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Competing magnetic phases and fluctuation-driven 
scalar spin chirality in the kagome metal YMn6Sn6
Nirmal J. Ghimire1,2*, Rebecca L. Dally3, L. Poudel3,4, D. C. Jones1,2, D. Michel1,2, N. Thapa Magar1, 
M. Bleuel3,4, Michael A. McGuire5, J. S. Jiang6, J. F. Mitchell6, Jeffrey W. Lynn3, I. I. Mazin1,2

Identification, understanding, and manipulation of novel magnetic textures are essential for the discovery of new 
quantum materials for future spin-based electronic devices. In particular, materials that manifest a large response 
to external stimuli such as a magnetic field are subject to intense investigation. Here, we study the kagome-net 
magnet YMn6Sn6 by magnetometry, transport, and neutron diffraction measurements combined with first-principles 
calculations. We identify a number of nontrivial magnetic phases, explain their microscopic nature, and demon-
strate that one of them hosts a large topological Hall effect (THE). We propose a previously unidentified fluctuation-
driven mechanism, which leads to the THE at elevated temperatures. This interesting physics comes from 
parametrically frustrated interplanar exchange interactions that trigger strong magnetic fluctuations. Our results 
pave a path to chiral spin textures, promising for novel spintronics.

INTRODUCTION
Topologically nontrivial magnetic and electronic structures have 
attracted extraordinary attention in the past few years. Kagome-net 
magnets are one of the popular classes of these materials (1–5). It 
was recently realized that highly nontrivial physics can come from 
noncollinear interplanar ordering between ferromagnetic (FM) 
kagome planes, such as topological Hall effect (THE) in the absence 
of crystallographic inversion symmetry breaking (6, 7). As opposed 
to anti-FM (AF) kagome materials, for FM kagome planes formed 
by the metals such as Fe or Mn, the in-plane exchange interaction 
is strongly FM and not magnetically frustrated but still forms char-
acteristics of kagome geometry: Dirac cones, and flat bands (8–12). 
The interesting physics comes from the fact that, by virtue of the 
Mermin-Wagner theorem, the FM ordering in the two-dimensional 
planes is strongly suppressed, with the magnetic dynamics being 
controlled by weak interplanar exchange interactions, which, on the 
contrary, can be and usually are frustrated. Thus, these materials are 
strongly magnetically fluctuating and provide fertile ground for 
interesting new phenomena.

YMn6Sn6 is a prototype for this materials class. It forms a hexagonal 
P6/mmm structure (a = 5.541 Å and c = 9.035 Å) consisting of kagome 
planes [Mn3Sn] separated by two inequivalent Sn3 and Sn2Y layers, 
i.e., [Mn3Sn][Sn3][Mn3Sn][Sn2Y] (Fig. 1, A and B) (13, 14). YMn6Sn6 is 
a good metal (15, 16), as can be seen in our resistivity data shown in 
Fig. 1C, and, hence, is expected to have relatively long-range exchange 
interactions, possibly including Ruderman-Kittel-Kasuya-Yosida 
coupling (Fig. 1A). All Mn planes and in-plane nearest-neighbor 
Mn─Mn bonds are crystallographically equivalent, but the interplanar 
Mn─Mn bonds along c are markedly different, with an FM exchange 
interaction across the Sn3 layers and AF across the Sn2Y layers. These 

are frustrated by the second-neighbor interaction across an inter-
mediate Mn3Sn layer (J1 and J3 are FM, while J2 is AF) and result in 
complex magnetic behaviors (14, 15). Below TN ≈ 345 K (Fig. 1D), 
a commensurate collinear AF structure first forms with the propa-
gation vector k = (0, 0, 0.5). On cooling, an incommensurate phase 
quickly appears, which coexists with the commensurate phase in a 
narrow temperature range and becomes the only phase below 300 K 
(14, 17). On the basis of powder diffraction, the incommensurate 
state has been reported to have two (and even three at room tem-
perature) nearly equal wave vectors (14), which can be described as 
a staggered spiral, also dubbed the “double flat spiral,” (18) as de-
picted in Fig. 1E. A magnetic field applied in the ab plane induces 
multiple transitions seen in the magnetization and Hall resistivity 
(15). An enigmatic THE is observed at elevated temperatures, with 
the largest value around 245 K and a magnetic field of 4 T (16). Here, 
we determine the microscopic origin of the magnetic field–induced 
phases of YMn6Sn6 and develop a theory describing the observed THE.

RESULTS AND DISCUSSION
We first present the different field-induced magnetic phases of 
YMn6Sn6 via bulk measurements. Figure 2A shows the magnetiza-
tion measurements of YMn6Sn6 at two representative temperatures: 
5 and 245 K. For the magnetic field applied along the c axis (red curve), 
the magnetization increases smoothly with field and, for 5 K, satu-
rates slightly above 12 T, while the 245-K data show that the satura-
tion field clearly decreases with increasing temperature. The effect 
of a magnetic field applied in the ab plane (Hab) shown by the blue 
curves is more marked. At 5 K, we see a sharp increase at 2 T, indic-
ative of a metamagnetic transition. A closer look reveals two close 
transitions, more apparent in the ac susceptibility measurement 
(Fig. 2B). Since the two transitions are very close, we denote the 
metamagnetic transition field by a single variable, H1, for the remainder 
of the paper. As the field is further increased, the magnetization 
changes slope and increases continuously until H2 = 7 T. Above H2, 
the magnetization grows slower and saturates at H3 = 9.8 T. As tem-
perature is increased, H1, H2, and H3 all shift to lower fields, and H2 
and H3 become closer and merge. A phase diagram constructed from 
the ac susceptibility is depicted in Fig. 2B, with four main phases: 
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(i) 0 < H < H1, (ii) H1 < H < H2, (iii) H2 < H < H3, and (iv) H > H3. We 
denote them as distorted spiral (DS), transverse conical spiral (TCS), 
fan-like (FL), and forced FM (FF), respectively, based on the mag-
netic structures as detailed below. The narrow intermediate phases 
between FL and FF and between TCS and FF are labeled “I” and “II,” 
respectively.

The Hall resistivity (H) and magnetization (M) as a function of 
Hab at 5 and 245 K are compared in Fig. 2 (C and D), respectively. 
At 5 K, H has a very small negative slope in the DS phase. At H1, H 
shows a small jump but then decreases before increasing rapidly to 
saturation in the FF state, forming a remarkable minimum in the FL 
phase. The behavior of H is notably different at 245 K, where it 
exhibits a positive slope in the DS phase. At the metamagnetic 
transition (H1), it shows a sizable jump and then increases nonlinearly 
with the magnetization in the TCS phase, which has been interpreted 
as the THE (16).

The zero-field neutron diffraction data are plotted in Fig. 3A. A 
commensurate magnetic Bragg peak is observed at the onset of long-
range magnetic order, where k = (0, 0, 0.5) and TN = 345 K, which 
quickly transforms into two distinct incommensurate wave vectors. 
These two incommensurate structures coexist from their onset to 
the base temperature (12 K) determined by high-resolution measure-
ments (inset in Fig. 3A). The two wave vectors (0, 0, kz,1) and (0, 0, kz,2) 
with kz,1 < kz,2 evolve smoothly with temperature along L, and ∣kz,1 − kz,2∣ 
decreases with cooling. The two magnetic structures stemming from 
kz,1 and kz,2 are consistent with previous reports (14, 18) (see Fig. 1E) 
but with slightly different periodicities (fig. S4A).
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Fig. 1. Crystal structure and electrical and magnetic properties of YMn6Sn6. (A) Sketch of the crystal structure of YMn6Sn6. (B) Top view of the structure shown in (A). 
Within a unit cell shown by the grey solid lines, there are two kagome planes with the formula Mn3Sn that are separated by Sn3 and YSn2 layers. The symbols Ji are the 
exchange constants between different Mn layers. (C) Electrical resistivity of YMn6Sn6 as a function of temperature with the electric current applied in the ab plane. Inset 
shows the temperature derivative of the electrical resistivity in the vicinity of TN, which shows a jump at 333 K below which an incommensurate spiral state develops. The 
residual resistivity ratio (RRR = 400K/2K) is 42 indicating a good sample quality. (D) Magnetic susceptibility (M/H) of YMn6Sn6 as a function of temperature. (E) Incommensurate 
magnetic structure of YMn6Sn6 in the absence of external magnetic field. Arrows represent the direction of FM spins within a kagome plane. There are small constant 
angles  between the FM-coupled spins across the Sn3 layer, and  between the AF ones across the Sn2Y, which result in a spiral spin arrangement, where every other Mn 
layer forms a spiral with the pitch defined by  +  ≈ 90° and the two spirals rotated by  with respect to each other. The incommensurate spirals repeat after about four 
crystallographic unit cells or about nine Mn layers that are indicated by the numbers 1 to 9.
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Fig. 2. Magnetization and Hall effect of YMn6Sn6. (A) Magnetization as a function 
of external magnetic field at 5 and 245 K with the magnetic field applied parallel 
and perpendicular to the c axis. Data have been offset as indicated. (B) Phase diagram 
of YMn6Sn6 constructed from ac susceptibility measurements. Arb. units, arbitrary 
units. (C and D) Hall resistivity (left axis) and magnetization (right axis) as a function 
of magnetic field applied in the ab plane at 5 K (C) and 245 K (D). The arrows in the 
hexagon in (C and D) indicate the filed and current direction in the basal plane of 
the hexagonal lattice of YMn6Sn6.
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We now focus on the multiple magnetic phases induced via appli-
cation of an external magnetic field in the ab plane. Figure 3 (B and C) 
shows data taken about (0, 0, 2 − kz,n) (n = 1, 2) for 100 and 256 K, 
respectively. We find that kz, n are almost field independent, except 
for an abrupt shift to larger momentum for both magnetic peaks at 
H1, which lies between 2.0 and 2.5 T (between 1.5 and 2.0 T for H1 
at 256 K). Concomitant with these shifts are pronounced decreases 
in intensity of the Bragg peaks at (0, 0, L ± kz, n) positions. The 
T = 100 K data show a new commensurate structure emerging at H2 
(6 T), with the wave vector (0, 0, kc), where kc = 0.25 and a satellite 
at 2kc-type positions, which can be seen in Fig. 3E (discussed more be-
low). These commensurate peaks coexist with the incommensurate 
peaks at 6 T and emerge at the cost of the incommensurate intensi-
ties (see section S2 for details).

A 15-T magnet was used to focus on the high-field behavior, where 
coarse instrumental resolution was used to compensate for the reduced 
intensities. The two incommensurate wave vectors are not resolvable 
with this resolution, but the data satisfactorily capture the overall 
high-field behavior. Figure 3F shows that, at 200 K, the incommen-
surate peaks disappear above 7 T, similar to the observation that they 
are almost fully suppressed by 6 T in the 256-K high-resolution data 
(Fig. 3C). The k = (0, 0, 0.25) commensurate structure at 100 K and 6 T 

in Fig. 3B can be seen at the same field in Fig. 3E at Q = (0, 0, 2.25) with 
a satellite peak at Q = (0, 0, 2.50). In addition, we see that all but the FF 
structures disappear above 8 T as the spins become fully polarized. The 
high-field commensurate phase persists down to 10 K, shown in Fig. 3D, 
but is shifted higher in field and is present between 6.5 and 9.5 T.

The neutron data capture all the features observed in bulk mag-
netic measurements (Fig. 2). Below H1, there is very little change to 
the incommensurate peaks. At H1, the wave vector positions change 
by ∼3%, and intensity drops as much as 60% (see fig. S4). The H1 
transition, which spans almost the entire temperature range of 
zero-field incommensurability, resembles a spin-flop transition, de-
duced from the magnetization data in Fig. 2A. As discussed further 
in the theoretical section, this is a spin flop from a helical to cycloidal 
spiral. Comparison of the structure factor calculations for each 
magnetic structure to the data supports this assignment (see section S2 
and fig. S5 for details). At H2, commensurate peaks with k = (0, 0, 
0.25)–type positions, as well as satellites at 2kc, emerge at the cost of 
the incommensurate structures. The commensurate peaks only 
appear in the FL phase. Curiously, however, a commensurate phase 
with propagation vector k = (0, 0, 0.5) is seen to emerge at 300 K and 
low field (2 T) as seen in Fig. 3G. This temperature and field reside 
within region II of the phase diagram in Fig. 2B.
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Fig. 3. Single-crystal neutron diffraction of YMn6Sn6. (A) Magnetic Bragg peaks tracked as a function of temperature. A commensurate magnetic peak at L = 0.5 ap-
pears between 345 and 330 K, and the two incommensurate magnetic structures stemming from the wave vectors kz,1 and kz,2 appear at 330 K and persist to the base 
temperature measured (12 K). The inset, taken with high instrumental resolution, shows that the two wave vectors do not converge, even as they get closer with decreasing 
temperature. (B and C) Incommensurate magnetic Bragg peaks (0, 0, 2 − kz,n) (n = 1,2) tracked at 100 and 256 K, respectively, as a function of applied magnetic field. The 
solid black lines in the right-hand panels of (B) and (C) are Gaussian fits to the data described in Materials and Methods. An offset was added between individual L scans 
for clarity. Offsets are 1500 counts/30 s for (B) and 2000 counts/30 s for (C). (D to G) Neutron diffraction data taken up to higher fields with a position sensitive detector 
and coarse resolution for (D) 10 K, (E) 100 K, (F) 200 K, and (G) 300 K. In these data, kz,1 and kz,2 are not resolvable, but the high fields at which the data were taken reveal 
the field ranges at which each of the magnetic phases are present. The inset of (G) is a cut taken from the main panel at 2 T, where the dashed black line shows that the 
new peak appearing at this field is commensurate at L = 2.5.
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To understand the microscopic origin and nature of the different 
magnetic phases, we performed first-principles density functional 
theory (DFT) calculations and used the results to construct a mean 
field theory at T = 0. The details are presented in Materials and 
Methods and section S3, and here, we summarize the main findings. 
First, DFT total energy calculations were performed and fit to the 
Hamiltonian (Eq. 1)

	​ H = ​​ 
i,j

​ ​ ​J​ n​​ ​n​ i​​ ⋅ ​n​ j​​ + ​​ 
i,j

​ ​ ​J​ p​​ ​n​ i​​ ⋅ ​n​ j​​ + K​​ 
i
​ ​ ​​(​​ ​n​i​ 

z​​)​​​​ 2​ + ​​ 
i
​ ​ ​J​​ z​ ​n​i​ 

z​ ⋅ ​n​i+1​ z  ​ + ​​ 
i
​ ​ ​n​ i​​ ⋅ H​

(1)

where H is the external field and n is a unit vector along the local 
magnetization direction. The first sum runs over six nearest neighbors 
along the c axis, the second sum runs over the first neighbors in the 
ab plane, and the last three sums run over all atoms (i + 1 denotes 
the nearest c-axis neighbor). K is the easy-plane single-ion anisotropy, 
and the Ising-type anisotropic exchange, Jz, is the only one allowed 
by symmetry for the vertical bonds. To account for Hubbard cor-
relations, we added a DFT + U correction (see section S3). We found 
that the best description of the ground state is attained for U − J = 0.4 
to 0.6 eV, and in the following, we use 0.4 eV (not unreasonable for 
a good metal). The results are shown in the table S2 for three models: 
“full,” “reduced,” where J4 − 6 are absorbed into modified J2 − 3, and 
“minimal,” where Jz is, in addition, combined with K. The full model 
has a staggered spiral as a ground state, as shown in Fig. 1E, with the 
two angles  = − 22° and  = 138°, in reasonable agreement with the 
low-temperature experimental k ≈ (0, 0, 0.25) described by the pitch-
ing angles  = −20° and  = 110° ( +  = 90°). These angles were 
used in the reduced model, J2 − 3, calculations.

We now present the mean field theory results for the minimal 
and reduced models at T = 0. At H = 0, one gets a staggered spiral 
(14). Without K, the minimal model uniquely defines (14) the prop-
agation vector kz but is degenerate with respect to the plane in which 
the magnetic moments rotate. The anisotropy K locks the spins to the 
ab plane. Results for the mean field theory are shown in Fig. 4 (A to C) 
(see section S4 for details). The behavior for H‖c is trivial: The helical 
spiral becomes a longitudinal conical spiral (LCS) and gradually 
transforms into a field-polarized FM phase. For H‖a, if there were 
no magnetic anisotropy (K = 0), then the staggered spiral would 
immediately flop from spins rotating in the ab plane (helical) to 
those rotating in the bc plane (cycloidal), which would then gradually 
cant into a TCS state, and eventually saturate. The magnetic anisotropy 
sets a finite spin-flop field H1 ∝ ​​√ 

_
 ⟨J⟩K ​​, where ⟨J⟩ is the appropriately 

averaged J1 − 3 parameters. Below H1, the spiral remains flat but dis-
torts slightly by canting each spin a little toward a (this is the DS phase). 
At H1, the magnetization increases discontinuously. However, when 
the conical angle in the TCS phase above H1 becomes rather small, 
at the field H2, not that far from the saturation field, further canting 
gains too little energy, and it becomes energetically favorable to flop 
back into the ab plane, gaining back some of the anisotropy energy. 
The resulting phase, found by minimization of the minimal Hamiltonian, 
is a very unusual commensurate FL phase, depicted in Fig. 4B. It can 
be described as a quadrupled structure along the c axis, with spins 
deviating from the x direction, the direction of the magnetic field, 
by the angles , , −, , −, −, , −, which gradually decrease 
until the FF state,  =  = 0, is reached (see section S4 for details). 
The FL phase has a different periodicity for Mx, the projection of 
Mn moments onto the x axis, and for My, the projection onto the 

perpendicular in-plane axis. The latter corresponds to kc = 0.25, the 
former to kc = 0.5, and the variation of amplitude of Mx is much 
smaller. The calculations (Fig. 4C) capture all features of the mea-
sured magnetization (Fig. 2A). The predictions are also confirmed 
by our neutron data: The first spin flop from a nearly helical to a 
nearly cycloidal spiral leads to about 50% loss in the scattering in-
tensity for (0, 0, L ± kn, z)–type Bragg peaks (neutrons do not scatter 
off the Mz component in our geometry when the scattering vector is 
along L), consistent with the discontinuous loss of intensity in the 
experiment (see section S2). In the minimal model, the first spin flop 
does not alter the periodicity; experimentally, however, kz slightly 
increases in the TCS phase. To understand this, we need to step back 
to the reduced model that retains separation of K and Jz. Then, the 
mean field theory predicts a tiny shortening of the spiral pitch at H = H1, 
on the scale of ≈0.36Jz/J1 ∼ 1% (see section S4). The FL phase also 
finds full confirmation in the experiment: At H = H2, as predicted, 
kz changes discontinuously to kc = 0.25, and the predicted weaker 
satellite at 2kc is observed as well.

We now focus on the THE and show its origin in a fluctuation-
driven chirality. The THE appears in the TCS phase only. The fact 
that the THE is observed only at elevated temperatures, while the TCS 
phase exists in the entire temperature range below 330 K, strongly 
suggests the key role of thermal fluctuations. It is worth remembering 
that the system is strongly two-dimensional, with nearly two orders 
of magnitude difference between the ab and c couplings. In this case, 
by virtue of the Mermin-Wagner theorem, the mean field transition 
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temperature of several thousand kelvin is markedly suppressed by 
large and relatively slow in-plane fluctuations. This is reminiscent 
of the famous nematic transition in the planar J1 − J2 Heisenberg mode 
(19), where these fluctuations can give rise to a new, nonmagnetic 
order parameter without a long-range magnetic order. This so-called 
nematic phase is realized in many Fe-based superconductors (20) 
and maybe in other materials as well (21).

We will argue now that similar physics may be realized in the 
TCS phase. The detailed theory is provided in section S5. Here, we 
present a summary of the results. In a continuous approximation, 
the TCS can be described as M = Mx + m, where ​​M​ x​​  ||  ​  x​​ is the induced 
magnetic moment and is a constant, and ​m  ⊥ ​   x​​ is a cycloidal spiral. 
It is also assumed that while the direction of the Mn moment can 
change and fluctuate, the amplitude stays the same. The topological 
chiral field given by the standard expression (2) bx = M · (∂yM × 
∂zM) = ∂yM · (∂zM × M) is thus zero in the TCS phase (or in any phase) 
where ∂yM = 0, and hence, there is no THE. However, addition of a 
magnon fluctuation, propagating along y with wave vector ky, gives 
M = Mxx + m +  where, as mentioned, m ⊥ x and  represents a magnon 
propagating along y (to have nonzero ∂yM) in a plane defined by a vector 

, such that  ∝ ky. Then, ​​∂ M _ ∂ z ​  = ​ ∂ m _ ∂ z ​  =  m × ​  x​​, and ​​∂ M _ ∂ y ​  = ​ ∂  _ ∂ y ​  =   × ​. 

Using these equations on bx, keeping only the terms quadratic in  
and averaging over y, gives bx = −kymz

2, and, unless ​𝛚 || ​̂  x​,​ bx ≠ 0.
The physical meaning of this result is very simple; the TCS is one 

independent magnon short of a chiral combination of static mag-
nons. Of all possible magnons, there are some that generate positive 
chirality, but, by crystallographic symmetry, for each such magnon, 
there is a partner with the same energy and opposite chirality. These 
two partners will be thermally excited with the same probability, and 
their effect will cancel each other, in the absence of an external field. 
However, in an applied field, they create nonzero chiral susceptibility, 
reminiscent of the nematic susceptibility in Fe-based superconductors. 
We find the chiral field in such a case to be

	​​ 〈 ​b​ x​​ 〉 = const ⋅ ​TM​z​ 2​ ​H​ x​​ = const ⋅ ​(​​1 − ​M​​ 2​ / ​M​s​ 
2​​)​​ ​TH​ x​​​​	 (2)

The topological Hall resistivity (T) is proportional to ⟨bx⟩, and 
hence, T can be calculated by Eq. 2 using experimental parameters. 
Note that this expression is valid only for H1 < Hx < H2 and the to-
pological Hall resistivity is zero outside these limits. The theoretical 
T is plotted together with the measured data at T = 245 K in Fig. 4D. 
The inset shows the temperature dependence of T at a constant field 
of 4 T, which is linear in temperature as expected from Eq. 2 (Mz 
depends on the temperature very weakly, as one can see from the 
experimental data in fig. S17). The details of the experimental and 
theoretical T are provided in the section S6. The remarkable agree-
ment of the experimental data with this phenomenological model 
provides insight into the microscopic origin of the THE as stabilized 
by the thermal fluctuations, creating an imbalance in the right- and 
left-handed TCSs, a nematic spin chirality. We want to point out 
that the exceptional agreement between theory and experimental 
THE may be, to some extent, fortuitous, given the simplicity of the 
model and partitioning of the total H (discussed in detail in section 
S6), but provides strong support to the presented physical picture, 
describing the observed THE. Note that quantization of the Hall 
effect has been discussed in two-dimensional kagome-lattice ferro-
magnets (22), where the spin tilting provides the necessary scalar 
chirality. The mechanism we propose here, however, is different since 

the observed chiral response arises from preferentially exciting spin 
fluctuations propagating in one direction (at the expense of those 
moving in the opposite direction) within a particular spiral state.

We have identified two unique magnetic phases, TCS and FL, 
in YMn6Sn6, which emerge from the competitions between ex-
change interactions, the magnetic anisotropies, and Zeeman 
energy, with a remarkable agreement between bulk measurements, 
neutron diffraction, and first-principles calculations. The THE in 
the TCS phase is of particular interest. As opposed to noncoplanar 
and skyrmionic materials, this spiral magnet without static spin 
chirality forms a nonzero internal skyrmionic magnetic field dy-
namically, through preferential excitation of chiral fluctuations 
with a given handedness. This field deflects the conducting charge 
and thus produces the extra component to the Hall effect, the THE. 
Our results not only provide a new mechanism for the THE but also 
open promising avenues in looking for chiral spin fluctuations in 
new materials and at temperatures relevant for practical applications. 
Moreover, it is well known that spin-orbit coupling in kagome-
lattice magnets can mediate the entanglement of the electronic and 
magnetic topology giving rise to more exotic correlated phenomena 
(12, 23). Recently, a novel electronic topological phenomenon has 
been realized in the isostructural compound TbMn6Sn6 (24). Thus, 
this family of compounds may provide prototypes to study the in-
terplay of topological properties simultaneously arising both in real 
and momentum space.

MATERIALS AND METHODS
Crystal growth and characterization
Single crystals of YMn6Sn6 were grown by the self-flux method. 
Y pieces (Alfa Aesar; 99.9%), Mn pieces (Alfa Aesar; 99.95%), and 
Sn shots (Alfa Aesar; 99.999%) were loaded in a 2-ml aluminum oxide 
crucible in a molar ratio of 1:1:20. The crucible was then sealed in a 
fused silica ampoule under vacuum. The sealed ampoule was heated 
to 1175°C over 10 hours, homogenized at 1175°C for 12 hours, and 
then cooled to 600°C over 100 hours. Once the furnace reached 
600°C, the excess flux was decanted from the crystals using a centri-
fuge. Well-faceted hexagonal crystals as large as 100 mg were ob-
tained. The crystal structure of the compound was verified by x-ray 
powder diffraction at room temperature using a Rigaku MiniFlex 
diffractometer. A few crystals from each growth batch were ground 
into powder, and x-ray diffraction patterns were collected on those 
powder samples. Rietveld refinement (25) of a representative 
powder x-ray pattern using FullProf software (26) is shown in fig. S1. 
Magnetic and transport measurements were carried out on oriented 
single crystals.

Magnetic and transport property measurements
dc susceptibility measurements were made using a Quantum De-
sign VSM SQUID. dc magnetization and transport measurements 
were measured using a physical property measurement system 
(PPMS). ac susceptibility measurements were carried out using a 
Quantum Design DynaCool PPMS. Resistivity and Hall measure-
ments were performed following the conventional 4-probe method. 
Pt wires of 25 m in diameter were attached to the sample with 
EPO-TEK H20E silver epoxy. An electric current of 1 mA was used 
for the transport measurements. In magnetoresistance measurements, 
the contact misalignment was corrected by field symmetrizing the 
measured data.
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Neutron diffraction measurements
A single crystal was oriented in either the (H, 0, L) or (H, H, L) scat-
tering plane on the triple-axis neutron spectrometer BT-7 (27) at the 
National Institute of Standards and Technology Center for Neutron 
Research. Elastic diffraction data were taken with Ei = Ef = 14.7 meV 
and 25′ − 10′ − 10′ − 25′ full width at half maximum (FWHM) colli-
mators were used before and after the sample, before the analyzer, and 
before the detector, respectively (unless otherwise noted). A supercon-
ducting 7-T vertical field magnet system with a top-loading closed 
cycle refrigerator was used at the sample position such that the ap-
plied field was parallel to the [1, ​​1 ̄ ​​, 0] crystallographic direction. 
Bragg peaks were resolution limited and Gaussian in shape. Peaks 
were therefore fit to Gaussians with the FWHMs constrained to be 
that of the spectrometer resolution as determined by the program 
ResLib (28). Data using a superconducting 15-T vertical field magnet 
system were taken in the (H, H, L) scattering plane, where the mag-
netic field was also parallel to [1, ​​1  ̄​​, 0]. Moderately coarse resolution 
was used with open −50′ − 40′R − 120′ collimators (where “R” indicates 
radial) and a position-sensitive detector. Throughout the manu-
script, momentum is reported in reciprocal lattice units (r.l.u.) de-
noted using H, K, and L, where ​​Q [ ​​A ˚ ​​​ −1​ ] = ​(​​ ​ 4 _ 

​√ 
_

 3 ​ a
​ H, ​ 4 _ 

​√ 
_

 3 ​ a
​ K, ​2 _ c ​ L​)​​​​.

First-principles calculations
Most calculations were performed using the projected augmented 
wave pseudo-potential code VASP (29) and the gradient-dependent 
density functional of (30). For control purposes, some calculations 
were also repeated using the all-electron linearized augmented plane 
wave code WIEN2k (31). Hubbard correlations were taking into ac-
count using the DFT + U with the fully localized double counting 
prescription and the spherically averaged correction U − J, with the 
values of U − J given in Results and Discussion section.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/51/eabe2680/DC1
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S1. CRYSTAL STRUCTURE REFINEMENT

The crystal structure of the single crystals of YMn6Sn6 were verified by Rietveld refine-

ment of a powder x-ray diffraction pattern collected on the ground single crystals at room

temperature. Rietveld refinement of a representative powder pattern is depicted in Fig. S1.

A previously reported crystal structure (13 ) with space group P6/mmm was used in the

refinement. The results of the refinement are presented in Table S1. Lattice parameters a

= 5.5398(5) Å and c = 9.0203(9) Å are in good agreement with the reported values (14,17 ).

A small peak that was not indexed to be of YMn6Sn6 (as marked by an asterisk in Fig. S1)

was identified to be a Sn peak from the Sn-flux attached on the surface of the crystals. This

impurity peak was excluded from the refinement.

S2. NEUTRON DIFFRACTION

One of the central motivations for investigating the properties of YMn6Sn6 was to deter-

mine the origin of the observed topological Hall effect. One possibility was that a skyrmion

lattice formed in the system, and therefore our first neutron experiments were using small

angle neutron scattering (SANS) to search for skyrmions with the NG-7 SANS instrument

at the NIST Center for Neutron Research using a 9 T horizontal field magnet (H || [1, 1, 0])

and exploring the temperature range from 4 K to 300 K. Figure S2(a) shows a background

subtracted image over a wide wave vector range. No large scale magnetic structures were

observed such as expected for a skyrmion lattice. Rather, just a single diffraction spot at

a rather large (for SANS) wave vector was observed, indicating that long range magnetic

order with an incommensurate modulation is realized. Fig. S2(b) shows an example of the

field dependence of the magnetic order, demonstrating a complex series of magnetic phase

transitions. Figure S2(c) shows cuts through the scattering at a field of 7 T for a series

of temperatures, where it was first observed that there are two closely-spaced incommensu-

rate wave vectors. To further elucidate the nature of the magnetic structures as a function

of both magnetic field and temperature, wide angle diffraction data were collected as we

now describe. Note that uncertainties where indicated represent one standard deviation

throughout the manuscript.

Figure S3 shows the variation of the incommensurate Bragg peaks at (1, 1, 0−kz,n) with



the external magnetic field applied in the ab-plane at 100 K and 256 K, similar to the data

presented about (0, 0, 2 − kz,n) in Figs. 2(b) and (c). The momentum resolution in the

measurement about the (1, 1, 0 − kz,n) peaks is much better than that about the (0, 0,

2 − kz,n) peaks, and as a result, the separation of kz,1 and kz,2 at 100 K is clearer in the

former case. Determination of peak centering obtained from the fitting of (1, 1, 0 -kz,n) is

thus unambiguous. We used the distance between the peak centers determined from the

fitting of (1, 1, 0 − kz,n) to distinguish the behavior of the two peaks in (0, 0, 2 − kz,n)

discussed in the main text. Additionally, the full-width-at-half-maxima of the Gaussian fits

were fixed to be that of the instrumental resolution as described in the Methods section.

The integrated intensity obtained from the Gaussian fits are shown in Figs. S4(b) and (c).

It can be seen from these figures that the percent decrease in intensity at the metamagnetic

transition H1 is not as great as the (0, 0, 2−kz,n) peaks, as expected for a helical to cycloidal

transition. Intensities of the peaks measured at (1, 1, 0− kz,n) are much weaker compared

to the peaks measured at (0, 0, 2− kz,n), but it is still clear that at 6 T, kz,2 has practically

no intensity and the intensity of kz,1 is very weak. As the commensurate peaks emerge at

6 T [Figs. 3(b) and S4(a)], it suggests that they appear at the cost of the incommensurate

peaks.

In Fig. S5, we plot the experimental ratio of intensity above versus below H1 together

with the corresponding calculated ratios. This plot supports the first principles calculations

results discussed in the main text of helical to cycloidal spin flop at H1. Given a kz and any

α value (the rotation angle between Mn layers separated by pure Sn layers), the calculated

cycloidal:helical intensity ratio is 0.5 for (0, 0, L)-type peaks. This is because in the helical

state, all spins lie perpendicular to (0, 0, L)-type scattering vectors, and neutrons are only

sensitive to the component of a spin which is perpendicular to the scattering vector. When

the moments flop into the (1, 1, 1) plane and the structure becomes cycloidal, half of the

total spin magnitude is now projected along (0, 0, L), thus reducing the intensity by half.

There is generally much less of an intensity suppression after the transition for Bragg peaks

at (H,H,L) positions where H is not equal to 0. This is because for a specific kz, the

cycloidal:helical structure factor ratios for a given peak do not change regardless of the value

of α. There are, however, slight differences in the ratios for different wave vectors, although

they are small for the range of kz observed in YMn6Sn6. The calculations used the different

kz,n values from the neutron data for the different temperatures and on either side of H1.



The (0, 0, L)-type peaks decrease in intensity more relative to the (H,H,L) (H 6= 0) peaks

across the H1 boundary, consistent with what would be observed for a helical to cycloidal

spin-flop transition. Combined with the theoretical results, the neutron data do support the

proposed helical to cycloidal spin-flop transition at H1, especially when considering other

complex incommensurate magnetic structures, such as the fan or spin density wave, which

would bear the hallmark of Bragg peak harmonics and any harmonics are absent in the data

presented here.

Additionally, we expect that immediately following the spin-flop transition, the cycloidal

arrangement of spins would begin to cant along H, forming a transverse conical structure.

We confirmed this canting by tracking the net induced ferromagnetic component at the (0,

0, 4) Bragg peak as a function of applied magnetic field. In zero field, the intensity is purely

nuclear in origin, with a field-induced intensity simply adding to the structural part. We

see an abrupt emergence of an induced net ferromagnetic component at H1 for the 100 K

and 256 K data, as shown in Figs. S6(a), and (b), respectively. We note that the 256 K

data in Fig. S6(b) were taken with coarser instrumental resolution as can be discerned by

the x-axes in Figs. S6(a) and (b). The integrated intensity with respect to the zero-field

intensity is shown for both temperatures in Fig. S6(c). The abrupt increase in intensity is

indicative of a sudden canting of the moments towards the applied field direction, [1, 1̄, 0],

and the magnitude of this projection, in µ2
BMn−1, is displayed on the right axis of Fig.

S6(c). Note that the induced moment along the applied field direction is smaller at the

higher temperature as expected, and both behaviors are completely consistent with bulk

magnetization measurements presented in the main text [Fig. 2(a)].

S3. FIRST PRINCIPLES CALCULATIONS

Total energies of 10 different collinear (α and β defined below are either 0 or 180◦) mag-

netic patterns were calculated in a supercell containing 8 Mn layers. Individual layers were

ordered ferromagnetically, and the selected patterns were: uddddddu, udddddud, uddddudd,

uddduuud, uddduuud, ududdudu, udududdu, udududud, uudduudd, uuduuudd, uuuuuuuu,

where u stands for an up-polarized layer, and d for down-polarized. These were fitted to the



following Hamiltonian:

2E = J1 cosα + J2 cos β + 2J3 cos(α + β)

+ J4 cos(2α + β) + J5 cos(α + 2β) + 2J6 cos(2α + 2β) (S1)

where Ji are exchange interactions defined in Fig. S7, E is the energy per layer, and the

angles α and β define rotations between the planes bridged by Sn3 or Sn2Y layers [see Fig.

1(a)]. At low temperature the wave vector is ≈ π/2c. Fitting quality is very high, as shown

in Fig. S8 (blue circles). The resulting values for J1−6 are −50.9, 9.1, 4.1, −4.0, −7.5, and

−3.4 meV. An immediate observation is that, indeed, J1 is strongly ferromagnetic, J2 and J3

are both antiferromagnetic, but (i) their absolute values are quite far from the stability range

of any spiral and (ii) longer-range interactions, especially J5, are very important. A closer

look reveals that the main factor preventing the formation of a spiral is the large J1. Indeed,

for a ferromagnetic J1, a spiral can only be stable if J2/2(|J1|+J2) < J3/J1 < J2/2(|J1|−J2).

This range, for J2 � J1, becomes infinitely narrow, J2−J2
2/J1 < 2J3 < J2+J2

2/J1. Including

the long-range interactions does not change this picture: the ground state is the collinear

uudd pattern.

In many systems, the addition of Coulomb correlations reduces short-range magnetic

couplings, but less so the long range ones. With this in mind, we repeated the calculations

by adding a Hubbard U in the common LDA+U approximation. Figure S8 (symbols other

than blue circles) shows the fit quality, which is still high. Figure S9 shows how the fitted

parameters vary as a function of the effective Ũ = U − J.

It is instructive to look at the phase diagram in the “reduced” (J1, J2, J3 only) model.

Figure S10 shows where our calculated effective exchange parameters fall at different Ũ ≈ 0.4

eV and for ≈ 0.6 eV indeed a spiral is stable, and another for very large (likely unphysical

for a good metal) U. It is also useful to compare the calculated magnetic moments on Mn

with the experimental number of Mexp = 2.1. The fact that even at Ũ = 0 the moment is

overestimated indicates a strongly fluctuating system and weak correlations.

On the other hand, an effective magnetic moment of µeff = 3.6 µB was extracted from

the high-temperature susceptibility (33 ), consistent with a spin S = 3/2 (magnetic moment

3 µB). Thus one can conclude that, despite the fact that for Ũ ∼ 2 − 3 eV the system

re-enters a spiral region, this part of the calculated phase diagram is unphysical. However,

the range of 0.4 – 0.6 eV yields M ∼ 2.7 µB (Fig. S11) consistent with µeff , and, after being



reduced by fluctuations, with Mexp. As Fig. S12 illustrates, the calculated spiral angles at

Ũ = 0.4 eV are α = −22◦ and β = 138◦. Aside from some overestimate in β, the overall

agreement is good.

Plotting Ji as a function of distance clearly shows that it is inconsistent with the Ruder-

man–Kittel–Kasuya–Yosida (RKKY) expression; in particular, it decays much more slowly

than 1/d4. Nevertheless, there is no question that the interaction is transferred by conduc-

tion electrons. The conclusion is then that the Fermi surface must be rather complicated,

and indeed it is. Another complication is that the standard RKKY formalism describes the

interaction of localized moments in a nonmagnetic matrix. This is, obviously, inapplicable

here. The closest analogy would be to start with a ferromagnetic state and see whether it

may be unstable against the formation of a spin density wave (SDW). To address this, we

computed the Fermi surface, which is shown in Figs. S13(a) and (b).

Examining the Fermi surfaces, we see immediately that the spin-down surface is somewhat

2D and does not bear any obvious signature of nesting. The spin-up surface, on the other

hand, is rather 3D, and has two pockets, one electron and one hole, which nest rather well

with qz(Å
−1) = 0.2352π

c
, which agrees reasonably with the spiral vector in the experiment.

This is illustrated in Fig. S13(c), showing a 2D cut of the pockets in question. Of course,

this instability, which is similar in spirit, but rather different in details from RKKY, is

superimposed on top of other, short range interactions, which affect the final outcome.

S4. MEAN FIELD THEORY IN EXTERNAL MAGNETIC FIELD

Previous analyses were based on the assumption that only two ground states compete,

a longitudinal conical spiral (LCS), where the field is oriented along the spiral vector, and

the distorted spiral (DS) (18 ) where the field is applied normal to the spiral pitch. In the

former, each moment is rotated out of the plane by the same amount to form a component

parallel to the field. In the latter, the moments rotate in the plane, but retain the general

spiral structure. We will show that this does not exhaust possible magnetic states.

Analyzing the complete model of Eq. S1 with an external field in an arbitrary direction is

too cumbersome; for simplicity, we will reduce the model to the “standard” J1−J2−J3 one,

keeping in mind that the physics of the spin-flop and spin-flip transitions is roughly the same.

We then adjust the parameters to generate a SDW with q ≈ (0, 0, 0.25), and the pitching



angles α = −20◦ and β = 110◦ (α+ β = 90◦), that is, J2/J1 = −0.364, J3/J1 = 0.171 (and,

J1 < 0). For reference, the angles are in agreement with published analyses (18 ),

α = −sign(J1J3) cos−1
(
J2J3
J2
1

− J3
J2
− J2

4J3

)
, (S2)

β = cos−1
(
J3J1
J2
2

− J1
4J3
− J3
J1

)
, (S3)

α + β = cos−1
(
J1J2
8J2

3

− J2
2J1
− J1

2J1

)
. (S4)

First, let us calculate the energy of the LCS state. Taking the same rotation angle θ for

all moments and assuming the ideal in-plane ferromagnetic order, we can write the total

energy per one 1×1×4 supercell as

ELCS = 4(J1 cos τ − J2 sin τ)M2
|| + 4(J1 + J2 + 2J3)M

2
⊥ − 8HM⊥ (S5)

where τ = −α = β − 90◦ = 20◦, M|| = cos θ, and M⊥ = sin θ (as before, we normalize

all interactions to unit moment). In the following we shall simplify notations by using

e = E/|J1|, j2,3 = J2,3/J1, and h = H/|J1|. The sign is kept in the second definition to

harmonize notations with Refs. 18 and 34. Minimizing with respect to θ, and using the

selected parameters, we find

eLCS = −4.257− 46.443h2. (S6)

The angle θ changes gradually from π/2 to 0, and saturates at h =0.086. Next, we con-

sider the field applied in the plane. Since the leading wave vector at low temperature,

experimentally is close to (0, 0, 0.25), and changes little with magnetic field (notwith-

standing important, but small changes), we will consider a commensurate SDW in the

1 × 1 × 4 supercell, and, contrary to the previous works, we shall assign different angles

φi to each of the eight sites. In the absence of a field, {φ2, φ3, φ4, φ5, φ6, φ7, φ8} − φ1 =

{−τ, π/2, π/2− τ, π, π − τ, 3π/2, 3π/2− τ}. The total energy now looks like (φ9 = φ1)

eDS = −
∑
j=1,4

cos(φ2j − φ2j−1)− j2
∑
j=1,4

cos(φ2j − φ2j+1)

− j3
∑
i=1,8

cos(φi − φj+2)− h
∑
i=1,8

cos(φi). (S7)

Minimizing this expression with respect to φi reveals two interesting transition [Figs. 4(a)

and (c)]. At h = hf ≈ 0.035 the energy slope changes discontinuously, i.e., the magnetization



experiences a jump. At h = h3 = 0.086 (which represents H3 in the phase diagram), the

moment saturates, and therefore χ = dM/dH has a discontinuity. A closer inspection reveals

that up to hf the grounds state is indeed a slightly distorted spiral. Between hf and h3,

however, it is a qualitatively different state, which we call fan-like (FL) phase, where the

moments 1 and 2 are aligned ferromagnetically, and so are 5 and 6. They are gradually

rotating with the field until they become parallel to the latter at h3. At the same time,

the pairs 3 and 4, and 7 and 8 are canted from the field in opposite directions. Thus, the

moments form the following angles with the field: (γ, γ,−δ, δ,−γ,−γ, δ,−δ). Immediately

after the transition their values are γ = 77.25◦ and δ = −10.06◦. The normalized energy

e = E/J1 as a function of the normalized field h = H/J1 of the LCS and planar (the planar

state is distorted spiral below, and a fan-like structure above the kink at hf ) phases are

shown by the solid red line and dotted blue line, respectively in Fig. 4(a) of the main text.

However, without taking into account any anisotropy, ELCS is alway lower than either

EDS or EFL, so the former would immediately flop and stay as such at all fields. So, let us

include an easy-plane anisotropy, by adding a penalty term KM2
⊥. The distorted spiral state

is not affected. The spin-flopped longitudinal conical spiral, competing with the distorted

spiral, is the transverse conical spiral, as described in the main text. Its energy is

ETCS = 4(J1 cos τ − J2 sin τ)M2
|| + 4(J1 + J2 + 2J3)M

2
⊥

− 8HM⊥ + 8KM2
⊥. (S8)

Since the average value of M2
⊥ in the transverse conical spiral state is M2/2, the penalty

term for h = 0 is 8KM2/2 = 4K2 (normalizing to M = 1). This penalty will gradually

decrease with h, as the canting toward the field direction increases. In short, it amounts

to just adding a penalty term equal to const × [1 − (h/hsat)
2] to Eq. S5. Energy of the

transverse conical spiral phase as a function of the magnetic field will then be different,

which is shown in Fig. 4(a) as the green solid line.

At large fields, close to saturation, the energy gain derived from a larger spin susceptibility

in the transverse conical spiral phase is nearly lost, and at some critical field h2 ≈ 0.072 (H2

in the phase diagram) it becomes energetically favorable to regain the anisotropy energy by

flopping again into the ab-plane, into the fan-like phase (of course, the angles γ and δ are

now very small).

So the magnetic phases obtained are:



1) For the magnetic field along the c-axis: only the longitudinal conical spiral phase is

possible, and it gradually changes until the saturation is reached at h = h3. 2) For the

magnetic field in the ab-plane: At very small fields the state is distorted spiral. In this phase,

magnetization increases with a rather small slope until the spin-flop field, proportional to
√
K, is reached (K = 0.01J1 was used in the plot, inspired by the calculated value of K ∼ 0.2

meV, and then hflop = h1 ≈ 0.018), at which point the state discontinuously transforms into

the transverse conical spiral phase via a spin flop. Highly unusual, it flops again at the field

h2 into the fan-like phase (again, for our selection of K, it is ≈ 0.072), and finally saturates

at h3 = 0.086.

Let us now estimate the effect of the two spin-flops at, h1, and h2, on the spiral vector.

In the above calculations we absorbed all magnetic anisotropies into one single-site term.

However, there are no a priori arguments that anisotropic exchange (of the form JzM z
iM

z
j )

should be small compared to the single-site anisotropy. On the contrary, cases are known,

when light magnetic 3d ions are bridged by heavy nonmagnetic elements (as Sn and Y in

our case) and the anisotropic exchange dominates, for instance in CrI3, which, as well as

YMn6Sn6, has a large magnetic moment.

Dividing the magnetic anisotropy into the single-site and exchange parts would not change

the calculated phase diagram, except for one aspect. Indeed, while the onsite anisotropy does

not change, in the lowest order, the spiral pitch, the anisotropic exchange does. Essentially,

it adds an antiferromagnetic component to the ferromagnetic bonds and a ferromagnetic

component to the antiferromagnetic bonds. Assuming that the leading contribution comes

from the largest J (which is ferromagnetic J1), one can calculate the derivative d cos(α +

β)/dJ1 = J2/8J
2
3 + J2/2J

2
1 − 1/2J2 = J−11 (j2/8j

2
3 + j2/2j

2
1 − 1/2j2 = −0.364J−11 . Adding an

antiferromagnetic contribution to J1 (i.e., ∆J1 > 0) will have a negative effect cos(α + β),

that is to say, α + β will be larger, and so will be the spiral q, in agreement with the

experiment.

Calculations give K ≈ −0.12 meV/Mn (easy axis) and (Jz1 + Jz2 )/2 ≈ 0.34 meV (easy

plane). This contribution is positive, i.e., antiferromagnetic. Assigning it entirely to J1, we

get Jz1 of the right sign, and Jz1/J1 ∼ 0.34/51 ∼ 0.7%, in qualitative agreement with the

experiment.



S5. THEORY OF SPIN CHIRALITY IN YMn6Sn6

We now present a phenomenological theory of fluctuation-generated chirality and the

topological Hall effect (THE) on a background of a static cycloidal or transverse conical

magnetic spiral, which is observed at finite temperatures in an external magnetic field. We

will assume that the amplitude of the Mn moments is constant (i.e.|M| = 1). The four

phases of interest in YMn6Sn6 are [see Figs. 2 and 4(a)]:

1. A longitudinal conical spiral (LCS) propagating along z in the field parallel to z, where

the magnetic moment is described, in a continuous approximation, as

M = Mz + m (S9)

Mz = const (S10)

∂m

∂z
= m× z, (S11)

where Mz || z, and m ⊥ z. Here and below z is the unit vector.

2. A distorted spiral (DS) that appears in the in-plane field (parallel to x,) and below the

first spin-flop (i.e.H1) transition. In the first approximation,

M = M̃ + m (S12)

∂M̃

∂z
= M̃× z (S13)

m = M̃yM̃× z, (S14)

where M̃ ⊥ z and m ⊥ z.

3. A fan-like (FL) phase. The FL phase is fully coplanar and the magnetic moments do not

change along c, so it cannot support any scalar chirality.

4. A transverse conical spiral (TCS) that appears in the in-plane field (parallel to x :)

M = Mx + m (S15)

Mx = const (S16)

∂M

∂z
=
∂m

∂z
=m× x, (S17)

where Mx || x, and m ⊥ x.

We will now use the standard expression for the topological field, see e.g., Eq. B4b in

Ref. 2 (omitting the coefficient of 2):

bα = εαβγ M · (∂βM × ∂γM). (S18)



In the first case described above, that is, for an external field in the z-direction, the field

couples with bz, and

bz = M · (∂xM × ∂yM). (S19)

In the ground state both ∂xM and ∂yM = 0, so generating a nonzero bz requires exciting

simultaneously two types of magnons, with two different in-plane vectors, which is an unlikely

case.

In cases 2-4, i.e., for an external field along x-direction, only bx couples with the external

field, so without losing generality we can rewrite it as:

bx = M · (∂yM× ∂zM) = ∂yM · (∂zM×M). (S20)

In the ground state M only varies with z, so this expression is obviously zero. In a

planar-helical (H = 0) state ∂zM×M is parallel to z, and averages to zero over all planes.

So, let us concentrate on the state (4). Let us then write M as

M = Mxx + m + µ (S21)

where, as mentioned, m ⊥ x, and µ represents a magnon propagating along y (in order to

have nonzero ∂yM) in a plane defined by a vector ω, such that ω ∝ ky. Then

∂M

∂z
=
∂m

∂z
= m× x (S22)

∂M

∂y
=
∂µ

∂y
= µ× ω (S23)

Let us now calculate bx

bx = (Mxx + m + µ) · ((µ× ω) × (m× x)) (S24)

= µ · ([(µω) · x]m−[(µ× ω) ·m]x) (S25)

where the terms linear in µ are dropped because they average to zero upon integrating over

y. Continuing with the expansion,

bx = (µ ·m)[µ · (ω × x)]−(µ · x)[µ · (ω ×m)] (S26)

It is important to note that we can consider each ab plane independently, as they are capable

of fluctuating independently. Let us for simplicity consider the case ω || z. Then

bx = (µ ·m)[µ · y]− (µ · x)[µ · (ω ×m)] =kymzµ
2 (S27)



Now for ω || y, after averaging over y, we get

bx = −kymzµ
2 (S28)

and, if ω || x, bx = 0. We saw that there are some magnons in the system that propagate

along y and can generate a topological magnetic field bx, which couples to the external field

Hx. By definition, the energy cost to excite such a magnon is Ak2yJM
2, where J is the

ferromagnetic exchange coupling in the plane. As we have seen, bx = Bky for magnons with

some polarization planes and −Bkymz for others. The coupling term must be CHxky. The

constants B and C are proportional to mz, and are different for each plane. Let us calculate

the expectation value for the 〈bx〉 for one plane and one type of magnons:

〈bx〉 =

∫
Bkye

−Ak2yJ/T (eCHxky/T − e−CHxky/T )dky∫
e−Ak

2
yJ/T (eCHxky/T + e−CHxky/T )dky

(S29)

=

∫
Bkye

−Ak2yJ/T sinh(CHxky/T )dky∫
e−Ak

2
yJ/T cosh(CHxky/T )dky

(S30)

≈
∫
Bkye

−Ak2yJ/T (CHxky/T )dky∫
e−Ak

2
yJ/Tdky

. (S31)

In the last line we made use of the fact that J � T. From that,

〈bx〉 = BCHxT/AJ = const · TM2
zHx = const · (1−M2/M2

s )THx, (S32)

where Ms is the saturated magnetization.

In a nutshell, the procedure includes the following steps:

1) Since every ordered magnet, and, in particular, an ordered ferromagnetic plane, in-

cludes thermally excitable spin waves (in the literature also called spin excitations, spin

fluctuations, or simply magnons), we want to include the potential interaction of these with

an external magnetic field. Note that, having no net magnetization, each individual magnon

has no Zeeman interaction with the external field.

2) Each individual magnon, at a given temperature, is characterized, by definition, by its

amplitude µ and propagation wave vector k (also by its frequency, but this does not affect

our consideration).

3) We show that each magnon, given the specific underlying magnetic structure observed

in the TCS (and only in the TCS) phase interacts with the external field. We further show

that this interaction is proportional to the y-component of the k -vector, ky, so that two



magnons with opposite ky-projections, ky and −ky, have an opposite (in sign) interaction

with the external field.

4) With this, and only this information, we can calculate the thermodynamic average of

the corresponding chiral field (chiral order parameter) by evaluating the magnon partition

function. In doing so, we integrate over the entire (albeit unknown) spin wave spectrum of

the system, that is, over all possible ky. The evaluation can be performed analytically and

yields Eq. S32.

A requirement for this scenario is a conical spiral rotating in a plane perpendicular to

the external field. It is also essential that the coupling between the planes is weak, allowing

magnons to be excited independently in each plane. It is also obvious from the general

theory of the topological Hall effect that conduction electrons should be strongly coupled to

the magnetic moments. This implies that, as in MnSi (2 ), they belong to the same system

and have strong Hund’s rule coupling. This is fulfilled here because both the moments

and the conductivity are due to Mn d-electrons, but may not work well for, say, rare earth

based spiral magnets. In any event, the scale of the effect must be very material-dependent

(coefficients B and C above), and its microscopic evaluation may be challenging.

S6. TOPOLOGICAL HALL EFFECT

The Hall effect, in general, is an intrinsic property of a conductor due to the Lorentz

force experienced by the charge carriers. In systems with spontaneously broken time-reversal

symmetry, an additional contribution, independent of the Lorentz force, is observed which

is proportional to the magnetization M and is called the anomalous Hall effect (AHE) (35 ).

In materials with spin textures allowing a non-zero scalar spin chirality defined by Si · (Sj ×

Sk), where i, j, k are neighboring spins (equivalent, in the continuous approximation, to Eq.

S18), an additional component of the Hall effect is permitted due to the real-space Berry

phase called the topological Hall effect (3,36 ). Thus, a Hall resistivity can be expressed as:

ρH = ρO + ρA + ρT . (S33)

Here ρO = R0B is the ordinary Hall resistivity, where R0 is the coefficient defined by the

number of carriers (weighted with their mobility, for a multiband metal), B = µ0H, and H



is the external magnetic field. ρA = Rsµ0M is the conventional anomalous Hall resistivity

where Rs is the coefficient of the conventional AHE. ρT is the Hall resistivity contribution

from the THE. RS and R0 can be estimated from the high magnetic field component of

the magnetization and the Hall resistivity (in the forced ferromagnetic state where the

magnetization saturates), where ρT = 0. Thus, Eqn. S33 takes the form:

ρH = R0B + µ0RsM. (S34)

The intercept of ρH/M vs B/M gives µ0Rs while the slope gives R0. The R0 estimated this

way is correct in the forced ferromagnetic (FF) state. However, we cannot assume the same in

the low field region where the Fermi surface (and hence the carrier concentration) is different

from that in the FF state. To address this discrepancy, we use the following principle to

estimate the normal component of the Hall resistivity that needs to be subtracted (together

with the anomalous Hall resistivity) from the measured Hall resistivity to get the topological

contribution. Despite M (and thus ρA) changing at H1 nearly discontinuously, up to a small

spin-orbit coupling there is no discontinuity in the number of carriers. At H2, in principle,

there might be a discontinuous change in R0, but since both TCS and FL phases at this

point only slightly deviate from the FF state, this change must be small. Thus, to a good

accuracy, we can assume that R0 changes smoothly between the low-field regime (H < H1),

where we can estimate it from the difference between ρH and ρA, and the high-field regime,

where it is the only component changing. We estimated the smooth change of the normal

component of the Hall resistivity by interpolating a cubic spline between H1 and H2 in the

ρH − ρA data. The measured ρH and its different components are shown in Fig. S14(a).

Together with ρO estimated as explained above (green solid line labelled 1), we also show,

for comparison, ρO obtained by using a simple linear interpolation between H1 and H2 in

the ρH − ρA data (orange dashed line labelled 2), and ρO calculated using ρO = R0B, where

R0 is obtained in the FF state (brown dashed line labelled 3). The THE obtained using #1

and #3 ρO are depicted in Figs. S14(c) and (d), respectively. The amplitude of the THE

obtained by using #3 ρO is slightly larger than that using #1 ρO, which is essentially due

to an improper subtraction of the normal Hall component in the former case as can be seen

in Fig. S14(d), where using #3 ρO still gives some THE contribution below H1, where it is

not expected. The amplitude of the THE obtained using #2 ρO lies between that obtained

with the other two ρO (not shown).



In Fig. S14(b), we show the calculated THE using Eqn. S32 from the theoretical model.

As the THE is proportional to 〈bx〉, in the calculation we used:

ρT = κ(1−M2/M2
s )TH (S35)

where M is the magnetization measured in the magnetic field H, Ms is the saturated mag-

netization, T is temperature, and k is the proportionality constant. In the calculation, the

experimental magnetization data measured at T = 245 K are used (black solid line). It is to

be noted that Eqn. S35 is valid only in the TCS phase i.e. between H1 and H2. Therefore,

after calculating ρT in the entire field range, we determined the ρT obtained outside the

TCS phase as a background by interpolating a straight line between H1 and H2 (dashed

pink line) and subtracted the background to obtain the THE in the TCS phase (solid blue

line). This theoretical ρT is compared to the experimental data in Fig. S14(c), which is also

shown in Fig. 4(d). In Fig. S14(d), we compare the theoretical THE with the experimental

THE obtained by using #3 ρO discussed above. From Figs. S14(c) and (d), we see that

the theoretical model describes the experimental data fairly well irrespective of the method

used to estimate the normal Hall component (which is much smaller than the THE). The

only difference in the calculated THE in these two cases is the proportionality constant κ.

Inset of Fig. 4(d) shows the temperature dependence of ρT between 100 K and 250 K at the

magnetic field of 4 T, which is also in good agreement with the theoretical model given by

Eq. S35 (or Eq. S32). Temperature dependence of the coefficients of normal Hall resistiv-

ity (R0) and the anomalous Hall resistivity (Rs) obtained during the estimation of ρT are

depicted in Fig. S15. Both ρT and R0 are consistent with the previously reported values

(16 ).

To provide further evidence of the THE in YMn6Sn6 for the in-plane magnetic field, we

show the Hall resistivity measured with the magnetic field in the ab-plane and along the

c-axis in Fig. S16(a). This shows that a topological Hall contribution appears between

around 2 T and 5 T only in the case when the magnetic field is applied in the ab-plane.

The corresponding magnetization data for comparison are presented in Fig. 2(a). The

Hall resistivity measured with magnetic field applied in the ab-plane at 5 K and 245 K is

presented in Fig. S16(b) and the corresponding magnetization data are presented in Fig.

S16(c). The difference in magnetization between 5 K and 245 K below 6 T is small, but the

Hall resistivity at 245 K is highly enhanced as compared to that at 5 K, which also supports



the presence of a topological contribution to the Hall resistivity at 245 K.

TABLE S1 : Rietveld refinement data. Selected data from rietveld refinement of powder

x-ray diffraction collected on ground crystals of YMn6Sn6. Atomic coordinates are 0, 0, 0 for Y;

1
2 , 0, z for Mn; 0, 0, z for Sn(1); 1

3 , 2
3 , 1

2 for Sn(2); and 1
3 , 2

3 , 0 for Sn(3).

Space group P6/mmm (No. 191)

Unit cell parameters a = 5.5398(5) Å

c = 9.0203(9) Å

RWP 16.1 %

RB 7.45 %

RF 6.26 %

χ2 1.07

Mn z coordinate 0.24587(20)

Sn(1) z coordinate 0.33679(15)



TABLE S2 : Exchange and single-ion energies. Calculated exchange and single-ion energies

for the “Full”, “reduced”, and “minimal” models.

Full model Reduced Model Minimal model

J1 −12.86 −12.86 −12.86

J2 7.26 4.66 4.66

J3 −0.06 −2.20 −2.20

J4 0.06 - -

J5 −0.16 - -

J6 0.54 - -

Jp −53 −53 −53

K −0.31 −0.31 0.19

Jz 0.50 0.50 -
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FIG. S1 : X-ray powder diffraction pattern of YMn6Sn6. Rietveld refinement of the x-ray

powder pattern of YMn6Sn6 measured at room temperature. The asterisk (∗) indicate an impurity

peak from the Sn-flux.
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FIG. S2 : Small angle neutron scattering (SANS) of YMn6Sn6 . (a) Background-

subtracted SANS image on the two-dimensional position sensitive detector at 4 K and without a

magnetic field applied. The data show a single incommensurate magnetic peak at a wave vector

of Q = 0.184 Å−1, corresponding to a real-space modulation of 34 Å. No evidence for a skyrmion

lattice was found at any temperature or field. (b) Intensity-Q map of the field dependence of the

Bragg peak at 4 K, revealing a series of phase transitions. The white dots are a guide to the peak

center. (c) Cuts of the observed intensity through the magnetic peak at 7 T and for a series of

temperatures, where it was discovered that at higher temperatures there are two closely-spaced

incommensurate peaks. Subsequent wide-angle high resolution diffraction data revealed that there

are two wave vectors at all temperatures. Note that the apparent peak at very small Q is simply

due to an incomplete subtraction around the beam stop.
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FIG. S3 : Temperature and magnetic field dependence of incommensurate magnetic

Bragg peaks (1, 1, 0 − kz). a) The evolution of Bragg peaks kz,1 and kz,2 with an applied

magnetic field at 100 K and b) 256 K. For both (a) and (b), the solid black lines in the right-hand

panels are Gaussian fits to the data as described in the text. An offset of 100 counts/30 sec. was

added between individual L scans for clarity.
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FIG. S4 : Temperature and magnetic field dependence of wave vector and intensity

of incommensurate magnetic Bragg peaks. a) The evolution of wave vectors (0, 0, kz,1) and

(0, 0, kz,2) depicted in Fig. 3(a) of the main text with applied magnetic field at 100 K and 256

K. An additional commensurate peak, kc = 0.25, appears at 6 T in the 100 K data. b) Integrated

intensity of the Bragg peaks (1, 1, 0− kz,n) depicted in Fig. S3 at 100 K and 256 K. c) Integrated

intensity of Bragg peaks (0, 0, 2−kz,n) depicted in Figs. 3(b) and (c) of the main text as a function

of magnetic field applied along [1, 1̄, 0].
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above H1 to just below H1 for the incommensurate Bragg peaks measured at (a) 100 K and (b)

256 K. The calculated values of the cycloidal:helical magnetic structure factor ratios are shown in

green for comparison.
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FIG. S6 : Nuclear Bragg peak intensity as a function of magnetic field. (0, 0, 4) Bragg

peak intensity tracked at (a) 100 K and (b) 256 K as a function of applied magnetic field applied

along [1, 1̄, 0] crystallographic axis. The increase in intensity as the field increases is indicative of

a net component of magnetization emerging due to the moments canting towards the applied field

direction. The solid lines in the righthand panels of (a) and (b) are the Gaussian fits to the data

described in the text. An offset was added between individual L scans for clarity (offsets are 100

counts/30 sec. for (a) and 100 counts/9 sec. for (b)). Panel (c) shows the intensity versus H,

divided by the intensity at H = 0 where only the nuclear structure contributes intensity. The right

hand axis displays the projection of the moment, in µ2BMn−1, along the applied field direction.



FIG. S7 : Schematic of exchange interactions along c-axis. First 6 exchange interactions

between Mn layers. Red: Mn layer; green: spacer layer including Y [see Fig.1(a) of the main text].
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FIG. S8 : Fitted vs. calculated values of total energies. Blue circles are the calculated

values for U − J = 0. Other symbols are for other values of U . Deviations from the straight line

indicate fitting errors.
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FIG. S9 : Fitted values of the exchange constants. Fitted values of the exchange constants

J1–J6 as a function of Ũ = U − J .

FIG. S10 : Calculated phase diagram. Phase diagram of the J1 − J2 − J3 model in the

J2/J1 − J3/J1 coordinates. The region between the two red lines is a spiral state, above them is

the FM, and below the AF uudd state. The points reflect the calculated values of J1, J2, J3 for

different values of U − J .



FIG. S11 : Calculated magnetic moments. Calculated magnetic moments on Mn (square-

averaged over all 8 sites and all 10 configurations) as a function of U − J .

FIG. S12 : Calculated spiral angles. Calculated spiral angles α and β (see the text for the

definitions).
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FIG. S13 : Calculated Fermi surface. Fermi surface calculated without Hubbard U for the

ferromagnetic ordering a) spin-minority, and b) spin-majority electrons. c) A vertical cut of the

spin-majority Fermi surface in the Γ-K-K-A plane.
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FIG. S14 : Estimation of topological Hall resistivity at 245 K from measured data

and theoretical model. a) Hall resistivity and its various components. Three different ρ0 are

labelled as 1, 2 and 3 and are discussed in the text in S6. b) Topological Hall effect calculated using

the chiral spin texture model discussed in S5. Since there is no THE outside of TCS phase, the

component obtained outside this phase is subtracted as a background (pink dashed line) from the

calculation carried out in the entire field range (black solid line) from 0 to 12 T to obtain the THE

(blue solid line) in the TCS phase. c) Topological Hall resistivity estimated using ρ0 labelled as 1

in panel (a) compared to that obtained form the theoretical model. d) Topological Hall resistivity

estimated using ρ0 labelled as 3 in panel (a) compared to that obtained form the theoretical model.

Results presented in panels (c) and (d) show that the theoretical model describes the experimental

data well irrespective of the method used to estimate the ordinary component of the Hall resistivity

(ρ0). The theoretical model is the plot of Eq. S35 (or Eq. 2). The arrows in the hexagon in (c)

indicate the field and current directions in the hexagonal lattice of YMn6Sn6.
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FIG. S15 : Temperature dependence of coefficients of normal and anomalous Hall

resistivity. Temperature dependence of coefficient of normal Hall resistivity (R0), and anomalous

Hall resistivity (Rs) derived from ρH and used to estimate the temperature dependance of ρT

depicted in Fig. 4(d). The arrows in the hexagon indicate the field and current directions in the

hexagonal lattice of YMn6Sn6.
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FIG. S16 : Hall resistivity and magnetization of YMn6Sn6. a) Hall resistivity at 245

K measured with magnetic field in the ab-plane and along the c-axis. The current was applied

along the same direction in these two measurements carried out on two different samples. b) Hall

resistivity at 5 K and 245 K measured with magnetic field applied in the ab-plane. c) Magnetization

at 5 K and 245 K measured with the magnetic field in the ab-plane. The arrows in the hexagon in

(a) and (b) indicate the field and current directions in the hexagonal lattice of YMn6Sn6.
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FIG. S17 : Magnetic moment of YMn6Sn6 as a function of temperature. Magnetic

moment as a function of temperature at indicated magnetic fields applied in the ab-plane. Above

3 T and below 250 K, magnetic moment changes very little with the temperature.
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