius S (Wigner-Seitz sphere). 
But being expanded  over  the whole space these func- 
tions are discont inuous due to the cut-off of the sum 
in (19) a t  /max' 
For  es t imat ing the values of the correct ions 6j~;, 
in (16) we shall compare  the diagonal  matr ix  ele- 

I dEk, ~ 
ment  Sxzlk(ASA) and  the electron velocity h dk " It  fol- 

lows f rom the previous considerat ion that  such a 
compar i son  characterizes the consistency of the 
C D O  matr ix  d e m e n t s  with the energy structure. 
The results of the calculat ions of  the rat io ~ 

k /dEk.~ 
= h ( j ~ , z ) ~ / ~  are shown in Table  1. The calcula- 

tions were carried out  at the k-poin t  (0.2, 0.1, 0.05) 
for the cases of  l~a~=2 and /m,x = 3  using the self- 
consistent potent ia l  f rom [16]. 
F r o m  this table it m a y  be seen that  the energies Ek~ 
in the lowest six bands are a lmost  the same when 

1 dEkz 
1 ....  = 2  and I m ~ = 3  and hence the quant i ty  h dk 

does not  change much  neither. But the matr ix  ele- 
"k ments  jzz differ great ly  in these two cases. In higher 

1 dE k 
bands  the quant i ty  j k  differs f rom h - d ~  significant- 
ly even when /max = 3. 
Within  the f rameworks  of the L M T O  method  the 
cont inui ty of the wave function and its derivative 
may  be achieved by using the L M T O  wave func- 
t ions .,k(LMTO) instead of the ASA wave functions AL 
zk(ASA) 

L 

z k  (LMTO)[r~ __ ratk (ASA)[r~ __ ~k  (ASA){r~q 0 (S  - -  I r I) 
L \~2 - -  L L L  \ ' 1  L L  ~,a/l 

+ ~k(ASA){I r [ ,~L u . ,=S)~e ' (k+G)~FL(k+G),  (22) 
G 

FL(k + G) = 3 (21+ 1)(21+ 3) jt +t(Ik + G[ S) rL(k + G) 
(Ik + GI s)  3 

(23) 

where )~[(ASA) is given by the expression (20) for the 
zero cristal potential .  They  are normal ized  by the 
condi t ion Z~L~/k(ASA)[Irl -- ~']-- ~'k(ASA)(II'I - S )  - ~ , 1 - 1  - -~ - - ,~L  u-~ -- Using (21) 
and (22) we get that  

jk(LMTO)~ ~2 y/~,k(ASA) hV k(ASA 

_ j k(A A)l h V  I;?k(ASA b 
\ L L  I i m  L'  

+ z[(ASA)*(Ir [ = S) z[!ASA)(Ir ] = S)~  

�9 * 
(aL) aL,.  

3 G 
(24) 

This formula  turns out to be computab le  enough 
because the sum in (24) may  be compu ted  by the 
slightly modif ied L M T O  subrout ine  for the calcu- 
lat ion of the s tructure constants  FLL, [8]. 
It  should be noted that  the (24) looks like the for- 
mu la  (4.13) of the Andersen  paper  E8] for the over- 
lap matrix.  As we now use the cont inuous  wave 



268 

Table 2. Test of diagonal matrix elements in LMTO 

Yu.A. Uspenski et al.: Optical Properties of Metals 

2 1 2 3 4 5 6 7 8 

Ez(/ma x =2) 0.107 0.336 0.379 0.396 0,426 0.454 1.880 2,240 
~2 (/max = 2) 0.989 0.354 0.273 0.628 0,858 0.636 0.714 0.574 
E~,(/m~x = 3) 0.107 0.335 0.378 0.395 0.425 0.453 1.800 2.150 
Ca(/m,* = 3) 0,998 1.008 1.028 0.907 0.923 0.922 0.746 0.656 

,~ 9 10 11 12 13 14 15 16 

Ex(Im~ x = 2) 2 . 6 2 9  . . . .  
~(lm~ x =2) 0 . 6 4 5  . . . .  
E t(Im~,~ = 3) 2.583 2.616 2.965 3.480 3.664 3.922 4.409 4.769 
~;,(Ima x = 3) 0.708 0.565 0.188 0.404 0.443 0.876 0.891 0.462 

Table3. The comparison of th e matrix elements calculated using LMTO method (24) and KKR [2] method (18)-(5) 

u I r t r a n s i t i o n  /Jr --~ E2 /J3 ~ / ~ 2  /23 ~ / ~ 2  /J2 ~ / f i t  X 1 --* X 4 X 5 --+ X ~  X~ ~ X~ 

E), -E~ 0.354 0.224 0.113 0.341 0.555 0.298 0.394 
Pzz,(LMTO) 0.240 0.108 0.322 0,820 0.218 0.472 0.911 

I ~  = 3 
P~,v(KKR) 0 .214-0 .220 0.081-01104 0.302-0.384 0.857-0.843 0.201-0.203 0.350-0.350 0,977-0.963 

lm~ x = 4 

�9 k /dEk,~ 
functions, the ratio h ( j x z ) ~ / ~  is much  closer to 

unity in L M T O  than in A S A  (see Table2). Above  
we supposed that the accuracy of the calculations of 
the nondiagonal  matrix elements is of the same or- 
der than that  of the diagonal  ones. N o w  we can 
verify this supposition. The compar i son  between the 
calculated optical matrix elements for copper  
jk(~ro~(t - 3 )  (with the potential  f rom the book  2~Z' \~max - -  

[163) and the matrix elements of [2], at the points 
of high symmetry  confirms this est imation (see Ta- 
ble 3). 

E2((JJ} 

:I 
0 

- - -  e x p .  

I t h e o r .  

\ 4  
\ 

~m(eV} 

Fig. 1. Calculated and experimental [17] dielectric function of Cu 

IV. Numerical Results 

As an example of the applicat ion of the above- 
described technique we present the calculations of 
e2(oe ) in compar ison  with the experimental measure- 
ments for F C C  metals Cu and Pd. We have com- 
puted the interband part  of s2(oe) for the energy 
range hoe < 20 eV using the formula 

4~2e 2 
'~:2(oe) 3692 

~ '  IJ~z'l z g ) ( E k ~ ' - - E k z - -  hoe) fkr --fk,~') (25) 
k , 2 * A '  

where the matrix elements j~ ,  are given by (24). 

The reciprocal space integration was performed by 
the te t rahedron method using 215 points in the irre- 
ducible part  of the Brillouin zone. 
The optical properties of copper  have been mea- 
sured by many  authors  [17-193. The experimental 
results for e2(oe) have been obtained by the Kramers-  
Kronig  inversion of the reflectivity data. They are in 
good  agreement  with each other, The actual com- 
parison between the calculated results for e 2 and the 
curve of  [17] is shown in Fig. 1 (in the energy range 
hoe<6eV) .  It may  be seen that the positions of the 
main  features of the theoretical curve almost  coin- 
cides with the experimental ones. 
The interband absorpt ion edge lies about  
hoe~2.1 eV. The first significant peak hoe~2 .7eV on 
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d(w (Ryl  
- - -  exp. 

A - -  theor. 

010- .,,/I/ ~ /,/.~\\ 
/ I \ \ ' f - ~ - "  \ \  

J \ 0.05- v v "%, 

0 2 L 6 8 10 12 1l, 16 18 20 

~ w  (eV) 

Fig.2. Calculated and experimental [20] optical conductivity of 
Cu 

~2(w) 

8- 

- -  theor. 

'~ I! exp. [ 2q ] 
! ,~ '~ . . . . .  exp. [22] 

E2/10  ~ 

2- ~ ~ / ~ .  
~l', \<r2~--'~" ~"  ~ 7"" "- ~ .  ~ / ~  

0 I I I I I I R,~ 
0 2 a 6 8 10 20 

f lw (eV) 

Fig.3. Calculated and experimental [21, 22] imagine part of 
dielectric function of Pd 

the calculated curve corresponds to the experimental 
hdo~2.6eV. The positions of the features at 3.9eV 
and 4.6 eV may be almost identified and the position 
(hdo~5.5eV) of the right theoretical peak corre- 
sponds to the value he)~ 5.2eV of the experimental 
one. 
There are the experimental data obtained by Bea- 
glehole et al. [20] by the use of the multiangle 
reflectance technique from which e2(do) could be ex- 
tracted without the Kramers-Kronig integration. 
The comparison of the experimental measurements 

do 
of the optical conductivity o-(do)=4 -7ce2(do ) for Cu 

with the calculations in the energy region hdo < 20 eV 
is shown in Fig. 2. 
The broad humps in the theoretical a(do) at about 
9 eV and 15eV correspond well to the similar broad 
features in the experimental curve at 8eV and 
14 eV. 
Thus one can say that the theory allows us to estab- 
lish the positions of the features observed in the 
experiment for the energy interval he) < 20 eV. How- 
ever, in general the theoretical magnitudes of e2(do) 
and o-(co) for Cu are lower than experimental ones. 
The numerous measurements of the optical proper- 
ties of Pd [21-23] give rather full picture of the 
positions of the main anomalies of e2(do)- The com- 
parison between the theoretical ca(do ) for Pd and 
experiments [21] ( h d o = l - 1 3 e V ) a n d  [22] (hdo=2- 
30 eV) is shown in Fig. 3. 
The theoretical curve displays a significant feature at 
hdo~ 1.5 eV in accordance with [21]. At the points 
hco~3.3eV and hco~4.5eV both calculations and 
experiment [21] display two peaks, and the curve 
[-22] has rather visible shoulders. At hdo~7.2eV 
there are peaks both in the theoretical and in the 
experimental [21] curves and at hdo~9.7eV our cal- 

culations and [22] give plateau ([21] has a peak). At 
hdo~10.7eV the theoretical curve and [21] have 
peaks and at hdo~ 12.5 eV all three curves have fea- 
tures. At h d o ~ l ? e V  e2(do ) has a minimum and at 
20.5 e V a  maximum in accordance with [22]. It is 
also easily seen that the overall agreement of e2(do ) 
with the experiment, in the positions and the in- 
tensities of the features is rather good for Pd. 

V .  C o n c l u s i o n s  

In this paper we show that some difficulties arise in 
the definition of the current density matrix elements 
because of the approximate nature of the wave func- 
tions obtained by the band structure calculations. 
Possible ways of solving these problems are either 
taking into account the corrections (15) directly or 
the further improvement of the wave functions, pay- 
ing a special attention to the continuity. We think 
the second way is preferable, particularly because it 
does not require the revision of the existing theoreti- 
cal equations. It will be important if one would like 
to take into account the many-particle effects and 
the matrix nature of the dielectric screening. Com- 
parison of the calculated e2(do ) with the experimental 
values displays good qualitative and quantitative 
agreement. It is difficult to say now what is the 
origin of the existing discrepancy: the insufficient 
accuracy of the wave function or the many-particle 
effects. This question requires following investi- 
gations. 

The authors are grateful to L.V. Keldysh and B.A. VoIkov for 
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