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TbMn6Sn6 has attracted a lot of recent interest for a variety of reasons, most importantly, because
of the hypothesis that it may support quantum-limit Chern topological magnetism, derived from the
kagome geometry. Besides, TbMn6Sn6 features a highly unusual magnetic reorientation transition
about 100 K below the Curie point, whereby all spins in the system, remaining collinear, rotate
by 90◦. In this work, we address both issues combining experiment, mean-field theory and first-
principle calculations. Both magnetic reorientation and the unusual temperature dependence of
the anomalous Hall conductivity (AHC) find quantitative explanation in the fact that Mn and
Tb, by virtue of the Mermin-Wagner theorem, have very different spin dynamics, with Tb spins
experiencing much more rapid fluctuation. We were able to cleanly extract the intrinsic AHC from
our experiment, and calculated the same microscopically, with good semiquantitative agreement. We
have identified the points in the band structure responsible for the AHC and showed that they are
not the kagome-derived Dirac points at the K-corner of the Brillouin zone, as conjectured previously.

INTRODUCTION

The kagome lattice, a two-dimensional network com-
posed of corner-sharing triangles, can harbor complex
magnetic and electronic properties, including frustrated,
non-collinear and non-coplanar spins [1–4], interesting
electronic features, such as flat bands and Dirac points
(DP), quantum spin liquids, and integer and fractional
quantum Hall states [5–10].

Recently there has been growing interest in the three-
dimensional (3D) compounds consisting of kagome nets
of magnetic atoms. Their symmetry-protected Dirac
crossings can, by virtue of the exchange splitting, be-
come Weyl points, and after inclusion of spin-orbit cou-
pling may give rise to interesting topological properties
[5–10]. RMn6Sn6 (R166), where R is a rare-earth el-
ement, are a recent addition to this class of compounds
[11–17]. There, the Mn atoms form the kagome net in the
basal plane of the hexagonal crystal structure as shown
in Fig. 1(a,b). The R166 compounds are rich in mag-
netic phases unlike other kagome magnets, due to their
unique crystal structure [13, 18–21], making these com-
pounds an excellent platform to investigate the interplay
of magnetism and the electronic structure.

While the well-known 2D Kagome cuprates [22, 23]
(herbertsmithite etc.) have been attracting a lot of inter-
est due to their in-plane magnetic frustration and prox-
imity to spin liquids, 3D stannates are dramatically dif-
ferent in their physical properties. Those cuprates are
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both electronically and magnetically extremely 2D. Their
magnetic interactions are dominated by the frustrated
antiferromagnetic (AF) in-plane Heisenberg exchange,
while the electronic structure is well mappable onto a
single-orbital nearest-neighbor tight binding model [5].
On the contrary, the stannates are good metals where
the in-plane interactions are driven by kinetic exchange
and therefore strongly ferromagnetic (FM) (no in-plane
frustration), and their electronic structure is multiorbital
and very 3D like. As a result, their interplanar mag-
netic interactions are long-ranged and of variable sign,
and their electronic structure is complex and dispersive
in all three directions, with only mild reminiscences of the
notorious Dirac cones and flat bands, characteristic of the
single-orbital 2D Kagome model (the latter are known to
be particularly fragile and rather far from true “flatte-
ness” even in herbertsmithite-type compounds [5]). This
makes the physics and topology of stannates, and es-
pecially this 166 family, much more complex than that
of this “zero” model, but also much more interesting.
Their magnetic phase diagrams are extremely rich, and,
with an exception of YMn6Sn6 (Y166), poorly under-
stood. Some of them show unconventional Hall behavior
[13, 24], including fluctuation-driven topological Hall ef-
fect (in Y166) [13] and large anomalous Hall conductivity
[11, 12, 15, 17].

TbMn6Sn6 (Tb166) orders in a collinear in-plane fer-
rimagnetic (FiM) spin structure below 423 K [18, 25].
Highly unusual, with the decrease in temperature, at Tsr
= 309 K it experiences a sudden spin reorientation, where
the moments spontaneously rotate from the basal plane
toward the c-axis, and quickly set entirely along c, as can
be seen in the magnetic susceptibility anisotropy, and il-
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FIG. 1 : Crystal structure and characterization of TbMn6Sn6. (a) Sketch of crystal structure of TbMn6Sn6. The symbols Ji
are exchange constants between different Mn layers. JTb−Mn is the exchange constant between Tb and Mn layers. (b) Top view
of the structure shown in (a) within a unit cell shown by the grey solid lines where there are two kagome planes of Mn atoms
with the formula Mn3Sn separated by Sn3 and TbSn2 layers. (c). Field-cooled (FC) and zero-field-cooled (ZFC) magnetic
susceptibility of TbMn6Sn6 as a function of temperature measured parallel (red curve) and perpendicular (blue curve) to the
crystallographic c-axis. At Tsr = 309 K, the susceptibilities abruptly change directions indicating reorientation of the spins as
illustrated by the two cubic graphics in the inset. The orientation of the Tb (green) and Mn (black) magnetic moments above
and below Tsr from right to left, respectively. (d) Electrical resistivity of TbMn6Sn6 as a function of temperature. Inset shows
the temperature derivative of the resistivity revealing the spin-reorientation transition at 309 K in the resistivity measurement.

lustrated by the sketch of the spin structure in Fig. 1(c).
All Mn spins are parallel to each other and antiparallel
to the Tb spins. Tb is tri-valent, i.e., isovalent with Y,
and has 8 f-electrons with the total magnetic moment of
9 µB (6 from the spins and 3 from the orbital moments).
Additionally, Tb166 is a good metal with a large resid-
ual resistivity ratio (RRR), which is 126 in our sample
as shown in Fig. 1(d).

Recently, tunneling experiments [12] revealed a surface
band of Tb166 with a gapped DP (“Chern gap”) at about
130 meV above the Fermi energy (EF ), which in a pure
2D case would have provided for an anomalous Hall con-
ductivity (AHC) comparable with the experiment. Based
on their band structure calculations, Ref. [12] suggested
that it was located at the K point in the Brilloin zone.
However, the calculated bands presented there had an
implicit offset of the Fermi energy (EF ) by about 0.5 eV
(see a detailed discussion in Ref. [26]), which can hardly
be the case in the bulk. On the other hand, anoma-

lous Hall effect is a bulk property that comes from the
Berry curvature of all the occupied states. Its estimation
requires full calculations of the Berry curvature, taking
into account all electronic states, and not only those in
the vicinity of one particular point in the Brillouin zone
(BZ). It thus calls for a detail analysis of the band struc-
ture and calculations of the contributions of these bands
to the AHC. Also, a detailed understanding of the role
of the element Tb in establishing the collinear FiM order
and spin reorientation transition is essential. A compar-
ison of both magnetic and magnetotransport properties
with the sister compound Y166 is extremely helpful.

In this paper, we investigate these three issues by com-
bining experimental observations and first principles cal-
culations. We first show that different dynamics of spin
fluctuations on Tb and on Mn plays the key role in the
spin reorientation process. We then show that although
Tb166 has a large intrinsic AHC, the separation of its in-
trinsic and extrinsic contributions is quite complex and
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in this scenario, spin dynamics is crucially important and
should be taken into account in analyzing the AHC in
R166 compounds. Our calculations show that the AHC
in Tb166 results from a combination of many factors and
states in different parts of the 3D BZ, rather than from
one particular point in the BZ. We find that contrary to
the “zero model”, the near-Fermi DP in Tb166, while can
still be, with some imagination, identified at the K-H line
in the BZ, are highly dispersive; the band that generates
the largest contribution to the AHC in our calculations is
derived from Mn dz2−1 orbitals and is located around 1
eV above the Fermi level at K point and around 1 eV be-
low it at H point. The two closest to the Fermi level DP
at the K-point (see Ref. [26] for a comprehensive discus-
sion of high-symmetry DPs), at ≈ −50 and ≈ +230 meV,
contribute basically nothing, nor does the DP identified
in [12], which in the bulk is located at ≈ +700 meV. A
large contribution comes from where the Dirac lines cross
the Fermi level (one for spin up and the other for spin-
down), which occurs at kz ≈ 0.25 r.l.u. (reciprocal lattice
units). Additionally, there are a number of accidental
(some of them tilted) DPs near the Fermi level, which
also contribute to the Berry curvature and Hall conduc-
tivity. Amongst them, the most notable is the spin-down
Dirac line crossing the Fermi level at the midpoint be-
tween A and L (kz=0.5 r.l.u.), with some contribution
from an accidental tilted spin-up DP between K and Γ.

METHODS

Single crystals of TbMn6Sn6 were grown by a self-flux
method using excess Sn as the flux. Tb pieces (Alfa Aesar
99.9 %), Mn pieces (Alfa Aesar 99.95 %), and Sn shots
(Alfa Aesar 99.999 %) were loaded to a 2 mL aluminum
oxide crucible in a molar ratio of 1:6:20 and sealed in a
fused silica ampule under vacuum. The sealed ampule
with the crucible was heated to 1150 ◦C for 10 hours,
homogenized at 1150 ◦C for 12 hours, and then cooled to
650 ◦C at 4 ◦C/hour. Once the furnace reached 650 ◦C,
the excess Sn-flux was decanted using a centrifuge. Many
well faceted hexagonal single crystals were obtained in
the crucible. The crystal structure was verified using
powder x-ray diffraction at room temperature using a
Rigaku MiniFlex diffractometer. A small amount of the
crystals from each batch were ground into powder. These
powder samples were used to collect x-ray diffraction pat-
terns, (shown in Supplementary Fig. S1) for one repre-
sentative batch, using Rietveld refinement [27] with the
FULLPROF software [28]. The results of the refinement
are presented in Supplementary Table S1. Magnetic and
transport measurements were performed on single crys-
tals oriented for c-axis.

DC magnetization, resistivity, and Hall measurements
were performed in a Quantum Design Dynacool Physical
Property Measurement System (PPMS) with a 9 T mag-
net. Thee AC Measurement System (ACMS) option was
used for the DC magnetization measurements. The satu-

ration magnetization and coercive fields were calculated
by averaging between the heights and widths of the hys-
teresis curves, respectively, from the magnetization data
with H ‖ c. The resistivity and Hall measurements em-
ployed the conventional four-probe method by attaching
25 µm diameter platinum wires with Epotek H20E sil-
ver epoxy. 2 mA of electrical current was used for the
transport measurements. The contact misalignment, in
magnetoresistance and Hall measurements, was corrected
by field symmetrization and antisymmetrization of the
measured data, respectively.

The first principles calculations for electronic and
magnetic structure of Tb166 were performed utilizing
the local density approximation with the Perdew-Burke-
Ernzerhof (PBE) gradient correction, (GGA) for the
exchange-correlation functional, orthogonal plane-wave
basis sets and the pseudopotential method to account
for electron-ion interactions as implemented in the in-
tegrated suite for electronic structure calculation Quan-
tum Espresso [29]. The Tb pseudopotential in our cal-
culations include the 4f electrons within the open-core
model. Note that inclusion of the 4f electrons in the va-
lence configuration, with a sizeable Hubbard interaction
U for f electrons, does not alter the low energy electronic
structure significantly. The single-particle wave functions
were evaluated using a plane-wave energy cutoff of 600
Ry. We utilized the Wannier90 [30] program to generate
maximally localized Wannier functions (MLWFs) from
the Bloch states by convolution with unitary matrices
and minimizing the spread of the MLWFs in real space.
The method is independent of the choice of basis sets for
the Bloch functions and the locality of MLWFs could be
exploited to derive accurate band structures and low en-
ergy Fermi surface properties at considerably less com-
putational cost. Note that we have included the effect
of spin-orbit coupling in our first-principles calculations
during the evaluation of the anomalous Hall conductiv-
ity at the level of constructing the maximally localized
Wannier functions. Adopting the Kubo formalism, the
intrinsic contribution to the anomalous Hall conductiv-
ity can be written as: [31, 32]

σAHEαβ = e
2

~
∫

d3k

(2π)3
[f(εn(k)− f(εn′ (k)]

× Im

〈
n,k |vα(k)|n′

,k
〉〈

n
′
,k |vα(k)|n,k

〉
[εn(k)− εn′ (k)]2

(1)

where fnk are the Fermi Dirac distribution functions.
The anomalous Hall coefficient can be calculated within
the ab-initio density functional theory calculations in real
materials as: [33–35]

σAHEσβ = −e
2

~
εαβγ

∫
d3k

(2π)3
Ωγ(k)

= −e
2

~
∑
n

εαβγ

∫
d3k

(2π)3
fn,k Ωγ(n,k) (2)
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Here, the anomalous Berry term is obtained by convolu-
tion of the Berry curvature with that of the Fermi func-
tion and summed over all the occupied states, where the
Berry curvature can be written in terms of the Bloch
functions as

Ωγ(n,k) = i 〈∇kun(k) |×|∇kun(k)〉 (3)

While several electronic structure codes [30, 36] exist for
evaluation of Berry curvature in real materials, we used
the WannierBerri code [37] in order to reach high pre-
cision in the evaluation of AHC. Namely, our procedure
incorporates minimal-distance replica selection method
[38] for accurate Wannier interpolation and the recursive
adaptive refinement for accurate determination of phys-
ical quantities by the integration of rapidly oscillating
functions in the k-space for evaluation of the anomalous
Hall coefficient and appropriate consideration of symme-
try properties. Selected calculations were verified against
the full potential local-orbital (FPLO) code [39], where
the linear tetrahedron method was employed with 12 ×
12 × 6 k mesh.

RESULTS AND DISCUSSION

Magnetism

We first discuss the ferrimagnetic (with all Mn spins
parallel) rather than pseudo-antiferromagnetic state in
Y166, and then the easy-axis magnetic anisotropy of
Tb166 developed below the spin reorientation temper-
ature (Tsr = 309 K). We begin with the much better
understood spiral ground state of Y166. It was appreci-
ated decades ago that this spiral can be exceedingly well
described in a three-parameters mean-field 1D Heisen-
berg chain model, where the Mn planes are ferromag-
netically ordered, the interplanar exchange via the Sn3

layer, J1 is ferromagnetic, the one via the YSn2 layer,
J2, is antiferromagnetic, and the second-neighbors inter-
planar exchange, J3, is ferromagnetic [19] [Fig. 1(a)].
We have demonstrated recently that this model, aug-
mented with single-site anisotropy and anisotropic ex-
change, fully described the complex magnetic phase dia-
gram in this compound[13].

When Y is substituted with a magnetic ion, such as
Tb, its magnetic interaction with the Mn plane must be
taken into account. Regardless of its sign, this inter-
action can be integrated out yielding an effective ferro-
magnetic interaction J̃2 = −2JMn−Tb (here and below
we absorb the SS′ factor into the definition of J). This
interaction is rather strong and overwhelms the direct an-
tiferromagnetic J2 one. Given that |J3| � |J2|, |J1|, the
resulting magnetic Hamiltonian is not frustrated, and the
system readily orders ferrimagnetically (the actual sign
of JMn−Tb is antiferromagnetic [26]). This is also fully
consistent with our first principles calculations.

Next, we look at the magnetic anisotropy. It is instruc-
tive to compare the behavior of the 166 compounds across

the entire series of rare earths. At the onset of magnetic
ordering, all of them have easy plane anisotropy [18].
[Except for the spiral-magnetic R166 (R = Sc, Y, Lu)
and Tm166, they all form collinear ferrimagnetic struc-
tures]. The non-magnetic rare earths (Y, Lu and Sc)
retain this easy plane anisotropy all the way down to low
temperatures, and so does Gd, which has a full f-shell
and no single-ion magnetic anisotropy. This clearly es-
tablishes the fact that Mn anisotropy (both single site
and exchange) in 166 compounds is easy plane. Er and
Tm present an interesting case: they form antiferromag-
netic (Er) or short-pitch spiral (Tm) structures, indicat-

ing that the transferred interaction J̃2 in these materials
is weaker than J2, so the net interaction is still anti-
ferromagnetic. As a result, Mn−R interaction is frus-
trated (and R − R one very weak), so the R sub-lattice
remains disordered till rather low temperatures (75 and
58 K, respectively), and even after ordering does not cou-
ple with the Mn sub-lattice, and thus does not affect its
anisotropy.

The most interesting situation emerges in Tb, Dy, Ho
and Er. There, J̃2 is strong enough to induce a collinear
state. Given the hexagonal crystal field, the natural
lowest-order magnetic anisotropy for these R ions is uni-
axial, and strong. Detailed calculations [26] show that
in all the cases the net anisotropy at zero temperature
is dominated by the R, and dictates the magnetization
direction for the entire crystal. The crystal field on the
R site being comparable with, or smaller than the SOC,
the total energy is determined by the transformation of
the corresponding spherical harmonics between the spin
tilting angle and the crystallographic z axis, which for
f-ions include terms of up to M6

z with comparable coeffi-
cients. Direct calculations [26] have demonstrated that,
indeed, the magnetic anisotropy energies for (Tb–Er)166
include quartic, and likely sextic terms, which generate
low-symmetry zero-temperature anisotropy in Ho166 and
Dy166.

Let us now quantify this physical picture in refer-
ence to, specifically, Tb166, and address the reorienta-
tion transition at higher temperature. First, let us show
our experimental data. The external field dependence of
magnetization M(B) with B⊥c and B‖c is shown in Figs.
2(a) and 2(b), respectively. For B⊥c, the shape of the
curves indicates a soft ferromagnetic behavior above Tsr
via a sharp increase at low fields followed by saturation
at higher fields. Below Tsr, a metamagnetic transition is
observed that corresponds to the spins flopping from the
c-axis to the basal plane. The metamagnetic transition
field increases with the decrease in temperature and sur-
passes 9 T below 150 K. For B‖c, the curves also display
soft ferromagnetic behavior above 250 K. Even above Tsr,
the spins are flopped from the basal plane with relatively
smaller magnetic field. Below 250 K a hard ferromagnetic
behavior is observed via the emergence of hysteresis loops
containing asymmetric steps, which increase in width
with decreasing temperature attaining a coercive field of
2 T at 2 K [inset of Fig. 2(b)]. The asymmetric steps
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FIG. 2 : Magnetic field dependence of magnetization with a) B⊥c and b) B‖c. The inset in panel (b) shows the temperature
dependence of saturation magnetization and the critical field. (c) Magnetic phase diagram for the spin-reorientation transition.
Positive values for B corresponds to B⊥c whereas negative values correspond to B‖c. The fitted curve with KMn = −8.96×10−2

meVµ−2
B and KTb = 0.136 meVµ−2

B is observed on top of the experimental values. The dashed vertical line represents the zero-
field spin reorientation transition temperature Tsr. (d) Temperature dependence of the magnetic moments on Mn (red) and
Tb (blue) (dashed lines) from Ref. [25], and magnetic anisotropy energies (MAE) of the Mn (red) and Tb (blue) sublattices
(solid lines) [MAEMn(0) = −0.47 meV Mn−1 and MAEMn(0) = 10 meV Tb−1].

likely reflect the FM domains dynamics, which we do not
discuss here. The saturation magnetization Msat reaches
approximately 3.9 µB F.U.−1 at 2 K and increases up
until around 300 K [inset of Fig. 2(b)]. The metamag-
netic transition for T < Tsr with B⊥c [Fig. 2(a)] and
T > Tsr with B‖c [Fig. 2(b)] (tracked by dM/dB in
Fig. S2) represents the critical field required to induce a
spin-reorientation transition Bsr(T ) at a particular tem-
perature. A critical field -temperature phase diagram is
shown in Fig. 2(c). At higher temperatures, the magne-
tocrystalline anisotropy along the kagome planes domi-
nates, resulting in the “easy-plane” type ordering, simi-
lar to Y166 in the ground state. Below Tsr the uniaxial
anisotropy of the Tb-sublattice dominates. In addition
to this zero field spin-reorientation, at any temperature,
the spin-reorientation transition in Tb166 can also be in-
duced by applying an external field Bsr along the hard
magnetization direction, that takes place through a first
order magnetization process (FOMP).

Now let us rationalize and quantify these observations.
The effective Heisenberg Hamiltonian for the J̃2 exchange
reads:

H2 = −2|JMn−Tb| cos(θ/2), (4)

while the effective magnetic anisotropy Hamiltonian (ab-
sorbing, as usual, the anisotropic exchange into the single
site anisotropy) is (see Supplementary Note 1 for details)

Eanis = 6MAEMn(T ) +MAETb(T ), (5)

with

MAE i(T ) = KiM
2
i (0)

M2
i (T )

3M2
i (T )− 3Mi(T )Mi(0) +M2

i (0)
,

whereMAE is the T -dependent magnetic anisotropy en-
ergy, Mi and Ki are the ordered (i.e., averaged over
thermal fluctuations) magnetic moments and 2nd order
anisotropy coefficients for the two atoms and sublattices
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(i = Mn, Tb), respectively. In the mean-field approxima-
tion MMn(T ) and MTb(T ) [Fig. 2(d)], can be described
by the Brillouin functions. Importantly, the molecular
(Weiss) mean field on the Mn sites is large and is equal
to 6Jin−plane ∼ 3000 K � TC , while that on the Tb site
is much smaller, 6JMn−Tb ∼ 600 K [26], comparable with
TC . As a result, the ordered magnetic moment on the Tb
site shown by blue dashed line in Fig. 2(d), as probed
by neutrons, exhibit a much more gradual temperature
decline (essentially mean field), while that on the Mn
site (red dashed line) changes slowly (according to its
larger Curie-Weiss temperature, TCW ), until it rapidly
drops near TC , which is strongly reduced from TCW by
2D (Mermin-Wagner) fluctuations.

This is illustrated in Fig. 3, showing fluctuating mo-
ments at T � TC and T . TC . Correspondingly, the
relative contribution of Tb into the overall anisotropy
energy gets smaller as the temperature is increased and
leads to the reorientation transition, above which the to-
tal anisotropy is dominated by Mn. Note that in this
model, neglecting higher order anisotropy term, the tran-
sition is first order; this is not true in Dy166 and Ho166,
where the higher order terms lead to an incomplete re-
orientation.

FIG. 3 : Cartoon illustrating the spin dynamics of Mn (red)
and Tb (blue) spins at low (left) and high (right) tempera-
tures.

Fig. 2(d) uses Curie-Weiss parameters fitted to exist-
ing neutron powder diffraction data [25]. As Fig. S3
shows, the fitting is very good. By equating Eanis [Eq.
(2)] to the single-site Zeeman energy at B = Bsr, given
by

EZeeman(T,Bsr) = [MTb(T )− 6MMn(T )µBµ0Bsr(T ),

where µB is the Bohr magneton, a fitted curve for
µ0Bsr(T ) is generated in Fig. 2(c) with KMn = −8.96×
10−2 meVµ−2B and KTb = 0.136 meVµ−2B . The negative
sign of KMn indicates that the Mn sublattice favors the
easy-plane magnetization direction. Conversely, the pos-
itive sign of KTb indicates that the Tb sublattice favors
the easy-magnetization direction along the c-axis due to
a hexagonal crystal field splitting, as discussed above.
Moreover, because Tb3+ is a heavier ion, the magni-
tude of KTb is significantly larger than KMn, thereby
contributing more to Eanis for a given Mi [26]. There-
fore, the remarkable agreement of the fitted curve [Fig.

2(c)] with the experimental data reveals that the spin-
reorientation phase diagram is quantitatively described
by the temperature dependencies of MMn and MTb. The
calculated values for MAEMn(T ) and MAETb(T ) are
shown in Fig. 2(d) by red and blue solid lines, re-
spectively. Analogous to MMn and MTb, respectively,
MAEMn remains relatively constant from around 300
K down to zero temperature whereas MAETb dramat-
ically increases with decreasing temperature. At Tsr,
MAEMn ∼ −MAETb, revealing that the spin reorienta-
tion transition at zero-field occurs when the two compet-
ing anisotropy energies of the two sublattice FiM system
cancel out. In the ground state, MAEMn = −0.47 meV
per Mn andMAETb = 10.0 meV per Tb. To understand
the contributions of Heisenberg exchange and single-site
anisotropy terms within MAEMn, we compare with the
YMn6Sn6 compound. A recent study by Ghimire et al.
[13] estimatedMAEMn for YMn6Sn6 in ground state to
be ∼ −0.12 meV per Mn atom. By assuming the single-
site anisotropy on Mn- and Tb-sub-lattices coexist inde-
pendently, we argue the larger magnitude ofMAEMn for
Tb166 arises from JMn−Tb exchange. Recently, Lee et al.
[26] calculated magnetic anisotropy of Tb166 excluding
Tb f -electrons to be −1.7/2 = −0.85 meV. This large
value can be assigned to the anisotropy of the d electrons
on Tb, included in Ref. [26] together with that of Mn.

Anomalous Hall effect

Now we discuss the anomalous Hall effect (AHE),
which has attracted considerable attention recently in
the RMn6Sn6 compounds [11–15, 17]. An AHE is the
transverse voltage induced by a longitudinal current flow
in ferromagnetic materials without an external magnetic
field. The AHE can have both intrinsic and extrinsic
contributions. The former comes from the Berry curva-
ture of the electronic bands, whereas the latter is related
to the electron scattering effects such as side jumps and
skew scattering. One of the biggest challenge in studying
AHE is separating the intrinsic AHE from the extrinsic
ones. In an ideal crystal at zero temperature the latter is
zero, and so is the longitudinal resistivity ρxx which led
to the idea of using a protocol that relates σAxy to ρxx via
a power expansion,

ρAyx = a+ bρxx + cρ2xx + dρ3xx + ... (6)

σAxy = aσ2
xx + bσxx + c+ d/σxx + ..., (7)

with the idea that the free term c in Eq. 7 (or the co-
efficient of the quadratic term in Eq. 6) will represent
the intrinsic AHC (the terms higher than quadratic are
neglected). It was rather soon realized, however, that the
extrinsic AHC scales differently with ρxx of different ori-
gin. The widely discussed ones are skew scattering and
side jumps. The contribution from the former is propor-
tional to the resistivity, while that from the latter is pro-
portional to the square of the resistivity, thus complicat-
ing the extraction of the intrinsic AHE. Furthermore, if
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there are several mechanisms for residual resistivity (im-
purities, defects, domain walls) the coefficients may be
different for different mechanism (see a detailed discus-
sion of this issue in Ref. [40]). In ferromagnetic materi-
als scaling of the AHC can be influenced by phonon and
magnon contributions that can vary significantly with
temperature. While Ref. [41] argued convincingly that
phonon scattering does not contribute to the linear term
in Eq. 6 (and equivalently in Eq. 7) because of the sign-
changing potential fluctuations that phonons generate, it
is not clear whether the same argument can be applied to
transverse magnons, which represent fluctuations around
a given average magnetic direction. To the best of our
knowledge, a theory of AHE in presence of fluctuating
localized spins has never been developed.

Not surprisingly, given all these pitfalls and caveat, in
real life the simplified version of Eqs. 6 and 7 that is
ubiquitously used is: [12, 42, 43],

ρAyx(T ) = a+ cρ2xx(T ), (8)

or, σAxy(T ) = aσ2
xx + c, (9)

Even a more sophisticated version presented in Ref. [40]
where ρAyx takes the form:

ρAyx(T ) = αIρ
I
xxρxx(T ) + βIρ

I
xx

+ αP ρ
P
xxρxx(T ) + βP ρ

P
xx + γρ2xx(T ), (10)

where everything but ρxx(T ) are temperature-
independent parameters characterizing different
scattering mechanism (αI,P are side-jump coeffi-
cients due to impurity/phonon scatterings, and βI,P
are the skew-scattering coefficient due to impurity, and
phonon-impurity cross scattering), often fails to describe
the experimental data.

We measured the Hall resistivity of Tb166 as a func-
tion of magnetic field [ρyx(B)] between 1.8 and 300 K as
shown by some representative data in Figure 4(a). The
zero field value of ρyx gives the anomalous Hall resistivity
ρAyx. At higher temperatures, ρyx(B) follows the mag-
netization M(B) and shows saturation behavior when
the latter saturates, indicating that magnons play a de-
cisive role in high-temperature transport. Below 60 K,
although M(B) shows a pronounced hysteresis, the hys-
teresis in ρyx(B) becomes unresolvable within the error
of the Hall resistivity measurement and makes it difficult
to extract ρAyx unambiguously (see Fig. S4). In Fig. 4(b)

we show the anomalous Hall conductivity σAxy= ρyx/ρ
2
xx

and longitudinal conductivity σxx = 1/ρxx as a func-
tion of temperature. We can see clearly that σAxy shows
temperature dependence in the entire temperature range,
complicating the extraction of the temperature indepen-
dent intrinsic Hall conductivity. Not surprisingly, Fig.
4(c) shows that σAxy is not linear in σ2

xx, as expected in
Eq. 9 [the black solid line in Fig. S5(a) is plotted using
the parameters a′, and c′ obtained from a straight line fit
to ρAyx vs ρ2xx]. Here, we want to point out that our ρAyx
vs. ρ2xx is similar to that reported in Ref. [12] where Eq.

8 (equivalent of Eq. 9) is used to extract the intrinsic
AHC (see Fig. S5). A closer look at the data in Fig.
4(c) shows that σAyx can be extremely well described by
the relation:

σAxy = aσ2
xx + d/σxx + c (11)

as shown by the red curve in Fig. 4(c). Comparing this
with Eq. 9 we observe that the main difference with the
conventional expression is that the inverse term in σxx
(equivalently, the cubic term in Eq. 8) cannot be ne-
glected. We do not observe this term to be significant
in the sister compound Y166 [44], which strongly sug-
gests that it is due to scattering off of Tb magnons, in
agreement with the arguments above.

The T -dependent term in σAyx(T ) is due to impu-
rity/defect scattering (cf. Eq. 10); indeed, above 150 K,
the data can also be fitted just to σAxy = c+d/σxx [green
curve in Fig. 4(c)] yielding about the same value for
c = σAint, indicating that the inverse term in σxx at higher
temperatures is essential. The value of σAint obtained
from the fitting is 140 ± 1 S cm−1. Although extrinsic
effects, primarily, side jumps can also contribute to σAint,
which complicates comparison with theoretical models,
it is likely subdominant [45] and hence it is clear that
TbMn6Sn6 has a significant intrinsic AHC. What makes
Tb166 unique is the presence of the σ−1xx , indicating an
unconventional transport scattering most likely coming
from Tb magnons. We emphasize that the same physics
that controls the spin-reorientation transition also defines
this unusual AHC scaling.

Next, we focus on the evaluation of intrinsic σAint
and study it microscopically utilizing Density Functional
Theory (DFT) and maximally localized Wannier func-
tions (MLWF), as described in the Methods section. Fig.
5(a-f) shows the Wannier-interpolated electronic struc-
ture for TbMn6Sn6. We note that five Mn d orbitals in
the two spin directions per each of the two Kagome layers
provide a multitude of Dirac lines along the K-H, reminis-
cent of the single-orbital 2D tight-binding model. Many
propitious features are washed out by interorbital hy-
bridization, but at least 8 are reasonably well expressed.
Of them, two spin-up DP are located at −50 and +200
meV below (above) the Fermi level. In addition, there
are a number of DPs not related to this TB model; for
instance, two spin-up DPs occur at M, at −50 and −200
meV, plus, there are about a dozen of accidental DPs all
over the BZ, only a few of them relevant for AHC.

Two further DPs are noticeable: one is formed by the
spin-down dz2−1 (a1g, in hexagonal notations) Mn or-
bital; at K it occurs at ∼ 0.7 eV above EF , and extremely
rapidly disperses down, crossing the Fermi level midway
between K and H. The other one is derived from the
x2 − y2 ± ixy orbital and is truly 2D. This is the orbital
that was postulated in Ref. [12] to be responsible for the
large AHC. However, as was convincingly demonstrated
in Ref. [26], in a charge-balanced system this band is
located about 0.7 eV above the Fermi level, and cannot
contribute to AHC. This conclusion also fully agrees with
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FIG. 4 : a) Anomalous Hall resistivity (ρyx) of TbMn6Sn6 as a function of magnetic field (B) at some representative
temperatures. b) Longitudinal conductivity (σxx, red spheres), and anomalous Hall conductivity (σA

xy, blue circles) as a

function of temperature. c) σA
xy (blue circles) as a function of σxx between 300 K (bottom left) and 60 K (top right). The solid

lines are the plot of different functions shown in the legend. a, c and d’s are constants. σA
int is the temperature independent

intrinsic anomalous Hall conductivity given by the temperature independent term c. The solid black line uses the parameters
a′, c′ obtained from the linear fit of the ρAyx vs ρ2xx, for data presented in Fig. S5(a).

our independent calculations.

In order to gain microscopic insight into the origin of
the large AHC, we performed first principles calculations
of the latter, using the code and methodology described
in Ref. [33, 34]. Our calculations have been extensively
tested for convergence and precision with respect to k-
mesh size and higher energy cutoffs. The calculated AHC
[37] as a function of the position of the Fermi level is
shown in Fig. 6. At the theoretical EF , it is 50 ±1
S cm−1, in qualitative agreement with the experiment,
but underestimating the latter by some 60%. For the
Fermi level shifted up by ∼ 50 meV, corresponding to
the about 0.5 e/formula doping, the calculated σxy is
∼ 80 S cm−1, reducing the discrepancy to ∼ 40%. The
remaining disagreement may be due to an additional ex-
trinsic contribution, or, more likely, to underestimation
of the correlation effects on Mn. For instance, it was
shown that in Sr2RuO4 the effective spin-orbit coupling
in dynamical mean field calculations is enhanced by a
factor of two compared to DFT [46].

Valuable information can be derived from the color
maps showing the contribution to the Berry curvature
(essentially, to AHC) from different points in the BZ
[Figs. 5(g-k)]. Interestingly, the K-point, conjectured in
Ref. [12] to be the sole source of the AHC in Tb166, con-
tributes very little, while large contributions come from
two other regions: one arises from complicated hybridiza-
tion between the DP at K2, emanating from the lowest-
energy unoccupied DP at K, an avoided accidental tilted
Dirac crossing between K2 and Γ2 (spin-up), and an ac-
cidental spin-down DP between A and L.

CONCLUSIONS

We have presented combined experimental and theo-
retical studies of magnetic properties of TbMn6Sn6 in
comparison to its f-electron-less analogue YMn6Sn6 in
order to clarify the following issues:

1. Why is TbMn6Sn6 a collinear ferrimagnet while
YMn6Sn6 is a spiral antiferromagnet?

2. Why does TbMn6Sn6 experience a spontaneous
magnetic reorientation transition ≈ 100 K below
it Curie temperature?

3. What is the microscopic origin of the anomalous
Hall effect in TbMn6Sn6?

4. What are the scaling relations between the Hall
conductivity and longitudinal resistivity in this
compound?

After a careful analysis of the experimental and com-
putational data, we have arrived at the following conclu-
sions:

1. Indirect exchange between the two Mn layers
bridged by Tb, after integrating out Tb moments,
leads to an effective ferromagnetic coupling, render-
ing an unfrustrated magnetic Hamiltonian. This is
in contrast to the Y based analogues as well as other
non-magnetic rare earths-based ones.

2. The spin orientation is decided by the competition
between the easy-axis Tb anisotropy and the easy
plane Mn anisotropy. For fully ordered magnetic
moments the former is much larger; however, the
Tb and Mn spins have very different thermal dy-
namics. The molecular (Weiss) field on the Mn site
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it much larger due to the very strong ferromag-
netic in-plane Mn-Mn exchange, while the molecu-
lar field on Tb is much weaker. As a result, with the
increase in temperature, Tb spins fluctuate more
strongly as compared to those of Mn. Due to the
fluctuations, Tb moment gets considerably reduced
on approaching the Curie temperature (TC); so
does its magnetic anisotropy, which at ∼ 100 K
below TC drops below the Mn anisotropy. This
scenario is qualitatively consistent with published
neutron scattering and DFT results.

3. The 3D nature of the Fermi surface is important in
understanding the anomalous Hall effect in Tb166.
The AHC is not related to a single K-point Dirac
cone associated with the single band 2D tight-

binding Kagome model, but rather comes from
other bands.

4. Magnon contribution, in addition to the impurity
scattering and the temperature independent intrin-
sic AHC, may be important in the scaling relation
between the AHC and the longitudinal conductiv-
ity in Tb166.
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Supplementary Information

SUPPLEMENTARY NOTE 1: MAGNETIC ANISOTROPY ENERGY

We derive our expression for the magnetic anisotropy energy for the collinear arrangement of the moments on the
Tb- and Mn-sublattices on the classical (Langevin) level. We first write the standard partition function for B ‖ z
assuming the anisotropy is a small correction to the Zeeman term:

Z = e−βF =

∫ 2π

0

dϕ

∫ π

0

e−β(−HM cos θ) sin θdθ =
4π sinh (βHM)

βHM
(S1)

The expectation value for the total magnetic moment is

m =
1

Z

∫ 2π

0

dϕ

∫ π

0

M cos θeβHM cos θ sin θdθ = M coth (βHM)− 1

βH
(S2)

By defining the hexagonal axis c to lie along field direction z, then the magnetic anisotropy energy can written as

Hanis = KM2
z = KM2 cos2 θ (S3)

where K is the 2nd order anisotropy coefficient.

For the easy-axis ‖ H, the expectation value is

E‖ =
1

Z

∫ 2π

0

dϕ

∫ π

0

KM2 cos2 θ eβHM cos θ sin θdθ = KM2 − 2K

βH
m (S4)

For the easy-axis ⊥ H, the expectation value is

E⊥ =
1

Z

∫ 2π

0

cos2 ϕdϕ

∫ π

0

KM2 sin2 θ eβHM cos θ sin θdθ =
K

βH
m (S5)

The effective magnetic anisotropy energy is thus

MAE = E‖ − E⊥ = KM2 − 3K

βH
m (S6)

To eliminate H, we solve the transcendental equation of m for H by rewriting as

µ = cothh− 1

h
(S7)

where µ = m/M and h = βHM .

One finds solutions for µ→ 0 and µ→ 1 by interpolating between the two:

h = µ(2− µ+
1

1− µ
) =⇒ H =

m

βM2
(2− m

M
+

M

M −m
) (S8)

MAE = KM2 − 3K
M2

2− m
M + M

M−m
= Km2 M2

3M2 − 3Mm+m2
(S9)

Note that MAE → Km2 at T = 0, where m = M , and MAE → 1
3KM

2 near TC , where M → 0.
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FIG. S1 : Rietveld refinement of the x-ray powder pattern of TbMn6Sn6 measured at room temperature.

TABLE S1 : Selected data from Rietveld refinement of powder x-ray diffraction collected on ground crystals of TbMn6Sn6.
Atomic coordinates are 0, 0, 0 for Tb; 0, 1

2
, z for Mn; 0, 0, z for Sn(1); 1

3
, 2

3
, 1

2
for Sn(2); and 1

3
, 2

3
, 0 for Sn(3).

Space group P6/mmm (No. 191)

Unit cell parameters a = 5.5384(3) Å

c = 9.0325(6) Å

RWP 14.6 %

RB 8.61 %

RF 7.43 %

Mn z coordinate 0.24803(31)

Sn(1) z coordinate 0.33325(26)
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FIG. S2 : First Order Magnetization Process (FOMP) in TbMn6Sn6. (a) Magnetic field dependence of magnetization M(B)
with B‖c below the spin-reorientation transition temperature at zero-field Tsr. (b) Magnetic field dependence of derivative of
magnetization dM/dB(B) with B‖c below Tsr. (c) M(B) with B‖c above Tsr. (d) dM/dB(B) with B‖c above Tsr.
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FIG. S3 : Fit of Brilluion curves (solid lines) to experimental data (points) for the temperature dependence on the magnetic
moments on Mn and Tb obtained from a previous neutron powder diffraction study [25].
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FIG. S4 : Hall resistivity as a function of magnetic field at (a) 60 K and , (b) 50 K. Note that there is a clear hysteresis in the
Hall resistivity at 60 K, which allows to extract the anomalous Hall resistivity (ρAyx) unambiguously. The hysteresis disappears

(or is within the error bar of the resistivity measurement) at 50 K which makes it difficult to get ρAyx from these data at and
below 50 K.
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FIG. S5 : (a) Anomalous Hall resistivity (ρAyx) as a function of square of longitudinal resistivity (ρ2xx). Black line is a straight

line fit to the data which shows that ρAyx has a systematic deviation from the ρ2xx dependence, which is more clearly seen in

the log-log plot presented in Panel (b). Here, c′, the coefficient of ρ2xx, gives the intrinsic anomalous Hall conductivity (σA
int),

which is found to be 74 S cm−1 from this fit. (c) ρAyx vs. ρxx. The red line shows a fit to a+cρ2xx+dρ3xx, which shows that the

cubic term is necessary to describe the ρxx dependence of σA
int. ρ

A
xy obtained from this fitting is 140 S cm−1.
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