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Nonlocal density functionals and the linear response of the homogeneous electron gas
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The known and usable truly nonlocal functionals for exchange-correlation energy of the inhomogeneous
electron gas are the ADA~average density approximation! and the WDA~weighted density approximation!.
ADA, by design, yields the correct linear response function of the uniform electron gas. The WDA is con-
structed so that it is exact in the opposite limit of one-electron systems, and it was conjectured that the WDA
is also accurate in the uniform gas limit. To test this conjecture, we derive an expression for the linear response
of the uniform gas in the WDA, and calculate it for several flavors of the WDA. We then compare the results
with the Monte Carlo data on the exchange-correlation local-field correction, and identify the weak points of
conventional WDA in the homogeneous limit. We suggest how the WDA can be modified to improve the
response function. The resulting approximation is a good one in both opposite limits. Future testing should
show whether it will also be better than conventional WDA and ADA for practical nonlocal density-functional
calculations.@S0163-1829~98!06512-6#
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Calculations based on the Kohn-Sham formulation
density-functional theory1 have become a prominent tool i
condensed-matter physics. Current work is dominated
local-density approximation~LDA ! studies, in which the
exchange-correlation functional is a local function of t
density. However, as the number and accuracy of calc
tions has increased, so has the number of well-docume
cases where the LDA is inadequate and with this interes
beyond LDA approaches, e.g., the generalized gradient
proximation~GGA!, which depends locally on both the de
sity and its gradient.

Modern GGA functionals do improve upon LDA resul
for a wide range of problems. However, several studies h
pointed out deficiencies in GGA functionals, e.g., difficulti
in describing ferroelectric materials, and cases of overcor
tion of LDA errors particularly in materials containing heav
atoms. Both the LDA and GGA fail to provide a corre
description of the static short-range linear response of
homogeneous electron gas. All this leads to the questio
the extent to which truly nonlocal functionals are practic
and able to correct the deficiencies of LDA and GGA me
ods.

The first efforts at developing practical nonlocal functio
als date from the 1970’s when the average den
approximation2 ~ADA ! and weighted density approx
mation3–5 ~WDA! were proposed. However, over most of t
intervening period the field has been relatively dormant,
part because of the success of the simpler LDA and G
schemes and in part because it was widely thought that s
schemes could not be implemented in a computation
tractable fashion. However, at least for the WDA, compu
570163-1829/98/57~12!/6879~5!/$15.00
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tionally efficient algorithms are now known6–8 and bench-
mark calculations have been reported. In the cases that
been studied ground-state properties are generally impro
over the LDA.9

Both methods exploit the general expression forExc ,

Exc5
e2

2 E n~r !n~r 8!

ur2r 8u
G~r ,r 8!$n~r !%drdr 8, ~1!

where the functionG(r ,r 8) is also a functional of the tota
electronic densityn(r ). A rigorous expression forG can be
derived1 in terms of coupling constant averaged pa
correlation function:

G~r ,r 8!5E
0

1

@g~r ,r 8;l!$n~r !%21#dl. ~2!

For the uniform gas this function,G0(ur2r 8u,n), is known
with high accuracy,10 but for an arbitrary system there is n
practical way to use this formula. The LDA instead of E
~1! uses (e2/2)*drdr 8n2(r )G0@ ur2r 8u,n(r )#/ur2r 8u, so
that Exc becomesExc

LDA5*n(r )exc@n(r )#dr , exc being the
density of exchange-correlation energy of the uniform g
The LDA is incorrect in the two important limits: the fully
localized, i.e., a one electron system, and the fully deloc
ized limit, i.e., homogeneous electron gas. In the former c
the LDA gives a spurious self-interaction with energ
(e2/2)*drdr 8n(r )n(r 8)/ur2r 8u1*n(r )exc@n(r )#dr , which
is widely thought11 to be a key problem with the LDA. In the
homogeneous limit, the LDA gives the correct exchang
correlation energy, but thechangesof this energy upon smal
6879 © 1998 The American Physical Society
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6880 57I. I. MAZIN AND D. J. SINGH
perturbations are not properly described; the second varia
of Exc with density, i.e., the exchange-correlation part of t
dielectric response,Kxc(r2r 8)5d2Exc /dn(r )dn(r 8), is a d
function, which is incorrect. The Fourier transform ofKxc(r )
in LDA is independent of the wave vector. Since LDA
exact for the uniform gas,Kxc

LDA corresponds to the correc
Kxc at q50. GGA’s also give correct behavior atq50, but
become even worse than the LDA at highq’s.

The two nonlocal expressions forExc , the WDA and
ADA, aimed at correcting one or the other of these two li
its. The former uses the general expression~1!, but instead of
the actual functionG uses a model function, defined so th
the one-electron limit is honored. This begins by choosin
generic expression forG, which depends on one paramet
n̄, to be defined later. In the original papers it was sugges
that G(r ,r 8,n̄)5Gh(r ,r 8,n̄)5*0

1@g(r ,r 8;l,n̄)21#dl,
whereg is the pair-correlation function of the homogeneo
electron gas. Later it was realized12 that other choices ofG
may be better thanGh . In the WDA n̄ is a function ofr , but
differs from n(r ), and is chosen so tha
*G@r ,r 8,n̄(r )#n(r 8…dr 8521. This assures that for a one
electron systemExc cancels the self-interaction exactl
Moreover, in factG need not be related to the actual pa
correlation function of the system: although Eq.~1! has the
same functional form as the WDA energy, the fact th
GWDA is a function of an averaged densityn̄, not a functional
of the true densityn(r ), tells us that the best approximation
for GWDA may be rather different from the physical functio
G defined in Eq.~2!.

In the ADA n(r 8) in Eq. ~1! is substituted byn(r ), which
results inExc

ADA5*n(r )exc@ ñ(r )#dr . Thenñ(r ) is defined as

ñ(r )5*w@ ur2r 8u, ñ(r )#n(r 8)dr 8, and the universal func
tion w is chosen so thatd2Exc

ADA/dn(r )dn(r 8) gives the cor-
rectKxc for the uniform gas. Contrary to the WDA, the ADA
is not self-interaction free in one electron systems.

From the beginning there was substantial interest in
behavior of WDA in the delocalized limit.1 Williams and
von Barth13 suggested that the WDA should give substan
improvement over the LDA in this limit, but until now no
systematic study has been reported. If this conjecture is t
the WDA has a great advantage over any other known
proximation to the DFT in the sense that it accurately rep
duces two key physical limits. Furthermore, even if it is n
entirely correct, the next question is, whether or not an
proximation based on the WDA exists that does prov
proper limiting behavior. In this paper we derive an expr
sion forKxc in the WDA, calculateKxc for popular flavors of
WDA, and discuss construction of a WDA method with im
provedKxc .

We start by deriving a closed expression forKxc in the
WDA for arbitrary G. First some notation: denote the pro
uct (e2/r )G(r ) asW(r ), use atomic units (e51, \51), and
use primes for the derivative with respect to the density
gument, e.g.,G85dG/dn. We also introduce two functions
reflecting implicit dependence of the weighted densityn̄ on
variations of the real density, and explicitly satisfying t
translational symmetry constraints:

d~r 82r !5dn̄~r 8!/dn~r ! ~3!
on

-
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f ~r 82r ,r 82r 9!5
d2n̄~r 8!

dn~r !dn~r 9!
5

dd~r 82r !

dn~r 9!
. ~4!

Using the WDA expression for the exchange-correlation
ergy,

Exc5~1/2!E n~r !n~r 8!W@ ur2r 8u,n̄~r !#drdr 8, ~5!

we can expressKxc in terms of functionsd and f , and we can
find these functions using the normalization condition,

E dr 8n~r 8!G@ ur2r 8u,n̄~r !#521. ~6!

For instance, by taking the functional derivative of Eq.~6!
we find that

G0~r 2r 8!1nE G08~r 2r 9!d~r 2r 8!50, ~7!

where subscript 0 corresponds to the homogeneous~unper-
turbed! system. We proceed then in reciprocal space, wh
corresponds to using density perturbation of the fo
dn(r )5nqeiqr. Let Wq , Gq , dq , andf p,q will be the Fourier
transforms of the corresponding functions. Then the ab
equation can be written as

Gq1nG08dq50

dq52Gq /ng08 . ~8!

Since atq→0 the LDA should be restored,

E dr 8W@ ur2r 8u,n#52exc /n. ~9!

From this it immediately follows that

G0521/n, W052exc /n. ~10!

Thus dq52nGq . An analogous procedure, applied to E
~7! instead of Eq.~6! gives usf p,q . In fact, we need only
diagonal elements, f q,2q , for which we find
f q,2q52nGq(nGq81Gq). The second variation of Eq.~5! in
terms ofd and f is

Kxc~q!5Wq1ndqWq81ndqW081
n2

2
~dq

2W091n2f q,2qW08!,

resulting in

Kxc~q!5Wq2n2Gq~Wq81W08!1n2~n2Gq
2W08!8/2. ~11!

The original formulation of the WDA used the corre
sponding homogeneous electron gas function forG. Since
then, three forms ofG have been used in the calculations,
of which result in improvement over LDA~in the admittedly
limited number of tests performed to date!. These are the
following: the functionG derived for the uniform gas by
Perdew and Wang,10 the Gunnarsson-Jones functio
GGJ(r )5C1(n)$12exp„2@r /C2(n)#25%…, and the Grit-
senko et al.14 function GGRBA(r )5C1(n)„exp$2@r/
C2(n)#k%…, k51.5 ~note that the uniform gas function10 is ap-
proximately given by the same expression withk52). We
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57 6881NONLOCAL DENSITY FUNCTIONALS AND THE LINEAR . . .
tested these functions for the densitiesr s51, 2, and 5 and
obtained modest agreement with the Monte Carlo resu15

~Cf. Fig. 1, where we plotted calculated exchange-correla
local-field factor I xc(q)5(q2/4p)Kxc(q), and compare it
with Monte Carlo data15!. By construction,Kxc(0) is correct
~and is in fact the LDA value!. At q*1.521.8kF Kxc falls
below its LDA value and continues to decrease at largeq’s.
However, a closer look reveals two major disagreeme
first, I xc

WDA(q) is considerably larger than the Monte Car
data for the wave vectors between'0.5kF and 1.5kF . Sec-

FIG. 1. Exchange-correlation local-field factor in the WDA
Ref. 12~Gunnarsson-Jones!, Ref. 14~Gritsenkoet al.!, and derived
from the homogeneous electron gas pair-correlation func
~Perdew-Wang!, as compared with the Monte Carlo results~Monte
Carlo!, and the interpolating formula thereof~MC interpolation!, as
given in Ref. 15. Densities, from top to bottom, correspond
r s51,2,5.
n

s:

ond, I xc(q) in the WDA tends to a constant value, while
Monte Carlo calculations it isKxc(q) itself that has a finite
limit at q→`, andI xc(q)→const3q2 at q→`.

Can one correct these two deficiencies without comp
mising the correct one-electron limit of the WDA? In fact,
was noticed long ago12 that there is no particular reason
use the homogeneous electron gas pair-correlation func
for G ~nor, as discussed above, the exact pair correla
function for the inhomogeneous system, even if it had be
known!. Since usingGh in the WDA does not guarantee an
improvement in describing properties of the homogene
gas itself, one may use the freedom inG(r ) to adjust the
WDA so that the calculated local field factor~and thus linear
response function! is as accurate as possible. Inversion of E
~11! yields G(q) for a givenKxc(q). It does not guarantee
however, that the result will be physical. So, as a first st
let us analyze Eq.~11!. For this purpose, we write
Gq52w(q/Q)/n, with the conditionw(0)51, whereQ is
some constant~both the Gunnarsson-Jones and the Gritse
et al. functions are of this form!. Then

Wp5
1

8p3E d3q
4p

uq2pu2
Gq5

1

ppE0

`

qdqlnU q1p

q2p UGq ,

~12!

W05
2

pE0

`

Gqdq52
2Q

pnE0

`

w~x!dx5
2exc~n!

n
.

If we now defineQ(n)52pexc(n), then the second condi
tion on w(x) becomes*0

`w(x)dx51. These two conditions
reduce our freedom to adjustGq : since the characteristic
size ofw(x) is of order of 1, the wave-vector dependence
Gq is defined by the ratioq/Q52q/pexc . This characteris-
tic wave vectorQ is substantially smaller than 2kF , the
number at which real local-field factor changes its behav
from low-q to the high-q limit. A monotonic functionw(x)
does not reproduce this feature, which explains why exist
WDA parametrizations put the hump inKxc at too low q.
Nonmonotonic and explicitly density-dependent functio
w(x) may be able to shift the hump to its correct position
q52kF . It is still an open question whether or not a phys
cally sound function can be found with this property.

However, even if the ‘‘2kF’’ problem is fixed, another,
probably even more important problem remains: the sh
wavelength behavior ofKxc . As one can see from Eq.~12!,
if G(q)→0 at q→`, thenWp→const/p2 at p→`, and so
does, according to Eq.~11!, Kxc . On the other hand, as men
tioned above, the correctI xc(q) diverges atq→` as q2,
much in the same manner asI xc

LDA , but with a smaller coef-
ficient. This result was predicted by Holas16 and is physically
important: it reflects the fact thatExc is not solely an inter-
action energy, but also includes the exchange-correla
contribution to kinetic energy~which is essentially local and
decays slower withq than the interaction part ofExc). The
present WDA misses the corresponding physics. Fortuna
this is easy to correct. Faridet al.17 tabulated the coefficien
g that defines the asymptotic behavior ofKxc(q→`) as
Kxc(q→`)52(4p/q2)g(n)(q2/kF

2). These values can b
fit as

n
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6882 57I. I. MAZIN AND D. J. SINGH
g~n!5S 9p

4 D 4/3 f ~Ar s!

15
f ~x!5

x~a1bx!

~11cx1dx2!
,

where a50.026319, b50.00823859,c520.173199, and
d50.233081. Let us now modify the functionG(r ):

G~r !5G1~r !1G2~r !5Ad~r !/4pr 1G2~r ! . ~13!

Since*G1(r )r 2dr50, the normalization condition forG2 is
the same as forG itself. Since 4p*G1(r )rdr 5A, the LDA
limit condition for G2 becomes

4pE G2~r !rdr 52 ẽ xc~n!/n,

ẽ xc~n!5exc~n!2An/2. ~14!

Thus

A524pg~n!/kF
252S 9p

4 D 2/34pr s
2

15
f ~Ar s!

523.0856r s
2f ~Ar s!,

ẽ xc~n!5exc~n!1
0.368317

r s
f ~Ar s!. ~15!

Now Gp5G2p , Wp5A1W2p , andWp85A81W2p8 ,

Kxc~q!5A1W2q2n2G2q~A81W2q8 1W2,08 !

1n2~n2Gq
2W2,08 !85A2n0

2G2pA81K̃xc , ~16!

whereK̃xc is calculated fromẽ xc in exactly the same way a
Kxc is calculated fromexc . The corresponding functional fo
the exchange-correlation energy is

Exc
AWDA5

1

2E n~r !n~r 8!

~ ur2r 8u!
G[ ur2r 8u,n̄(r )]drdr 8

1E n~r !
0.368317

r̄ s~r !
f @A r̄ s~r !#dr . ~17!

Here 4p r̄ s
3/35n̄, andG(r ) is normalized toẽ xc(n̄) instead

of exc(n̄). In practice, the first term gives rise to the standa
expression for the WDA potential,5,4 and the second yield
two additional terms, one from the variation ofn(r ), and the
other arising fromdn̄(r 8)/dn(r ). Since we donot require
that G(r )5*0

1@g(r ;l,n̄)21#dl., where g corresponds to
the uniform gas, but rather consider it to be a flexible fun
tion satisfying two normalization conditions, further im
provement of the method should be possible along the
described in the previous paragraph, namely, the freedom
choosingG(r ) can, be used to yieldKxc according to Eq.
~16! close to the linear response of the homogeneous elec
gas, including correct behavior nearq52kF . In Fig. 2, we
show I xc calculated according to Eq.~17! with the different
functional form ofG(r ). Clearly, the results are much bett
than either the LDA or ‘‘conventional’’ WDA. Interestingly
when the nearly exact Perdew-Wang function, or exponen
function with k52, are used, the resultingI xc(q) is close to
d

-

e
in

on

al

the analytical function derived by Faridet al. ~arguably the
best analytically derived Ixc(q) available!, while an expo-
nential function withk51.5 is close to the formula of Ref
15, which is a fit to the Monte Carlo data. It is also wor
mentioning that the correction of the form~13–15! is some-
what ad hoc and not unique in the sense that other ma
ematical forms exist that would yield correct asymptotic b
havior of Kxc . However, any such form should include
d-function component to ensure divergence ofKxc(q) at q
→`.

To summarize, we have calculated the exchan
correlation local-field functionKxc in the WDA, and found
that besides the expected improvement over the LDA it
two major deficiencies:~1! it does not have correc
asymptotic behavior atq→`, and~2! the characteristic fea

FIG. 2. I xc(q) as in Fig. 1, but for the modified WDA of Eq
~17!. Also the analytical formula of Faridet al. ~Ref. 17! is shown.
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57 6883NONLOCAL DENSITY FUNCTIONALS AND THE LINEAR . . .
ture atq'2kF is displaced towards smallerq’s. The former
can be easily corrected by adding ad-function component to
G(r ), which results in Eq.~17!. The latter is harder to fix
but there are still unused degrees of freedom in the form
ism that may be used to tune the behavior near 2kF . Intu-
itively ~cf. Ref. 13!, a method that retains the exact on
electron limit of WDA, and at the same time is accurate
om

th
l-

-

the opposite limit of the nearly uniform electron gas, see
promising for practical applications. However, tests on r
materials will be needed to determine whether or not t
modification of the WDA is advantageous in practice.

This work was supported by the Office of Naval R
search.
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