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The known and usable truly nonlocal functionals for exchange-correlation energy of the inhomogeneous
electron gas are the ADAaverage density approximatijpand the WDA(weighted density approximatign
ADA, by design, yields the correct linear response function of the uniform electron gas. The WDA is con-
structed so that it is exact in the opposite limit of one-electron systems, and it was conjectured that the WDA
is also accurate in the uniform gas limit. To test this conjecture, we derive an expression for the linear response
of the uniform gas in the WDA, and calculate it for several flavors of the WDA. We then compare the results
with the Monte Carlo data on the exchange-correlation local-field correction, and identify the weak points of
conventional WDA in the homogeneous limit. We suggest how the WDA can be modified to improve the
response function. The resulting approximation is a good one in both opposite limits. Future testing should
show whether it will also be better than conventional WDA and ADA for practical nonlocal density-functional
calculations[S0163-18208)06512-9

Calculations based on the Kohn-Sham formulation oftionally efficient algorithms are now knoWrf and bench-
density-functional theofyhave become a prominent tool in mark calculations have been reported. In the cases that have
condensed-matter physics. Current work is dominated byeen studied ground-state properties are generally improved
local-density approximatiofLDA) studies, in which the over the LDA?
exchange-correlation functional is a local function of the Both methods exploit the general expressionEgy,
density. However, as the number and accuracy of calcula-
tions has increased, so has the number of well-documented
cases where the LDA is inadequate and with this interest in
beyond LDA approaches, e.g., the generalized gradient ap-
proximation(GGA), which depends locally on both the den- where the functiorG(r,r’) is also a functional of the total
sity and its gradient. electronic densityn(r). A rigorous expression fo& can be

Modern GGA functionals do improve upon LDA results derived in terms of coupling constant averaged pair-
for a wide range of problems. However, several studies haveorrelation function:
pointed out deficiencies in GGA functionals, e.g., difficulties .
in describing ferroelectric materials, and cases of overcorrec- " ’ _
tion of LDA errors particularly in materials containing heavy Gr.r)= jo Lo(rur"sM{n(r)}—1]dx. @
atoms. Both the LDA and GGA fail to provide a correct
description of the static short-range linear response of th&or the uniform gas this functiorGo(|r—r'[,n), is known
homogeneous electron gas. All this leads to the question oFith high accuracy? but for an arbitrary system there is no
the extent to which truly nonlocal functionals are practicalpractical way to use this formula. The LDA instead of Eq.
and able to correct the deficiencies of LDA and GGA meth-(1) uses €%2)fdrdr'n?(r)Go[|r—r’|,n(r)]/[r—r’|, so
ods. that E,. becomesEL>" = [n(r)e,[n(r)]dr, €, being the

The first efforts at developing practical nonlocal function- density of exchange-correlation energy of the uniform gas.
als date from the 1970's when the average densityrhe LDA is incorrect in the two important limits: the fully
approximatioA (ADA) and weighted density approxi- localized, i.e., a one electron system, and the fully delocal-
matior?—® (WDA) were proposed. However, over most of the ized limit, i.e., homogeneous electron gas. In the former case
intervening period the field has been relatively dormant, inthe LDA gives a spurious self-interaction with energy
part because of the success of the simpler LDA and GGAe?/2)fdrdr'n(r)n(r’)/|r—r'|+ fn(r)en(r)]dr, which
schemes and in part because it was widely thought that sudk widely thought! to be a key problem with the LDA. In the
schemes could not be implemented in a computationalljpomogeneous limit, the LDA gives the correct exchange-
tractable fashion. However, at least for the WDA, computa-correlation energy, but thehangeof this energy upon small
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perturbations are not properly described; the second variation 52n_(r’) sd(r’'—r)
of E,. with density, i.e., the exchange-correlation part of the f(r'—r,r' —r")= —= - 4
dielectric response,(r —r')= 6°E,./én(r)on(r’), is aé on(r)én(r”)  on(r")

function, which is incorrect. The Fourier transformiofc(r)  ysing the WDA expression for the exchange-correlation en-
in LDA is independent of the wave vector. Since LDA is grgy,

exact for the uniform ga9,<§cD A corresponds to the correct

K,c atg=0. GGA'’s also give correct behavior g&=0, but
become even worse than the LDA at hig's.

The two nonlocal expressions fdf,., the WDA and
ADA, aimed at correcting one or the other of these two lim-
its. The former uses the general expresgibnbut instead of
the actual functiorG uses a model function, defined so that
the one-electron limit is honored. This begins by choosing a f dr'n(r")G[|r—r’
generic expression faB, which depends on one parameter
n, to be defined later. In the original papers it was suggestefor instance, by taking the functional derivative of E6)
that G(r,r’,n):Gh(r,r’,n)zf(l)[g(r,r’;)\,n)—l]d)\, we find that
whereg is the pair-correlation function of the homogeneous
electron gas. Later it was realiZédhat other choices of Go(r—r’)+nf Go(r—r")d(r—r’)=0, (7
may be better tha,,. In the WDAn is a function ofr, but
differs from n(r), and is chosen so that
JG[r,r",n(r)In(r")dr’'=—1. This assures that for a one-
electron systemEk,. cancels the self-interaction exactly.
Moreover, in factG need not be related to the actual pair
correlation function of the system: although Efj) has the
same functional form as the WDA energy, the fact that

EXC=(1/2)fn(r)n(r’)W[|r—r’|,n_(r)]drdr’, (5)

we can expresK,. in terms of functiongl andf, and we can
find these functions using the normalization condition,

n(r)]=-1. (6)

where subscript 0 corresponds to the homogené€ouer-
turbed system. We proceed then in reciprocal space, which
corresponds to using density perturbation of the form
on(r)=n.e'?". LetW,, G4, dq, andf, , will be the Fourier
transforms of the corresponding functions. Then the above
equation can be written as

GWPA s a function of an averaged densitynot a functional Gq+NGydq=0
of the true densityi(r), tells us that the best approximations
for GYPA may be rather different from the physical function dy=—Ggq/ngp. (8)

G defined in Eq(2).

In the ADANn(r") in Eq. (1) is substituted by(r), which
results INEACA = [n(r) e, [ N(r)]dr. Thenn(r) is defined as
nr)=Swl|r=r'|,n(r)In(r")dr’, and the universal func-
tion w is chosen so thaf?EL>"/ sn(r)én(r') gives the cor-
rectK,. for the uniform gas. Contrary to the WDA, the ADA
is not self-interaqtion free in one electron systems. Go=—1h, Wy=2e./n. (10)

From the beginning there was substantial interest in the )
behavior of WDA in the delocalized limit.Williams and ~ Thusdq=—nGg. An analogous procedure, applied to Eq.
von Barth® suggested that the WDA should give substantial(?) instead of Eq.(6) gives usf, 4. In fact, we need only
improvement over the LDA in this limit, but until now no diagonal elem’ents, fg,—q, for Wh'ch we f'ﬂd
systematic study has been reported. If this conjecture is trudg, -q=2nGq(NGy+ Gg). The second variation of E€S) in
the WDA has a great advantage over any other known aperms ofd andf is
proximation to the DFT in the sense that it accurately repro- )
duces two key physical limits. Furthermore, even if it is not K — Wt nd W+ nd W, + n- d2W+n2f. W
entirely correct, the next question is, whether or not an ap- e 4) =W ava avto " 2 (d3Wo a.-aWo),
proximation based on the WDA exists that does provide

Since atq—0 the LDA should be restored,

f dr'W[|r—r'|,n]=2€,./n. (9

From this it immediately follows that

proper limiting behavior. In this paper we derive an expres_resultmg n

sion forK,, in the WDA, Ca|Cle|a'[é(XC for popular fIavor's O.f Kyo(0)=Wq— nqu(W[pLWé)Jr nz(nzGSW{,)’IZ. (11)
WDA, and discuss construction of a WDA method with im-

provedK,. The original formulation of the WDA used the corre-

We start by deriving a closed expression 0 in the  sponding homogeneous electron gas functionGorSince
WDA for arbitrary G. First some notation: denote the prod- then, three forms of have been used in the calculations, all
uct (€%/r)G(r) asW(r), use atomic units¢=1,%=1), and  of which result in improvement over LDAin the admittedly
use primes for the derivative with respect to the density artimited number of tests performed to datdhese are the
gument, e.g.G"=dG/dn. We also introduce two functions, following: the functionG derived for the uniform gas by
reflecting implicit dependence of the weighted densityn ~ Perdew and Wantf, the Gunnarsson-Jones function
variations of the real density, and explicitly satisfying the GE(r)=C;(n){1—exp(—[r/C,(n)]"°}), and the Grit-
translational symmetry constraints: senko etall® function GCRBA(r)=C,(n)(exp{—[r/

o C,(M 1), k=1.5(note that the uniform gas functithis ap-
d(r'=r)y=én(r")/én(r) 3 proximately given by the same expression wkts 2). We
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1 4 | 2 Bunparsgon-Jones o/ ' ] ond, I(q) in the WDA tends to a constant value, while in
— ) I;’;‘:z;a“on Monte Carlo calculations it i¥,.(q) itself that has a finite

limit at g— o, andl,.(q)— constx g2 at q— .

Can one correct these two deficiencies without compro-
mising the correct one-electron limit of the WDA? In fact, it
was noticed long add that there is no particular reason to
use the homogeneous electron gas pair-correlation function
for G (nor, as discussed above, the exact pair correlation
function for the inhomogeneous system, even if it had been
known). Since usingsy, in the WDA does not guarantee any
improvement in describing properties of the homogeneous
gas itself, one may use the freedom@{r) to adjust the
WDA so that the calculated local field fact@nd thus linear
response functions as accurate as possible. Inversion of Eq.
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™ Perdew-Wan ' ' (11) yields G(q) for a givenK,.(q). It does not guarantee,
1.8 } ———- Gritsenko et & 7 E . . X

& B Garlo however, that the result will be physical. So, as a first step,
1.6 f —— MC interpolation 1 let us analyze Eq.(11). For this purpose, we write
14l g Gq=—¢(a/Q)/n, with the conditiong(0)=1, whereQ is

some constarboth the Gunnarsson-Jones and the Gritsenko

12y et al. functions are of this form Then

1t

hol@)

| w 1fd3 7 1fwdl —Q+p‘G
= —_— [ e p— n ,
oer P 8ns q|q—p|2 T aplo 199 g p| e
041 (12
02}
2 (= 2Q (= 2€,(N)
Gl — Gunnarsson-Jones ' 7 WOZ_J' quq= - _J P(x)dx= =,
—— Perdew-Wan /7 mJo 7N Jo n

18 — Gritsenko et & /
16| 2 MAIeSA0 on / ] If we now defineQ(n)= — me,(n), then the second condi-

tion on ¢(x) becomesfse(x)dx=1. These two conditions
reduce our freedom to adju§,: since the characteristic
& size of p(x) is of order of 1, the wave-vector dependence of
1] T 1 G, is defined by the ratig/Q= —q/me,.. This characteris-
tic wave vectorQ is substantially smaller thank2, the
number at which real local-field factor changes its behavior
from low-q to the highg limit. A monotonic functione(x)
does not reproduce this feature, which explains why existing
WDA parametrizations put the hump K. at too lowq.
. . . Nonmonotonic and explicitly density-dependent functions
0 1 ok 2 3 4 ¢(X) may be able to shift the hump to its correct position at
g=2kg. It is still an open question whether or not a physi-
FIG. 1. Exchange-correlation local-field factor in the WDA of cally sound function can be found with this property.
Ref. 12(Gunnarsson-JongsRef. 14(Gritsenkoet al.), and derived However, even if the “X:” problem is fixed, another,
from the homogeneous electron gas pair-correlation functiorprobably even more important problem remains: the short-
(Perdew-Wanyg as compared with the Monte Carlo result4onte wavelength behavior dK,.. As one can see from E¢12),
Carlo), and the interpolating formula there@¥C interpolation, as  jf G(q)—0 atgq— o, thean—>C0nstp2 at p—o, and so
given in Ref. 15. Densities, from top to bottom, correspond todoes, according to Eql1), K,.. On the other hand, as men-
rs=1.2,5. tioned above, the corredt(q) diverges atq— as g,
much in the same manner ", but with a smaller coef-
tested these functions for the densitigs=1, 2, and 5 and ficient. This result was predicted by Hol&sind is physically
obtained modest agreement with the Monte Carlo reSults important: it reflects the fact thd, . is not solely an inter-
(Cf. Fig. 1, where we plotted calculated exchange-correlatioiction energy, but also includes the exchange-correlation
local-field factor I,.(q)=(g%/47)K,(q), and compare it contribution to kinetic energgwhich is essentially local and
with Monte Carlo dat®). By constructionK,.(0) is correct  decays slower witty than the interaction part d,.). The
(and is in fact the LDA value At q=1.5—- 1.8 K, falls  present WDA misses the corresponding physics. Fortunately,
below its LDA value and continues to decrease at layge  this is easy to correct. Fariet all’ tabulated the coefficient
However, a closer look reveals two major disagreementsy that defines the asymptotic behavior Kf.(q—=) as
first, IYPA(q) is considerably larger than the Monte Carlo K,(q— )= —(47/q%) y(n)(q*kZ). These values can be
data for the wave vectors betweerD.5g and 1.%g. Sec- fit as
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9 4/3f( \/r_s) x(a+bx) 14l — ng(ijnte?rgolation j j
y(n)={— = —— Perdew-Wan
4 15 (1+cx+ dX2) ! T Ghsenko o d

where a=0.026319,b=0.00823859,c=—0.173199, and
d=0.233081. Let us now modify the functidgB(r):

G(r)=G(r)+Gy(r)=Ad8(r)l4mar +Gy(r). (13

Lo{a)

Since[G,(r)r2dr=0, the normalization condition fdB, is
the same as foB itself. Since 47 G4(r)rdr=A, the LDA
limit condition for G, becomes

47Tf G,(r)rdr=2¢€,(n)/n,

Mante Cadrlo j j P
o M

~ Ci fati -
€xdN) = &xc(n) ~An/2. (14 18 Ladetdr e T
4 g | ———- Gritsenko et 7
Thus er
97\ 23 4mr?
= — 2 = —| — S
A= —4my(n)/KkE ( y ) = f(r) _
= —3.0856 2 (\ry), B
- 0.368317
exc(M = (M) + — ——F(\Fy). (15
S
Now Gy=Gap, Wy=A+W,,, andW,=A"+W,,,
2 T T T
_ 2 ’ ’ ’ ©® Monte Carlo -
Kxe(@) = A+Woq—N"Gog(A" +Wp + W, ) 18l — Eé&z%_rggﬁgon ]
+ n2(nZGéwé’O) ' =A— n(Z)GZpA/ +Rxc, (16) 16L """ Gritsenko et al -
14}

whereK . is calculated frome,. in exactly the same way as

K,c is calculated frome,.. The corresponding functional for t2r
the exchange-correlation energy is g i
1 [ n(rn(r’) il
n(ryn(r —
EQNDA=EJ ————G[[r—r’|,n(r)]drdr’ 06}
(Ir=r'

0 1 1 1
0 1 ok 2 3 4

+ f n(r)—o'riifflﬂ[\/r_ﬁ]dr. (17) .l

Here 477!’_3/3=n_, andG(r) is normalized toe.(n) instead
S (r) €xc() FIG. 2. 1,((q) as in Fig. 1, but for the modified WDA of Eq.

of e,(n). In practice, the first term gives rise to the standard ;7). aiso the analytical formula of Fariet al. (Ref. 17 is shown.
expression for the WDA potentiaf and the second yields

two additional terms, one from the variationrmfr), and the the analytical function derived by Farit al. (arguably the

other arising fromén(r’)/én(r). Since we donot require  pestanalytically derived }.(q) available, while an expo-
that G(r)=f3[g(r;x,n)—1]d\., whereg corresponds to nential function withk=1.5 is close to the formula of Ref.
the uniform gas, but rather consider it to be a flexible func-15, which is a fit to the Monte Carlo data. It is also worth
tion satisfying two normalization conditions, further im- mentioning that the correction of the for¢h3—15 is some-
provement of the method should be possible along the lingvhat ad hocand not unique in the sense that other math-
described in the previous paragraph, namely, the freedom iematical forms exist that would yield correct asymptotic be-
choosingG(r) can, be used to yiel&,. according to Eq. havior of K,.. However, any such form should include a
(16) close to the linear response of the homogeneous electroftfunction component to ensure divergencekgf(q) at q
gas, including correct behavior neqr=2kg. In Fig. 2, we = —oo,

showl, calculated according to Eq417) with the different To summarize, we have calculated the exchange-
functional form ofG(r). Clearly, the results are much better correlation local-field functiorK,. in the WDA, and found
than either the LDA or “conventional” WDA. Interestingly, that besides the expected improvement over the LDA it has
when the nearly exact Perdew-Wang function, or exponentiagivo major deficiencies:(1) it does not have correct
function withk=2, are used, the resulting.(q) is close to  asymptotic behavior aj— o, and(2) the characteristic fea-
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ture atg~ 2k is displaced towards smallers. The former the opposite limit of the nearly uniform electron gas, seems
can be easily corrected by addingdunction component to  promising for practical applications. However, tests on real
G(r), which results in Eq(17). The latter is harder to fix, materials will be needed to determine whether or not this
but there are still unused degrees of freedom in the formalmodification of the WDA is advantageous in practice.

ism that may be used to tune the behavior ndat.2Intu-

itively (cf. Ref. 13, a method that retains the exact one- This work was supported by the Office of Naval Re-
electron limit of WDA, and at the same time is accurate insearch.

ITheory of the Inhomogeneous Electron Gedited by S. Lund- work differ from most previous calculation.
gvist and N. H. MarchPlenum, New York, 1983 103, p. Perdew and Y. Wang, Phys. Rev4g 12 947(1992.

20. Gunnarsson, M. Jonson, and B. 1. Lundquist, Phys. Boi, ligee, e.g., S. Goedecker and C. J. Umrigar, Phys. R&&, A765
177 (1976. (1997 and references therein.

30. Gunnarsson, M. Jonson, and B. I. Lundquist, Solid State Com!?0. Gunnarsson and R. O. Jones, Phys. $tr394 (1980.
mun. 24, 765(1977). 13A. R. Williams and U. von Barth, in Ref. 1.

4J. A. Alonso and L. A. Girifalco, Phys. Rev. B7, 3735(1978. 140. V. Gritsenko, A. Rubio, L. C. Balbsand J. A. Alonso, Chem.
50. Gunnarsson, M. Jonson, and B. I. Lundgvist, Phys. ReX0,B Phys. Lett.205 348 (1993.

3136(1979. 153, Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. [Z&t.
5D. J. Singh, Phys. Rev. B8, 14 099(1993; Ferroelectrics194, 689 (1995.

299 (1997. 18A. Holas, in Strongly Coupled Plasma Physjosdited by F. J.
M. Sadd and M. P. Teter, Phys. Rev.58, 13 643(1996. Rogers and H. E. De WiitPlenum, New York, 1987
83. P. A. Charlesworth, Phys. Rev.38, 12 666(1996. 17B. Farid, V. Heine, G. E. Engel, and I. J. Robertson, Phys. Rev. B

9Reference 8 is an exception, but note that the LDA results of this 48, 11 602(1993.



