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CrRhAs: a member of a large family of metallic kagome
antiferromagnets
Y. N. Huang 1, Harald O. Jeschke 2 and Igor I. Mazin 3,4✉

Kagome lattice materials are an important platform for highly frustrated magnetism as well as for a plethora of phenomena
resulting from flat bands, Dirac cones and van Hove singularities in their electronic structures. We study the little known metallic
magnet CrRhAs, which belongs to a vast family of materials that includes 3d, 4f, and 5f magnetic elements, as well as numerous
nonmagnetic metals and insulators. Using noncollinear spin density functional calculations (mostly spin spirals), we extract a model
magnetic Hamiltonian for CrRhAs. While it is dominated by an antiferromagnetic second nearest neighbor coupling in the kagome
plane, the metallic nature of the compound leads to numerous nonzero longer range couplings and to important ring exchange
terms. We analyze this Hamiltonian and find unusual ground states which are dominated by nearly isolated antiferromagnetic
triangles that adopt 120∘ order either with positive or with negative vector chirality. We discuss the connection to the few known
experimental facts about CrRhAs. Finally, we give a brief survey of other interesting magnetic members of this family of kagome
compounds.
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INTRODUCTION
Due to strong geometric frustration, antiferromagnetism on a
kagome lattice is expected to yield complex properties such as
classical or quantum spin liquids1–4. A good example with well-
localized spin-1/2 copper magnetic moments forming a kagome
lattice is herbertsmithite (ZnCu3(OH)6Cl2) which has been drawing
a lot of interest since it was first synthesized in 20055. It has long
been discussed as a quantum spin liquid candidate6 but some
kind of structural disorder plays a significant role7. Other examples
of kagome antiferromagnets which are proximate to or actually
realize quantum spin liquids are kapellasite (ZnCu3(OH)6Cl2)8,9,
Y-kapellasite (Y3Cu9(OH)19Cl8)10,11, and Zn-barlowite
(ZnCu3(OH)6FBr)12,13.
Deviations from this “canonical” model have also been

attracting a lot of attention lately. One line of inquiry has been
along the search for nontrivial magnetic properties in kagome
models with more complex interactions. Some examples include
ideal kagome with reduced symmetry11,14, breathing kagome
forming magnetic trimers15–18 (which can host electrons17 or spin-
waves19 with flat dispersion due to trimerization, as well as
semimetals, including Weyl20,21). Yet another direction is introdu-
cing anisotropic interactions (like Dzyaloshinskii-Moriya) generat-
ing non-coplanar magnetic patterns with non-zero scalar chirality
and topological transport22,23, or combining spin-ice Ising terms
with twisted kagome geometry24. Of course, these are only a few
examples from a potentially long list.
Interestingly, good metals with kagome and kagome-like

geometries have only relatively recently been studied intensively.
A typical example is the intermetallic TmXn kagome series (T = Mn,
Fe, Co; X = Sn, Ge; m:n= 3:1, 3:2, 1:1) with different kagome plane
stackings25. Much effort has been put into studying their
topological properties (Dirac fermions and flat bands)25–27. Related
kagome metals, such as YMn6Sn6, exhibit a nontrivial topological
Hall effect28–30, while another kagome metal family, AV3Sb5

(A=K,Na,Cs), demonstrates a series of intriguing orders, including
superconductivity31–34. Importantly, kagome planes in these
systems are not magnetically frustrated, but they retain interesting
electronic properties due to the special features of the kagome
dispersion: Dirac points, van Hove singularities, and flat bands.
Kagome metals with antiferromagnetic frustration have been little
studied so far35,36.
Ideal kagome lattices are not uncommon, but relatively rare. An

important point in this regard is that most unique properties of
kagome magnets do not, actually, require an ideal kagome
geometry, but rather an ideal kagome connectivity. In this respect,
there is no difference at the nearest neighbor level between a
perfect kagome lattice and the one twisted by triangle rotations,
as shown in Fig. 1. In this paper, we discuss a large family of
compounds with the chemical formula XYZ and space group P62m
(no. 189). Typically, they include two metal layers, X and Y with
ligands Z integrated into the two layers at a ratio 1:2. Thus, the
structure can be understood as a stacking of X3Z at z= 0.5 and of
Y3Z2 at z= 0. Due to two 6-fold rotoinversion axes, the metal
planes can be described as twisted kagome, where ligands sit in
high-symmetry positions inside the metal planes. One metal
sublattice, as discussed below, is only moderately deformed from
the ideal kagome, while the other, incorporating two ligand atoms
per unit cell, has metals combined into trimers. The former
subsystem is often magnetic, the latter usually not.
The elemental base for this crystallographic family, known by its

prototype ZrNiAl, where X= Zr, Y= Al, and Z= Ni, is large, and
metallic layers can be formed by transition metals, lanthanides,
actinides, alkaline earths, etc. Many of the compounds are
magnetic, when X forms the magnetic sublattice, and the resulting
frustration is identical to the ideal kagome model. A known but
little studied representative of this family is CrRhAs37–40. We have
chosen it as an example to perform an extensive study of in-plane
and out-of-plane magnetic interactions, using density functional
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theory (DFT) calculations. We use the energies of spin spirals to
extract the important parameters of a Heisenberg plus ring
exchange Hamiltonian. We find that the second inplane exchange
interaction clearly dominates over the first, leading to a spiral
magnetic ground state. The dominant second-neighbor coupling
is an interesting finding and shows that the twisted kagome lattice
realized in CrRhAs and the entire family defined by its space group
has remarkable properties beyond the known isotropic or
distorted kagome lattice materials.

RESULTS
XYZ compounds with P62m structure
In XYZ with P62m space group, both X and Y sublattices are each
characterized by one distortion parameter v ¼ x � 1

2, where x is
the coordinate of the 3g (3f) Wyckoff position. The 3g and 3f
positions differ only in the z coordinate, 1/2 and 0, respectively.
The Z ions occupy two sublattices, 1b in the 3g plane, and 2c in
the 3f plane. Increasing the absolute value of the distortion
parameter ∣v∣ makes the equilateral X triangles grow and rotate in
the X3Z plane. This takes the X sublattice from an ideal kagome
lattice at v= 0 via a kagome lattice with rotated triangles and
deformed hexagons for 0<jvj< 1

6 and a perfect triangular lattice at
jvj ¼ 1

6 to trimers for jvj> 1
6. At increasing ∣v∣, the triangular lattice

of Z at the 1b position is enclosed by ever smaller X triangles. The
v parameter has the same effect in the Y3Z2 plane with the
difference that here, the Z in the 2c position form a honeycomb
lattice. Thus, the connectivity in the two metal sublattices, X and Y,
is different, which dramatically affects their magnetic properties.
The compact triangles in the Y3Z2 plane tend to have considerable
covalent bonding, and no, or little magnetism. The X ions, in

contrast, form only a moderately twisted kagome lattice (mini-
mizing the Coulomb interaction with the ligand in the center), and
are likely to have magnetism which can be frustrated in case of
antiferromagnetic interactions.
We have inspected the P62mXYZ compounds on the materials

project website41 and organized some potentially magnetic ones
into convenient tables, shown in Supplementary Note 1,
Supplementary Tables 1 to 3. We found a number of XYZ
compounds with significant magnetism, where magnetic kagome
atoms can be Ce, Cr, Eu, Ho, Dy, Fe, Gd, Mn, Np, Pu, or U.

CrRhAs
We used a projector augmented wave basis as implemented in
the Vienna ab initio simulation package (VASP)42–44 to perform
noncollinear magnetic calculations—when needed, with indivi-
dual constraints. We use all electron calculations with the full
potential local orbital (FPLO) basis45 to plot band structure and
Fermi surface. The generalized gradient approximation (GGA) in
the Perdew–Burke–Ernzerhof variant (PBE)46 was used as the
exchange-correlation potential.
We base our calculations on the crystal structure of CrRhAs

determined by Deyris et al.47 (ICSD 43919) with a= b= 6.384(1) Å
and c= 3.718(1) Å. The internal atomic positions of CrRhAs were
relaxed in VASP while keeping lattice parameters fixed. The
optimized structural parameters are shown in Table 1, and will be
used from now on.

Magnetic pattern analysis
In the following, we will infer magnetic couplings between Cr
atoms (as shown in Fig. 2a) based on energies of different
magnetic patterns on the Cr sublattices. In Fig. 2b, we define the

fractional coodinate x

6-fold rotoinversion

kagome trimers

exact kagome triangular

twisted kagome trimers

a

b

Fig. 1 Kagome lattice distortions within P62m space group. a Two 6-fold rotoinversion axes in the unit cell of the P62mXYZ compound
(center). x is the fractional coordinate of the X atom indicated by an arrow. The left panel shows red atoms forming a kagome sublattice which
is twisted by triangle rotations. The right panel shows blue atoms forming triangles. b The type of sublattice is uniquely determined by
v= x− 1/2. When v= 0, the sublattice is exact kagome; When ∣v∣ < 1/6, it is a twisted kagome; when ∣v∣ > 1/6 it is trimers. The VESTA
visualization program52 was used to generate this figure.
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three sublattices Cr1, Cr2, Cr3 of the kagome lattice. Arrows of
different colors indicate the 1st to 4th in-plane nearest neighbor
Cr atoms to a reference Cr1 atom. Each arrow associated with a
Heisenberg term Jnsi ⋅ sj where Jn means nth in-plane nearest
Heisenberg coupling and si=1,2,3 are normalized spin operators for
Cr1, Cr2, Cr3. The polar angles of moments are assumed to be
ϕ(1), ϕ(2), ϕ(3) for Cr1, Cr2, and Cr3, respectively. Figure 2a
illustrates the connectivity of the Jn networks, with the same
color convention as in Fig. 2b.

We will discuss spin spirals propagating along different
directions and with six cases of spin configurations within a unit
cell defined as 120, FM, FI, (0,60,90), (0,45,120), (0,72,135) as shown
in Fig. 3a. The ϕ(1), ϕ(2), ϕ(3) for each case are listed in Table 2.
Besides, we also discuss periodic magnetic patterns with varying
angle α as defined in Fig. 3b.
The total energy of a magnetic pattern on Cr sublattices can be

written as

H ¼ E0 þ HHeisenberg þ Hring (1)

where HHeisenberg is defined as

HHeisenberg ¼
X
i<j

Jijsi � sj (2)

Here, the si ¼ 1
S Si are magnetic moment vectors normalized to 1.

We write the exchanges in the kagome plane as Jij= J1,
J2,…where 1, 2,… correspond to increasing bond length (i.e.,
coordination shell). Exchange between the kagome layer and
the next layer above and below are Jij ¼ J00; J

0
1; J

0
2; ¼ , again

sorted by distance (J00 is straight up or down). Jij ¼ J000; J
00
1; J

00
2; ¼

are bonds connecting second layers, and so on. The

J2

J4

a2

a1

J1

J3

a2
b2 b1

a1

J4
J3
J2
J1

Cr

a

b

Fig. 2 Exchange paths and sublattice connectivity for CrRhAs.
a Twisted kagome lattice formed by Cr in CrRhAs, with 1st to 4th in-
plane nearest neighbor exchange interaction marked by different
colors. The unit cell contains three symmetry equivalent Cr, which we
denote Cr1, Cr2, and Cr3. b Noncollinear and spiral calculations are
set up focusing on Cr1, Cr2, and Cr3 (red, green and blue)
sublattices. Connectivity is highlighted for the Cr1 sublattice. The
dashed lines cut the lattice into stripes corresponding to different
spiral angles.

120 FM FI

(0,60,90) (0,45,120) (0,72,135)

+α
-α

+-α++α

+α

aa

b

Fig. 3 Spin configurations for spirals and noncollinear calcula-
tions. a Six spin configurations within a unit cell considered in spin
spiral calculations. Red, green, and blue arrows indicate the moment
directions of Cr1, Cr2, and Cr3, respectively. b Spin configurations of
noncollinear ++α and +−α. Red, green, and blue vector are spin
moments of Cr1, Cr2, and Cr3 sublattice respectively.

Table 2. ϕ(1), ϕ(2), ϕ(3) (in degrees) for the six different spin spirals.

Spin configuration ϕ(1) ϕ(2) ϕ(3)

120 0 120 240

FM 0 0 0

FI 180 0 0

(0,60,90) 0 60 90

(0,45,120) 0 45 120

(0,72,135) 0 72 135

Table 1. GGA optimized fractional coordinates of CrRhAs.

Atom Wyckoff x y z

Cr 3g 0.6017 0 0.5

Rh 3f 0.2641 0 0

As1 1b 0 0 0.5

As2 2c 1/3 2/3 0
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identification of all bonds by Cr–Cr distance is provided in
Supplementary Note 2.
Hring is the ring exchange on a Cr triangle defined as

Hring ¼ L1
X
41

si � sj þ L2
X
42

si � sj (3)

whereX
41or42

¼ ðs1 � s2Þðs2 � s3Þ þ ðs1 � s3Þðs3 � s2Þ þ ðs2 � s1Þðs1 � s3Þ (4)

Here, summation over Δ1 or Δ2 means that si=1,2,3 are the three
moments of Cr1, Cr2, Cr3 that form 1st or 2nd nearest neighbor Cr
triangle (red or blue triangles in Fig. 2a, respectively). L1 and L2 are
the corresponding triangle ring exchange strengths.
With the above definitions, we can rewrite the total energy in

Eq. (5) as

E ¼ E0 þ L1D1 þ L2D2 þ
X
i

JiCi þ
X
i

Ji
0Ci

0 þ � � �
 !

(5)

where Ci; C0
i ;D1;D2 are summations of terms like si ⋅ sj and (si ⋅ sj)

(sj ⋅ sk) that depend on magnetic patterns.

Spin spiral configurations
Spin spirals were modeled using the generalized Bloch theorem48,
as implemented in VASP. We calculated various spin spiral
configurations for CrRhAs in order to get consistent information
about the magnetic coupling between Cr ions in CrRhAs. A spin
spiral is determined by a propagation vector q within the first
Brillouin zone of the reciprocal space lattice. We mainly
considered (qx, 0, 0) and (0, 0, qz) spirals.
The (qx, 0, 0) spirals are propagating along the reciprocal b1

direction, which is shown in Fig. 2b. To understand the
connectivity in these spirals, we can divide the lattice into stripes
(dashed lines in Fig. 2b) running along the unit cell vector a2,
which is perpendicular to b1. From one stripe to the next, all
moments are rotated by the angle θx= q ⋅ a1. There is an
additional freedom of choosing Cr moment directions
ϕ(1), ϕ(2), ϕ(3) within the unit cell, which generates different spin
configurations. We considered six types of (qx, 0, 0) spin spirals,
labeled as (120)[q00], (FM)[q00], (FI)[q00], (0, 60, 90)[q00],
(0, 45, 120)[q00], (0, 72, 135)[q00] and corresponding (0, 0, qz)
spirals labeled by replacing [q00] with [00q]. For (0, 0, qz), a spiral
propagates along the a3 direction, which is much simpler. All
moments in a horizontal plane have the same spiral angle, and in
the next plane along the a3 direction, they rotate by θz= q ⋅ a3.
Explaining the energetics of such spirals requires out of plane
exchange couplings.
Simple, if tedious, calculation renders a Heisenberg Hamiltonian

that is a linear form in J’s and L’s, with the coefficients Ci and D for
general (qx, 0, qz) spin spirals, as shown in Supplementary Note 3.
For each spiral of the 120, FI, and FM cases, we performed spiral
total energy calculations from spiral angle 0 to π, because their
energy is symmetric with respect to spiral angle π up to J4. For the
other cases, (0, 60, 90), (0, 45, 120), (0, 72, 135), we calculated the
full spiral angle range 0 to 2π.

Noncollinear periodic calculations
We also consider simple periodic cases where the three Cr
sublattices have three different noncollinear spin directions, as
shown in Fig. 3b, and where we vary the angle α. Taking the spin
direction of Cr1 as reference, in the ++α case the spin directions
of Cr2 and Cr3 are rotated by the same angle +α, while in the
+−α case, the spin direction of Cr2 and Cr3 are rotated by +α and
−α, respectively. The energy versus α curves and their fittings to
different orders of cosine are shown in Supplementary Note 4.

If the magnetic interaction is dominated by Heisenberg-type
contributions, we would expect that a simple cosðαÞ will fit the
++α curve well. As we can see from Supplementary Fig. 2, the fit
is indeed not bad with cosðαÞ only, but after adding cosð2αÞ it
becomes much better. For the +−α case, we would expect cosðαÞ
plus cosð2αÞ will fit well. However, it turns out that fitting to the
order of cosð2αÞ still has a large discrepancy with the calculated
energies, and by adding a cosð3αÞ term, two curves immediately
snap together. So it is clear that explaining the +−α curve needs
the cosð3αÞ term.
One probable explanation is that there is ring exchange

between three Cr atoms. For the spins s1, s2, s3 of Cri=1,2,3, a ring
exchange interaction is proportional to s1 � s2ð Þ s2 � s3ð Þþ
s1 � s3ð Þ s3 � s2ð Þ þ s2 � s1ð Þ s1 � s3ð Þ. In the +−α case, this will
introduce cosðαÞ cosð2αÞ and cos ðαÞ2 terms, and cosðαÞ cosð2αÞ
is equivalent to 1

2 cosð3αÞ þ cosðαÞð Þ, so that cosð3αÞ emerges as
soon as we consider ring exchange. For the ++α case, the ring
exchange term introduces additional cos ðαÞ2 contributions that
also improves the fit.

Fitting all energy curves
Energies of six (qx, 0, 0) spirals, three (0, 0, qz) spirals, ++α and
+−α are shown in Fig. 4. Note that we have intentionally shifted
the curves of ++α and +−α up to align with (FM)[q00] and (FM)
[00q] at θ= 0, because due to the internal realization of VASP,
energies of noncollinear and spiral calculations have a constant
shift. From Fig. 4 The 120[00q] with θ= π has the lowest energy.
This means that the interlayer coupling is AFM, and moments on
Cr atoms on the same triangle tend to form 120 degree angles
with each other.
Now we have 9 spiral curves plus 2 noncollinear curves with

variable angle as shown in Fig. 4, which can be fit to Eq. (5), using
Supplementary Table 5. It appears that only a subset of J’s are
linearly independent; furthermore, some longer-range couplings,
while they can formally be extracted by the fit, come out very
small and improve the fit only marginally. A choice of
E0; J1; J2; J3; J4; J00; J

0
1; J

00
0; J

00
1; L as a physically meaningful Hamilto-

nian gives good overall fits as shown in Fig. 5.
From this fitting result, we found that J2 is the dominant

exchange interaction. It is an antiferromagnetic coupling, and
interestingly it is 10 times larger than the second largest
ferromagnetic exchange interaction J1. What is more, J3, J4 are
also of the same order of magnitude as J1. The nearest and next

Fig. 4 Energies for spiral and noncollinear spin configurations as
function of angle. Energy curves of six (q, 0, 0) spirals, three (0, 0, q)
spirals, ++α and +−α.
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nearest interlayer coupling is antiferromagnetic. Thus, we find a
Heisenberg Hamiltonian with clearly dominating antiferromag-
netic interactions, in agreement with the fact that experimentally
CrRhAs was found to order antiferromagnetically with a Neel
temperature of TN= 165 K37. Considering the hierarchy of
exchange couplings, we expect the J2 triangles to order in a 120
degree state. The second largest ferromagnetic J1 couplings

cannot be exactly satisfied because of J1-J2-J1 triangles, and they
already introduce some frustration. The smaller in-plane couplings
J3 and J4 also contribute to frustration. Interestingly, even though
the interlayer distances of CrRhAs are small, interlayer exchange is
much smaller than in-plane exchange, and the material is
magnetically rather two-dimensional.
Furthermore, the ring exchange term is indispensable for good

fits of the DFT energies and is substantial at 12% of the dominant
exchange interaction. Note that we can directly compare
Heisenberg and ring exchange terms as we are using unit
moments. As shown in Supplementary Fig. 3, without ring
exchange, there are discrepancies between fitted and original
data curves as large as 20 meV for (120)[q00] and (120)[00q] at
θ= 0, and similarly for +−α.

Discussion of the emerging Hamiltonian
The Hamiltonian derived in the previous section is quite unusual.
First, it is dominated by the large AF 2nd nearest-neighbor
interaction (blue bonds shown in Fig. 2a). These bonds form
isolated triangles, all oriented in the same way. Each triangle,
obviously, orders in a 120∘ fashion, and is formed by the three
different Cr, Cr1, Cr2, and Cr3. Let us first for simplicity assume an
XY model, so all spins lie in the ab plane (Fig. 7). There are two
different ways to produce this order, illustrated in Fig. 6, differing
by the sign of their vector chirality W=M1 ×M2+M2 ×M3+
M3 ×M1 on the dominant J2 triangles. We use positive or negative
vector chirality to distinguish between the two states (see Fig. 6).
Toroidal moment T ¼P3

i¼1 ri ´Mi is usually non-zero for the state
with positive vector chirality while it is always zero for the state
with negative vector chirality. After one or the other type is
selected, each blue triangle is fully determined by one of its spins
(let’s say, by the Cr1 spin). Then the lattice of the blue triangles is
equivalent to a triangular lattice shown in red (see Fig. 7).
Let us now determine the effective Hamiltonian for this lattice:

consider two blue triangles shifted along a. The Cr1 on the right is
connected to Cr20 and Cr30 on the left, where “0” means the atoms
from the left triangle. The corresponding contribution to energy is

Fig. 5 Heisenberg plus ring exchange Hamiltonian fit of spiral and noncollinear DFT energies. Least square fit of six (qx, 0, 0) spirals, three
(0, 0, qz) spirals, ++α and +−α to the Heisenberg Hamiltonian including four in-plane neighbors, two neighbors in the first and second
interplanar interactions, and the nearest neighbor ring exchange, as discussed in the text. Blue symbols are calculated DFT energies. Red
curves are the least squares fit with the parameters shown on the right.

Fig. 6 Toroial moment and vector chirality on a triangle of spins.
There are two topologically different 120∘ magnetic patterns. Red,
green, and blue vectors are spin moments of Cr1, Cr2, and
Cr3 sublattices, respectively. Note that the left pattern (a) has an α
dependent, usually non-zero toroidal moment T ¼ 3 sin α (assuming
the black vectors ri and magnetic moments have unit lengths),
which can be continuously varied from 3 to −3 by rotating the spin
space with respect to the coordinate space, while the right pattern
(b) has always T= 0, and that is not affected by the spin-space
rotation. The left pattern (a) has positive, the right pattern (b)
negative vector chirality.
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J1S1 � ðS02 þ S03Þ ¼ �J1S1 � S01. Thus, the FM n.n. interaction gives
rise to an AF interaction for this red bond, which needs to be
added to the, also AF, J3.
Let us now evaluate the interaction along a2. By the same token,

the coupling between the corresponding Cr2 atoms is also
Jeff= J3− J1. Since the moment of Cr2 is just the moment of Cr1 in
the same gray triangle rotated by 2π/3, it is the same as adding Jeff
along a2 for the Cr1 atoms (note that in principle we could rotate

spins in the opposite directions when shifting along a2 compared
to shifting along a1, but that would have been energetically
unfavorable).
Thus, we get a unique ground state, where the spins on the

blue sublattice, which are of three different colors, form a 120∘-
lattice, and each color within itself also forms 120∘-lattices. Next,
let us look at the gray triangles. Their centers are denoted by
green and orange dots. They form a perfect honeycomb lattice,
but it partitions (as the honeycomb lattice is bipartite) into two
(triangular again) subsets (green and orange), one sporting FM
triangles and the other 120∘-triangles. Note that in terms of the
toroidal moments it is reversed: the former subset has zero
toroidal moments, while the latter non-zero ones. Note that the J4
interaction, comparable with J3 (but considerably smaller than
Jeff= J3− J1) is also satisfied as well as it is possible for a triangular
lattice, i.e., with 120∘ angles.
If we now select the other pattern with a positive vector

chirality on the dominant J2 (blue) triangles, we end up with an
alternative structure, strictly degenerate with the first one (Fig. 7b).
To summarize, the effective model can be mapped onto a

triangular lattice where each site is characterized by a Heisenberg-
spin variable (let us call it Σ, which shows the spin direction of the
selected corner (Cr1, in this case), and another unit-length axial
vector, Ω, showing the sense of the rotation in a given blue
triangle (i.e., rotations from Cr1 to Cr2 to Cr3 by 2π/3 proceed
around the axis Ω, and the sense of the rotation is given by the
sign of Ω). The interaction between the effective spins Σ is also
Heisenberg, AF, and much smaller than the interactions inside a
trimer. Note that while magnetically the system partitions naturally
into trimers, electronically it maintains full connectivity, so
electronic flat bands arising in breathing kagome systems with a
physical trimerization17 do not appear here. This leads to a
standard triangular Heisenberg order, which can also be
characterized by a Heisenberg spin variable, S0, which can be
selected as the value Σ0 at the origin, and another unit-length
rotation vector, ω. At the end, the entire long-range magnetic
order can be described by one Heisenberg spin Σ0 and two axial
rotational vectors Ω and ω. This is to be contrasted with the less-
degenerate standard triangular lattice, which can be uniquely
described by the origin spin and one rotational vector.
Consideration of the second type of ordering, the one with

positive vector chirality on the J2 triangles, proceeds along the
same lines. The results are summarized in Tables 3 and 4. The
main difference is that in the former case half of the nearest
neighbor triangles have non-zero toroidicity, which however
averages to zero, while in the latter the same is true for the
second-neighbor trimers.
Adding the ring exchange which we found to be sizeable does

not alter this ground state. Indeed, it is easy to show that if an AF
coupling on a triangle J > 7L/2 the ground state is not altered by
adding the ring exchange. Finally, interaction along the c axis is
strongly frustrated, with comparable J00; J

0
1, and J001, which can lead,

a1

a2

a1

a2

J3
J2
J1

a

b

Fig. 7 Possible ground states for dominant Heisenberg interac-
tions of CrRhAs. Two possible 2D ground states of the reduced
magnetic Hamiltonian including J1 to J4 interactions (note that the
ground state is highly degenerate). The blue bonds indicate the
strongest exchange coupling (AF) in the system (J2), which
generates 120∘ trimers, the gray bonds the nearest neighbor
triangles, and the red one effective inter-trimer AF interaction,
numerically equivalent to J3−J1. Note that while in the ground state
the blue trimers are ordered in a 120∘ fashion, and the red bonds
network also assumes a 120∘ order, the two orders, in this model, are
not correlated and may have different ordering planes and toroidal
moments. The blue dots indicate centers of the blue trimers, and the
green and orange ones centers of the n.n. triangles. The top
diagram (a) corresponds to an order with negative vector chirality
on the blue triangles, the bottom one (b) to one with positive vector
chirality.

Table 3. Toroidicity and chirality in the spin configuration with negative vector chirality on the dominant J2 triangles, as discussed in the main text.

Label Triangles Connectivity Effective coupling Net moment Toroidicity Vector chirality (∥z)

a Nearest neighbors Honeycomb J1
Sublattice 1 3 0 0

Sublattice 2 0 [−3,3], 〈…〉= 0 3
ffiffiffi
3

p
=2

b 2nd neighbors Trimers J2 0 0 �3
ffiffiffi
3

p
=2

c Centers of the “b” trianglesa Triangular J3−J1 0 [−3,3], 〈…〉= 0 〈…〉= 0

d 4th neighbors Trimers J4 0 0 �3
ffiffiffi
3

p
=2

aEquivalent to the 3rd neighbor triangles. For the purpose of this table, the two ordering planes are assumed parallel, Ω∥ω, so that the scalar chirality is always
zero.
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generally speaking, to spiral states propagating in this direction
(given the higher coordination number for the last two).
While these two states have been discussed above in terms of

supercells, one can notice that they also form spin spirals of a sort.
Namely, the first one can be described, using our notations, as the
(120, 0, 0)[4π/3, 4π/3, 0] spiral, and the second as the (0, 120, 120)
[2π/3, 2π/3, 0] one. Note that in this Hamiltonian, the two spirals
are degenerate, and have not been included in our previous
calculations and fitting. Thus, these two states are true predictions
and can be explicitly verified. Indeed, we found that, as predicted
by the model Hamiltonian, they are (a) degenerate within
computational accuracy and (b) 25.6 meV below the lowest-
energy state found in the original calculations (namely, the
standard 120∘ structure alternating antiferromagnetically between
the planes.)
The last observation relates to the situation that, when the

ordering planes are not parallel, Ω∦ω, a finite local scalar chirality
can be acquired, leading, for instance, to a topological Hall effect.
This opens the door to a fluctuation-induced topological Hall
effect at finite temperature28; however, further analysis is outside
the scope of this paper.

Comparison with experiment
Experimental information on this material is, basically, limited to
four papers from T. Kaneko and co-authors37–40. It has been
established that CrRhAs experiences an antiferromagnetic transi-
tion, with the Néel temperature reported at TN= 165 K37–39 or 172
K40. The antiferromagnetic order has not been established.
Interestingly, the magnetic susceptibility measured in an interval
between TN and room temperature is distinctly non-Curie-Weiss
(CW). In the first publication, ref. 37, it was fitted to the CW law,
χ= C/(T−Θ)+ const, but with a background of 1.47 × 10−3 emu/
mole, which, if interpreted as Pauli susceptibility, corresponds to
45 states/(eV ⋅ f.u.), or to an ad hoc formula χ ¼ C0=ðT � Θ0Þγ , with
C0 ¼ 4:8 ´ 10�3 emu K/mole, Θ0 ¼ 20 K and γ= 0.16. In a later
paper, ref. 38, the same formula was used with χ ¼ C0=ðT � Θ0Þγ ,
with C0 ¼ 3:2 ´ 10�2 emu K/mole, Θ0 ¼ �16 K and γ= 0.44,
presumably, due to a different protocol for the background
removal. Either way, χ−1(T) is strongly nonlinear and its slope gets
smaller with the temperature. If one defines “instantaneous” CW
parameters as C(T)= 1/(dχ−1(T)/dT) and Θ(T)= T− C(T)/χ(T), then
Θ(T) is becoming increasingly antiferromagnetic with temperature,
and C(T) also grows, corresponding to increasingly large effective
moments.
All these observation, as strange as they may seem on the first

glance, find natural explanations in our Hamiltonian and proposed
ground state. Indeed, the former is dominated by the very strong
J2 interaction, which itself corresponds to a temperature scale of
2J2 (2 for the coordination number) of the order of 1000 K, or if
converted to the CW temperature and assuming spin 3/2 and the
quantum factor (S+ 1)/S= 5/3, corresponds to TCW=− 578 K.
This indicates that at room temperature the isolated trimers

formed by the J2 bonds are still strongly correlated, forming
complexes with strongly suppressed net magnetic moment. As a
result, the true CW regime is not attained until T≳ 600 K, and the
observed behavior is nothing but a graduate crossover from the
fully correlated trimers with the effective moment meff≪ 1μB and
TCW defined by the other (besides J2) interactions in the system
(which is on the order of −72 K), and the very high-temperature
regime, not reached in the reported experiments, where
meff �

ffiffiffiffiffiffiffiffiffi
3 � 5p ¼ 3:87 μB, and TCW ~−650 K. Finally, the relatively

small value of TN compared to the high TCW temperature finds a
natural explanation in the fact that the intra-trimer ordering that
does happen at high temperature is not related to the
temperature at which the individual triangles order with respect
to each other; the latter is determined by the much weaker inter-
trimer interactions. In fact, an upper boundary on the mean-field
transition temperature can be derived by taking all interactions
but J2 with the same sign (remember that, for instance, J1 and J3,
although they are of the opposite signs, cooperate in the
suggested ordering). This gives an estimate for the maximally
possible ordering temperature of 346 K. The experimental number
is right between the lower estimate of 72 K and this upper bound.

Electronic structure of CrRhAs
Finally, we turn our attention to the band structure and Fermi
surface of CrRhAs. We use GGA calculations with the FPLO basis to
determine both nonmagnetic (Fig. 8a) and examples of magnetic
band structures (Fig. 8b, c). At the Fermi level, most of the density
of states derives from Cr 3d, with only small Rh 4d and very small
As 3p contributions (Fig. 8a). In the non-magnetic bands, a Dirac
point at the K point can be seen about 0.4 eV above the Fermi
level but flat bands are hard to make out. CrRhAs remains metallic
in both ferromagnetic and ferrimagnetic states (Fig. 8b, c) as well
as in antiferromagnetic spin configurations (not shown). However,
DOS at EF is substantially lower in magnetic compared to non-
magnetic states. The non-magnetic Fermi surface (see Fig. 8d for
cuts, Fig. 8h, i for 3D plots) has some cylinder-like 2D features but
also significant variation along kz. The FS for the ferromagnetic
solution (Fig. 8e, f) is not much simpler.

DISCUSSION
We studied one member of a large family of XYZ compounds with
space group P62m that contains twisted kagome and trimerized
(distorted triangular) lattices. As many as 70 of them have
significant magnetism on a kagome lattice, and despite the
distorted geometry, the magnetic interaction Hamiltonian remains
the same as ideal kagome at the nearest neighbor level, which
makes this series of compounds a fertile playground for kagome
physics. We used CrRhAs as an example to study different spin
spiral and noncollinear energies.
To this end, we have calculated within the density functional

theory the total energies of six different in-plane spin spirals, three

Table 4. Same as Table 3, for the spin configuration with positive vector chirality on the dominant J2 triangle.

Label Triangles Connectivity Effective coupling Net moment Toroidicity Vector chirality (∥z)

a Nearest neighbors Honeycomb J1
Sublattice 1 3 0 0

Sublattice 2 0 0 �3
ffiffiffi
3

p
=2

b 2nd neighbors Trimers J2 0 [−3,3], 〈…〉= 0 3
ffiffiffi
3

p
=2

c Centers of the “b” trianglesa Triangular J3−J1 0 [−3,3], 〈…〉= 0 〈…〉= 0

d 4th neighbors Trimers J4 0 [−3,3], 〈…〉= 0 3
ffiffiffi
3

p
=2

aEquivalent to the 3rd neighbor triangles. For the purpose of this table, the two ordering planes are assumed parallel, Ω∥ω, so that the scalar chirality is always
zero.
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different out-of-plane spirals, and two continuously varying
noncollinear magnetic arrangements with the q= 0 periodicity,
a total of more than 230 first principle calculations. Based on these
data, we generated a magnetic Hamiltonian that fits all these
energies reasonably well (with max deviation within 15 meV).

Interestingly, the resulting Hamiltonian was rather unusual in
several aspects: first, we found that Heisenberg exchange
interactions could not provide a satisfactory fit; adding ring
exchange terms proved indispensable, especially for the two q= 0
sets of calculations. Second, we found that the nearest neighbor

Fig. 8 GGA electronic structure of CrRhAs. a Nonmagnetic, b ferromagnetic, and c ferrimagnetic bands with corresponding densities of
states. d kx− ky plane cuts of the Fermi surface for three different values of kz. e, f The same for the ferromagnetic solution. g–j 3D contour
plots of the nonmagnetic Fermi surface; g–i are three individual FS sheets, and j shows all of them together. In g–j, color indicates Fermi
velocity where blue is low, orange high.
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exchange coupling was ferromagnetic, and thus not frustrated,
but the leading (by far) interaction was the next nearest neighbor
antiferromagnetic coupling in the twisted kagome plane, which is
frustrated and leads to a curious, and, to the best of our
knowledge, never discussed before magnetic Hamiltonian. The
ground state of this Hamiltonian is controlled by independent
triangles of a certain vector spin chirality, either positive or
negative, but the same for all triangles, and varying toroidicity
between these triangles. Furthermore, it has a potential to
develop, either statically due to spin-orbit coupling, or dynamically
through topological field fluctuations, scalar spin chirality, and
topological Hall effect. These possibilities, however, go beyond the
scope of our paper.
We hope that this study would motivate further experimental

and theoretical research into this intriguing family, and particularly
this specific system. An unexpected outcome is that the twisted
kagome lattice of XYZ compounds in P62m space group with
magnetic X can realize unusual highly frustrated Hamiltonians that
are not known in pristine or distorted kagome materials and hold
the promise of future discoveries and surprises.

METHODS
Structure preparation
The structure relaxation and noncollinear magnetic calculations of
CrRhAs were performed using the Vienna ab initio simulation
package (VASP)42–44. The projector augmented wave (PAW)
potentials49,50 with the generalized gradient approximation
(GGA) exchange-correlation potential in the
Perdew–Burke–Ernzerhof variant (PBE)46 were used in all calcula-
tions. Explicitly, Cr_pv, Rh_pv, As_d potentials are used.
The internal atomic positions of CrRhAs were relaxed with

lattice parameters a= b= 6.384(1) Å and c= 3.718(1) Å kept fixed
based on the experimental structure by Deyris et al.47 (ICSD
43919) using Γ-centered mesh 6 × 6 × 9 and energy cutoff 400 eV.
The convergence criterion is that all forces are smaller than 0.01
eV/Å. The optimized structure was then used for noncollinear
magnetic calculations.

Spin spiral calculations
Spin spirals were modeled using the generalized Bloch theorem48,
as implemented in VASP. The Γ-centered mesh was set to
8 × 8 × 12, and the lower and upper limits of the energy cutoff
were set to 380 and 480 eV. The moments of Cr atoms are initially
set to 4μB, and only the directions of the moments in the unit cell
are constrained during the self-consistent process. With different
moment configurations together with different spiral propagation
vectors q, we calculated the total energies of different spin spirals
of CrRhAs, and for each spin spiral, a corresponding Heisenberg
Hamiltonian energy expression plus ring exchange terms involves
different Js. By keeping a limited set of Js, we can obtain values for
the exchange couplings and ring exchange via least squares
fitting.

Electronic structure calculations
The band structures and Fermi surfaces were calculated using all-
electron calculations with the full potential local orbital (FPLO)
basis45. As in VASP, GGA in the PBE variant was used as the
exchange-correlation potential. Calculations are converged with a
24 × 24 × 24 k mesh. For the ferrimagnetic state, we lower the
space group symmetry from P− 62m to Amm2. We use an
extended basis set to increase the precision51. The spin-orbit
coupling, expected to be small here, was not included in these
calculations.
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