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Applying a magnetic field in the hexagonal plane of YMn6Sn6 leads to a complex magnetic phase diagram
of commensurate and incommensurate phases, one of which coexists with the topological Hall effect (THE)
generated by a unique fluctuation-driven mechanism. Using unpolarized neutron diffraction, we report on the
solved magnetic structure for two previously identified, but unknown, commensurate phases. These include a
low-temperature, high-field fanlike phase and a room-temperature, low-field canted antiferromagnetic phase. An
intermediate incommensurate phase between the fanlike and forced ferromagnetic phases is also identified as
the last known phase of the in-plane field-temperature diagram. Additional characterization using synchrotron
powder diffraction reveals extremely high-quality, single-phase crystals, which suggests that the presence of two
incommensurate magnetic structures throughout much of the phase diagram is an intrinsic property of the system.
Interestingly, polarized neutron diffraction shows that the centrosymmetric system hosts preferential chirality in
the zero-field double-flat-spiral phase, which, along with the THE, is a topologically nontrivial characteristic.
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I. INTRODUCTION

Verifying the correct ground state for magnetic systems
with competing interactions has been a fundamental problem
since the triangular Ising antiferromagnet was first studied 70
years ago. This is an example of antiferromagnetic (AFM)
interactions on a particular lattice geometry that leads to
magnetic frustration, e.g., geometrical frustration. Moving
beyond frustration due solely to geometrical restrictions com-
bined with AFM interactions, one can look to competing
nearest-neighbor and next-nearest-neighbor—and farther—
interactions, which can lead to either no order as is the case
in spin liquids, short-range order, or even a multiphase space,
where either side of a phase boundary line represents two
different orderings with subtle energetic differences. Often,
the structure which emerges from the frustration is a long-
wavelength incommensurate spin texture, where the details of
the underlying crystal lattice symmetry determine additional
expressed features [1], such as chiral handedness [2,3], the
magnetoelectric effect [4,5], toroidal order [6], and nonrecip-
rocal magnons [7,8]. These are examples of phenomena which
occur when magnetism is in the presence of broken spatial
inversion symmetry (i.e., noncentrosymmetric lattices).

More recently, magnetic frustration in centrosymmetric
systems has been theorized, and experimentally verified, as
a route to stabilize topologically protected skyrmion lattices
[9–11], a phase that traditionally materialized from chiral
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crystal structures. Similarly, topologically nontrivial multi-q
structures, other than the canonical triple q of the skyrmion
lattice, and in the absence of the Dzyaloshinskii-Moriya an-
tisymmetric exchange interaction, have also been reported
[12]. It is then natural to ask whether other topological
properties that require broken inversion symmetry can be
found in centrosymmetric, frustrated magnet systems. For
example, the topological Hall effect (THE) was recently ob-
served in YMn6Sn6 [13,14], a centrosymmetric (space group
P6/mmm) itinerant helimagnet, with the maximum effect oc-
curring around 245 K and an applied field of about 4 T in
the ab plane. Although no skyrmion lattice was found in
this region of phase space, a noncoplanar spin texture was:
a transverse conical spiral (TCS) [13,14]. This spin texture
would not on its own lead to the THE, but it was argued
that dynamic chiral fluctuations are responsible, thus making
YMn6Sn6 a prototype material for a fluctuation based THE
mechanism. Thermal fluctuations, coupled with the strongly
two-dimensional nature of the magnetic exchange, are thought
to be key ingredients for realizing the THE despite the null
scalar spin chirality in the absence of an external field. It
is then the addition of unbalanced magnon fluctuations in
the transverse conical phase which creates a nonzero chiral
susceptibility.

Shown in Fig. 1(a), YMn6Sn6 is composed of Mn atoms
on a kagome lattice in the ab plane, which are then stacked
along the c axis with the layers separated either by three Sn
layers (Sn3) or a mixed Y and Sn layer (Sn2Y). Mn atoms
in plane are at equivalent positions and are strongly coupled
ferromagnetically via nearest-neighbor exchange (Jp < 0) and
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FIG. 1. (a) Crystal structure of YMn6Sn6, belonging to space
group P6/mmm (191). The Mn-Mn magnetic exchange pathways
as discussed in the main text are indicated by the arrows and la-
bels, Jp and J1-J3. Single-crystal neutron-diffraction data showing
the temperature dependence of the magnetic (b) wave vectors and
(c) Bragg peak intensities in zero-field conditions. The inset of
(c) shows the progression of the magnetic structures just below
TN ≈ 340 K. One commensurate structure emerges at TN , but it is
short lived and quickly gives way with decreasing temperature to
two incommensurate structures. The legend for (c) is the same as in
(b). (d) Magnetic structure phase diagram for the applied field, H, in
plane. The neutron-diffraction experiments in this paper were carried
out with H ‖ [1̄, 1, 0]. The phases DS, TCS, FL, CAF, I, and FF cor-
respond to distorted spiral, transverse conical spiral, fanlike, canted
antiferromagnet, phase I, and forced ferromagnetic, respectively.

have the spins in the ab plane due to easy-plane anisotropy
(K < 0). This stacking pattern has an important magnetic
implication, mainly, that within a unit cell there are two
unequal interlayer exchange pathways with opposite signs.
The interaction across the Sn3 layer is ferromagnetic (FM)
(J1 < 0) and across the Sn2Y layer it is antiferromagnetic
(J2 > 0). These exchange parameters alone would be compat-
ible with a commensurate antiferromagnetic structure, where
the magnetic unit cell is doubled along the c axis. Indeed, this
is the initial magnetic structure just below the Néel tempera-
ture (TN ≈ 340 K). However, the interlayer coupling between
like-Mn layers is ferromagnetic (J3 < 0), and below 333 K
the exchange competition drives the system into a double-flat-
spiral magnetic structure. In this structure, two rotation angles
are needed to describe the directions of the spins (see, for
example, Ref. [15]). One angle defines the relative difference
between the two layers of spins within the unit cell, and the
second angle defines the relative difference between the layers
of spins in adjacent unit cells, and these angles are highly
temperature dependent in YMn6Sn6. Curiously, the transition
to this incommensurate structure sees two double-flat-spirals

emerge: k1 = (0, 0, kz,1) and k2 = (0, 0, kz,2), where kz,1 and
kz,2 are almost the same, and both are long range [14,16–
18]. Single-crystal neutron diffraction data in Figs. 1(b) and
1(c) show the transition from the commensurate to incommen-
surate structure by tracking the wave vectors and magnetic
Bragg peak intensities at the (1, 0, 0) + k positions. The
wave vectors for the incommensurate structures are strongly
temperature dependent, getting closer with decreasing tem-
perature, but never merge (at least to 12 K), and they have
similar in-field behavior.

Upon application of an external magnetic field in the ab
plane, the magnetic phase diagram becomes much more com-
plex [see Fig. 1(d)]. A previous study identified five new
magnetic phases via ac susceptibility measurements [14], and
through theoretical and neutron-diffraction studies was able
to predict/confirm the structure of some of those phases.
Here we present the solved magnetic structures for two of
the in-field phases previously identified but unsolved, namely,
phase “II”—from here on out denoted canted antiferromagnet
(CAF)—and fanlike (FL), using single-crystal unpolarized
neutron-diffraction measurements. Additionally, we were able
to identify the change in magnetic structure that leads to the
region of the ac-susceptibility phase diagram called phase “I.”

We also present a result obtained via a polarized neutron-
diffraction study. Unexpectedly, unequal chiral domain pop-
ulations of the zero-field spiral state were found despite the
underlying centrosymmetric crystal symmetry. This could be
a significant finding as it implies that the spiral state can
energetically favor one domain over the other, possibly in a
controlled manner. This is another example, along with the
THE, of YMn6Sn6 displaying unusual behavior for a structure
with inversion symmetry.

II. EXPERIMENTAL DETAILS

Single crystals of YMn6Sn6 were grown by the self-flux
method described in Ref. [14], and all neutron experiments
used the same 70 mg crystal. The flat side of this platelike
crystal was mounted flush with a thin aluminum plate and
attached using thin aluminum wire. For all data, error bars rep-
resent plus and minus one standard deviation of uncertainty.

Data for Figs. 1(b) and 1(c) were taken using a single
crystal oriented in the (H, 0, L) scattering plane on the BT-
7 triple-axis spectrometer at the NIST Center for Neutron
Research [19]. Elastic diffraction measurements were per-
formed using Ei = E f = 14.7 meV with open-25′-25′-120′
collimation before the monochromator, sample, analyzer, and
detector, respectively. All other neutron data, with the excep-
tion of Fig. 5, were taken using a single-crystal oriented in the
(H, H, L) scattering plane with 25′-25′-25′-25′ collimation.

A 10-T superconducting vertical field magnet was used to
take in-field measurements where the field was parallel to the
crystallographic [1̄, 1, 0] direction. The high sample quality
resulted in a sharp mosaic, and data for the magnetic structure
determination were taken as θ − 2θ scans through the Bragg
peaks. To extract the intensity proportional to the structure
factor squared, integrated Bragg peak intensities were cor-
rected by the Lorentz factor (Iobs

hkl ∝ |Fhkl |2
sin2θhkl

). These values
were used to refine structures with the Rietveld method and
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the program FULLPROF [20], and the free-ion form factor for
Mn2+ was used in magnetic refinements. Measurements of the
nuclear Bragg peaks at 0 T revealed that extinction effects, and
possibly multiple Bragg scattering, diminished the intensity
of the strongest peaks; thus, any magnetic intensity appearing
at these positions upon application of the field was excluded
from refinement for the in-field structure determinations.

The beam for the polarized neutron diffraction measure-
ments was created using a 3He polarizer before the sample,
and polarization analysis was made possible using an ad-
ditional 3He polarizer after the sample [21]. A guide field
of 1 mT was employed to define the polarization axis and
was oriented in plane and along the scattered wave vector,
or perpendicular to the scattering plane. Initial flipping ratios
were typically ≈34. The four neutron scattering cross sections
available for measurement were I++, I+−, I−+, and I−−. Data
were taken with the scattering vector, Q, both parallel and per-
pendicular to the neutron polarization, P, and the temperature
was held constant at 290 K. All data were corrected for polar-
ization efficiency before analysis. Both nuclear and magnetic
Bragg peaks were resolution limited, and Voigt functions were
used to fit the data.

High-resolution synchrotron powder diffraction data were
collected using beamline 11-BM at the Advanced Photon
Source at Argonne National Laboratory using a wavelength of
0.4579 Å. Due to the high absorption of Sn at this wavelength,
samples were prepared by coating the outside of a 0.8 mm
diameter Kapton capillary with a mixture of sample powder
(a ground single crystal of YMn6Sn6) and Dow Corning 4
Electrical Insulating Compound silicone grease. Refinement
of the data was performed using the program FULLPROF [20].
All data sets (temperatures) were first refined using a Lebail
fit in order to obtain the lattice and peak profile parameters
and the background. It was found that the peaks could be fully
described by a Lorentzian profile and that some peak width
anisotropy was present, where (0, 0, L)-type peaks tended to
be slightly narrower than others. A spherical harmonics size-
broadening model was able to capture the peak profile shape
correctly for all peaks. The profile and background parameters
were then used, and held constant, for the Rietveld refinement.
Lattice parameters, anisotropic atomic displacement parame-
ters, and Sn occupancies were allowed to refine. An impurity
phase from elemental Sn, which was used during flux growth,
was also included in the refinement, and found to be ≈7%.

III. RESULTS

A. In-field magnetic structures

1. Room-temperature, low-field canted antiferromagnetic phase

Previous ac susceptibility and neutron diffraction measure-
ments identified a small region of finite field-temperature
phase space with a commensurate magnetic structure and
wave vector of (0, 0, 0.5) [14]. The phase was labeled “II”
and was stabilized at fields ranging between ≈2 T and 4 T
and spanned temperatures between ≈250 K and 320 K. We
have studied the field-dependent onset of the phase at 295 K
and have solved the magnetic structure at 3 T.

An important note is that all incommensurate phases are
present with two wave vectors, k1 = (0, 0, kz,1) and k2 =

μ0H (T)
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FIG. 2. Room-temperature data showing the evolution of the
magnetic structures with increasing applied field. (a) The change in
periodicity for the two incommensurate structures with wave vectors
(0, 0, kz,n). (b) The change in intensity for magnetic Bragg peaks
about the (0, 0, 2) reciprocal-lattice point. As the Bragg peak at
(0, 0, 2 − kz,2) rapidly decreases in intensity above 2 T, the commen-
surate Bragg peak at (0, 0, 2.5) just as rapidly increases in intensity.
The dashed lines for both data sets are to emphasize the relationship
between the two, which suggests the incommensurate kz,2 structure
is transitioning into the commensurate structure above 2 T.

(0, 0, kz,2), where |kz,1| < |kz,2| for all temperatures with and
without applied magnetic field. Due to the proximity to each
other, the high-resolution measurements presented here are
needed to resolve the Bragg peaks associated with each wave
vector. As such, the periodicity of the incommensurate wave
vectors was tracked as a function of field, shown in Fig. 2(a).
For both incommensurate structures, the period of the spiral
is generally shortened with increasing field, with the excep-
tion of a short-lived increase between 2 T and 2.2 T. It is
between these fields that the commensurate structure abruptly
emerges, as shown by the field-dependent intensity data of
the (0, 0, 2.5) magnetic Bragg peak in Fig. 2(b). As the
commensurate structure sets in, the incommensurate structure
associated with kz,2 loses most of its intensity, indicating
a phase transition of this incommensurate structure to the
commensurate one. Meanwhile, the incommensurate structure
associated with kz,1 monotonically and smoothly decreases in
intensity with applied field.

The Rietveld refined fit and structure are depicted in Fig. 3.
The best-fit magnetic structure was found to have the same
AFM coupling as the high-temperature, zero-field structure
which initially sets in with the onset of long-range order at
TN . That is, magnetic ions through the Sn3 layer are FM
coupled, and ions through the Sn2Y layer are AFM coupled.
All ions within a layer are FM coupled, as is the case for all the
reported YMn6Sn6 magnetic phases. Due to the applied field,
the moments are all canted towards the field direction, adding
a net ferromagnetic component and second commensurate
wave vector, k = 0. The angle the moments make with the
applied field direction is denoted γ . The moments through
the Sn2Y layer (the AFM coupled layers) were constrained
during refinement such that the angles away from H both had
a magnitude of γ and all moments were constrained to have
the same magnitude. The refined angle, γ = 52(2)◦, and the
refined moment, μ = 1.13(4)μB, resulted in a fit with an R
factor of 9.21.
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FIG. 3. Results of the best-fit magnetic model for the room-
temperature, low-field canted antiferromagnetic phase with wave
vectors, (0, 0, 0) and (0, 0, 0.5). Data were taken at 295 K and 2 T in
the (H, H, L) scattering plane, and the figures represent the magnetic
structure at this particular field and temperature. (a) The observed
vs calculated magnetic structure factor squared in barn/formula unit
(f.u.). The calculated result was obtained via Rietveld refinement for
the magnetic intensity only. The inset shows the magnetic structure
in the ab plane. Only Mn ions are shown (gray spheres), and the
orange and blue arrows represent the two different directions of the
moments. (b) The magnetic unit cell, where the dashed line defines
the size of the nuclear unit cell.

2. Low-temperature, high-field fanlike phase

The low-temperature, high-field commensurate magnetic
phase was denoted “fan-like” in Ref. [14]. It can be
described with wave vectors (0, 0, 0) and (0, 0, 0.25), and an
additional modulation within the 4c periodicity resulted in
(0, 0, 0.5)-type magnetic Bragg peaks. The region of phase
space spanned by this phase is much larger than the CAF
phase previously discussed. Data presented here were taken
at 1.5 K and 7.8 T, where there was no trace of any incom-
mensurate structure.

The theoretical model in Ref. [14] found a stable magnetic
structure matching the periodicity of the observed magnetic
Bragg peaks. The moment directions for the eight layers of
Mn atoms within the magnetic unit cell could be described by
angles γ , γ , −δ, δ, −γ , −γ , δ, and −δ, which are measured
with respect to the field direction. This structure is viewed in
Fig. 4 where orange and blue arrows represent moments, the
directions of which can be defined by either the angle γ or δ,
respectively. The refined fit for this model (model 1) is shown
in Fig. 4(a) with γ = 68(2)◦, δ = 0(1)◦, μ = 1.95(5)μB, and
an R factor of 12.4. All moments were constrained to have the
same magnitude.

Another model, model 2, resulted in a similar goodness
of fit (R factor = 12.1, see the Appendix). The relationship
between angles in this model can be described as γ , γ , −δ,
−δ, −γ , −γ , δ, and δ, with refined values γ = 69(3)◦, δ =
12(6)◦, and μ = 1.91(6)μB. The magnetic structure factors
for both models are almost identical. If γ , δ, and μ were the
same for both models, the structure factors for (0, 0, 0)-type
and (0, 0, 0.5)-type peaks would also be the same. The struc-
ture factors would only differ for the (0, 0, 0.25)-type peaks,
but as δ → 0 in model 1 the structure factors for these peaks

FIG. 4. Results for model 1 of the low-temperature, high-
field fanlike phase with wave vectors, (0, 0, 0), (0, 0, 0.25), and
(0, 0, 0.5). Data were taken at 1.5 K and 7.8 T in the (H, H, L)
scattering plane. (a) The observed vs calculated magnetic structure
factor squared in barn/formula unit (f.u.). The calculated result was
obtained via Rietveld refinement for the magnetic intensity only.
The inset shows the refined magnetic structure in the ab plane for
1.5 K and 7.8 T, where γ = 68(2)◦ and δ = 0(1)◦. Only Mn ions are
shown (gray spheres), and the orange and blue arrows represent the
two different angle magnitudes, γ and δ, respectively, which define
the moment directions away from the applied field direction. (b)
The magnetic unit cell, where the dashed lines define the size of the
nuclear unit cell.

converge to that of model 2. Details of the structure factor
calculations can be found in the Appendix.

3. Phase I

We now comment on the “I” region of the phase diagram
in Fig. 1(b). Data in Fig. 5 were taken at 10 K and show
an intermediate magnetic structure between the FL phase, at
9.0 T and 9.5 T, and the forced ferromagnetic (FF) phase, at
10.5 T. At 10.0 T, the 0.5-type Bragg peak at (0, 0, 2.5) is

FIG. 5. High-field data with H ‖ [1̄, 1, 0], taken at 10 K with
a position sensitive detector and moderately course resolution. Be-
tween the FL phase (9.0 T and 9.5 T) and FF phase (10.5 T), an
intermediate phase appears, where the 0.5-like peaks disappear, and
the magnetic structure is incommensurate. Lines connect between
marker points for clarity.
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FIG. 6. Results from the analyzed synchrotron powder diffrac-
tion data. (a) The lattice parameters and (b) unit-cell volume vs
temperature. (c) Rietveld refinement for 295-K data. The data are
displayed as black dots and the Rietveld calculated fit is the solid
yellow line running through the data. The top row of tik marks
(green) denotes YMn6Sn6 Bragg peak positions, and the bottom row
of tik marks (red) denotes the elemental Sn impurity Bragg peak
positions. The difference curve (observed-calculated) is shown as the
solid blue line on the bottom of the plot. The inset highlights the fit
in the high-Q region.

completely gone, and the peaks at 0.25-type positions have
shifted away from the zone centers to become, once again,
incommensurate. The positions of the incommensurate peaks
shown are at L = 1.7335(8) and 2.266(1), which correspond
to an average wave vector of k ≈ (0, 0, 0.26), the same as the
average of the two zero-field wave vectors at this temperature
[14]. These data were taken with a position sensitive detector
and moderately course resolution (open-50′-40′R-120′, where
“R” indicates radial), where any splitting of the peaks would
not be resolvable.

B. Synchrotron powder diffraction

One of the intriguing magnetic properties of YMn6Sn6 is
the observation of two distinct incommensurate wave vectors
for the zero-field magnetic structure, which has been observed
in essentially all the magnetic neutron studies [14,16–18].
One obvious explanation would be that the samples grow in
two slightly different structures or compositions, so there are
two different samples under investigation. To ascertain if this
might be the case, we carried out high-resolution synchrotron
powder diffraction measurements to determine if more than
one set of lattice parameters coexist, which could explain the
presence of the two slightly different incommensurate mag-
netic modulations. However, the results definitively show that
only one set of lattice parameters explains the data, and these
are shown in Fig. 6(a). Excellent fits to the data were obtained,

and we find that the lattice parameters and volume [Fig. 6(b)]
monotonically decrease with decreasing temperature, show-
ing no discontinuity. Figure 6(c) shows an example of the
calculated Rietveld refinement and data for 295 K. The refined
parameters for all the data sets are displayed in Table I. There
may be evidence for some slight inhomogeneity in the Sn con-
tent, since two data sets, at temperatures 90 K and 295 K, were
taken at a slightly different conditions and different sampling
positions than the rest. The total refined Sn content was found
to be slightly lower for these two temperatures, with the main
difference being the occupancy at the Sn3 site.

C. Polarized neutron analysis at 290 K and 0 T

1. Q ‖ P

The spin-flip (SF) cross-section intensities, I+− and I−+,
for magnetic Bragg peaks stemming from multiple zone cen-
ters are shown in Fig. 7, with the fits to the data shown as
solid lines. The non-spin-flip (NSF) cross-section intensities,
I++ and I−−, were also measured, but yielded no intensity, as
expected for magnetic Bragg peaks in the Q · P = 1 config-
uration defined by a guide field of 1 mT. For each panel in
Fig. 7, both wave vectors k1 and k2 are covered via a scan
along the L direction, revealing that for a given wave vector
the SF cross section that is most intense appears to depend on
whether the peak is on the higher- or lower-Q side of a given
zone center. Scans along the HH direction in this (H, H, L)
scattering plane were also performed to ensure the peaks were
centered at the commensurate position in that direction. The
integrated areas for each wave vector and cross section were
evaluated and the ratios, I+−/I−+, are plotted for k1 and k2

in Figs. 8(a) and 8(b), respectively. As discussed further in
the Discussion section, the only way for the two SF cross-
section intensities to differ is in the presence of a spiral-type
structure. Typically, in a centrosymmetric crystal, one would
not see this difference due to multiple magnetic domains being
evenly populated, and the difference here is due to the uneven
population of the two possible chiral domains, referred to
here as positive or negative chirality, where the chiral sign is
defined by the sign of Si × S j (where i and j here refer to
nearest-neighbor noncollinear spins along the propagation di-
rection). A least-squares calculation was performed to find the
percentage of each chiral domain which best fits the I+−/I−+
ratio data, and the results are shown as blue diamonds in
Fig. 8. The dominant chirality for k1 was found to be negative
at 56.0%, and the dominant chirality for k2 was found to be
positive at 65.5%. Note that the chiralities for the two spirals
are opposite, and comparable in magnitude, meaning that one
spiral propagated (preferentially) in one direction, and the
other in the opposite direction.

2. Q ⊥ P

In addition to the polarized neutron experiment configu-
ration with the neutron polarization parallel to the scattering
vector (Q ‖ P), we also took data with the polarization
perpendicular to the scattering vector and scattering plane
(Q ⊥ P). There is no chiral term in any of the scattering
cross sections for this configuration, but magnetic scattering is
allowed in the NSF channel when there is a component of the
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TABLE I. Rietveld refined parameters from synchrotron powder diffraction data. The space group used for refinement was P6/mmm (191)
and the atomic positions are Y (0, 0, 0), Mn ( 1

2 , 0, z), Sn1 ( 1
3 , 2

3 , 1
2 ), Sn2 ( 1

3 , 2
3 , 0), and Sn3 (0, 0, z). Temperatures denoted with ∗ were taken

at a slightly different sampling position than the rest of the temperatures.

T a c Mn z Sn3 z Sn1 occ. Sn2 occ. Sn3 occ. x
(K) Rwp χ 2 (Å) (Å) (z/c) (z/c) (%) (%) (%) (YMn6Snx)

90∗ 9.40 1.70 5.518671(1) 8.994806(2) 0.24753(4) 0.33689(3) 97.12(8) 96.86(8) 97.83(9) 5.836(3)
200 10.0 2.24 5.529688(1) 9.008645(2) 0.24750(4) 0.33700(3) 98.16(9) 98.20(9) 99.68(9) 5.921(3)
240 9.93 2.12 5.534370(2) 9.014464(3) 0.24739(4) 0.33695(3) 98.30(8) 98.26(9) 99.64(9) 5.924(3)
295∗ 9.38 1.42 5.5410810(9) 9.022760(2) 0.24719(4) 0.33724(3) 97.74(8) 97.27(8) 98.32(8) 5.867(3)
320 9.98 1.94 5.544690(1) 9.027480(2) 0.24730(4) 0.33729(3) 98.05(8) 97.99(9) 99.94(9) 5.919(3)
340 9.60 1.78 5.547689(1) 9.031668(2) 0.24755(4) 0.33709(3) 97.88(8) 97.97(9) 100.08(9) 5.919(3)

spin parallel to the polarization vector; this gives directional
information about the spin. Figure 9 shows the results of the
data taken in this polarized geometry at 290 K for the mag-
netic Bragg peaks, (a) (0, 0, 2 + kz,n) and (b) (0, 0, 3 − kz,n).
There was no difference in intensity between the data from
the two SF channels (+− and −+) or between the two NSF
channels (++ and −−) for this polarization geometry, and
thus the data from the two SF channels were averaged as well
as the data from the two NSF channels. For both (a) and (b),
there is also no difference between the integrated intensity of
the SF and NSF data. This implies that the moments trace a
circle as they spiral along the c axis, as opposed to an ellipse.

IV. DISCUSSION

Currently, there is not a satisfactory explanation for the
coexistence of the two, almost equivalent, wave vectors found

in YMn6Sn6 and in some doped variants [14,16–18]. One
possibility suggested was that the magnetic structure has a
nonconstant rotation of the moments, and the wave vectors ob-
served were merely harmonics of a much smaller fundamental
wave vector [17]. However, recent inelastic neutron-scattering
measurements show that the observed wave vectors are, in
fact, the magnetic zone center [22], making the modulated
structure theory obsolete. An inhomogeneous distribution
of two magnetic structures, which are almost energetically
identical, could also be likely. Multiple ground states have
been observed in intermetallics due to off-stoichiometry, such
as the fluctuating Ni concentration in CeNi0.84Sn2 which
leads to two coexisting magnetic ground states [23], or the
ground-state sensitivity to the Sn content in Ce3Rh4Sn13 [24].
Most similar is the itinerant antiferromagnet, Mn3Sn, where
two helical modulations coexist over a wide temperature
range [25]. The incommensurate transition temperature and
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FIG. 7. Polarized neutron data with Q ‖ P at T = 290 K showing scans which span the magnetic Bragg peaks associated with the two
wave vectors, ki (i = 1, 2, |k1| < |k2|), discussed in the main text. Each panel displays the two spin-flip channels measured: +− (blue squares)
and −+ (orange circles). The top row, (a)–(d), shows Bragg peaks with zone-center +ki momenta, and the bottom row, (e)–(h), shows the
corresponding zone-center −ki momenta.
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FIG. 8. Ratios of the Q ‖ P polarized neutron spin-flip channels,
I+−/I−+, for the (a) k1 wave vector and (b) k2 wave vector. Ratios
from the data, taken at T = 290 K and shown as orange circles,
represent the integrated intensities of fits to the data, as described
in the main text. The calculated ratios, shown as blue diamonds,
come from structure factor calculations for the given chiral domain
populations.

wave-vector values were also shown to have a dependence on
the annealing history, implying disorder may play a role in
the magnetic structure [26]. However, our synchrotron powder
diffraction data show that if chemical inhomogeneity were
the root cause for the double wave vectors then there is no
associated structural inhomogeneity in the form of a distri-
bution of lattice parameters, and our neutron diffraction data
show that the regions of homogeneous chemical compositions
would have to be large enough to lead to long-range magnetic
order (i.e., >1000 Å). This does not rule out macroscopic
regions of varying Sn content as being responsible for the two
propagation vectors and further chemical characterization on
the Sn inhomogeneity across a crystal would shed more light
on this possibility.

Also of note is the temperature dependence of the spirals’
modulation lengths; the percent change in wave-vector com-
ponent kz,n between the onset of the incommensurate phase at
333 K and the base temperature measured (12 K in Ref. [14])
is quite large: −29% for n = 1 and −43% for n = 2. Likely,
this is due to the sensitivity of the spiral structures to the
relative exchange pathway strengths J1 − J3, which in turn
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FIG. 9. Polarized neutron data with Q ⊥ P at 290 K for
(a) (0, 0, 2 + kz,n) and (b) (0, 0, 3 − kz,n). For both (a) and (b), there
is no difference between the integrated intensity of the SF and NSF
data. This implies that the moments trace a circle as they spiral along
the c axis.

are temperature dependent due to the known importance of
thermal fluctuations in this system.

The previous mapping of kz,1 and kz,2 with applied field in
the ab plane [14] demonstrates that both magnetic structures
are very close in energy to one another, with kz,1 consistently
undergoing transitions at a slightly lower field than kz,2. The
room-temperature, low-field structure is an exception. The
rapid disappearance of the kz,2 structure at 2 T as the com-
mensurate structure appears suggests that kz,2 is transitioning
to the commensurate structure, while the incommensurate kz,1

structure smoothly transitions to the FF state. The in-field
commensurate structure is very similar to that at the Néel tem-
perature, where the magnetic layers within a unit cell (across
the Sn3 layer) are ferromagnetically coupled, and across the
Sn2Y layer are antiferromagnetically coupled. The in-field
structure reported here is a canted variation of that structure,
where all moments simply contribute to a net ferromagnetism
pointed in the direction of the applied field.

Another deviation from the lower-temperature behavior is
the absence of a spin-flop transition as field increases at 295 K.
An antiferromagnet with magnetocrystalline anisotropy will
have a spin-flop transition at a field proportional to

√〈J〉K ,
where in YMn6Sn6, 〈J〉 is the average out-of-plane Heisen-
berg exchange and K is the easy-plane magnetocrystalline
anisotropy. It is expected that as temperature increases the
spin-flop field would decrease, as observed via ac suscep-
tibility measurements for temperatures lower than 295 K;
instead, the distorted spiral (DS) to commensurate canted an-
tiferromagnet shows no sign of a spin-flop transition, marked
by the absence of any c-axis component in the reported
structure. This is in contrast to to the DS to TCS spin-
flop phase transition seen at temperatures below 295 K and
≈2 T, where the in-plane field leads to a c-axis compo-
nent of the moments. One explanation could lie in results
from a small angle neutron-scattering study, which observed
clear quasi-two-dimensional behavior in the form of spatial
ferromagnetic fluctuations in the same temperature range as
the absence of spin-flop behavior [27]. The report concludes
that between ≈260 K and the paramagnetic state the system
can best be described as a quasi-two-dimensional fluctuat-
ing ferromagnet, despite the spin structure having a net zero
moment.

The low-temperature, high-field fanlike phase forms only
below ≈170 K. Interestingly, this is also the lower-bound
temperature for the observed THE, as thermal fluctuations
are greatly reduced below this temperature, which is perhaps
why the FL phase can find stability. This postulation comes
from the theory that the THE mechanism is a result of chi-
ral fluctuations stabilized by thermal fluctuations when an
in-plane magnetic field is applied [14]. As discussed briefly
in the Results section, the two fanlike models are almost
indistinguishable, especially in the limit that δ → 0 in model
1 (detailed magnetic structure factor calculations for both
models are given in the Appendix). Model 1 can be justified
as being more likely the correct structure, though. Figure 10
shows the energy for each model as the spins in layers 3, 4,
7, and 8 deviate from δ = 0◦. Because the angles for spins
1, 2, 5, and 6 were found to be the same within error for
both models, they were kept fixed at ±68◦ for the calculations
(as determined by the Rietveld refinement), which can be
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FIG. 10. Energy comparison between model 1 (orange) and
model 2 (blue) as spins in layers 3, 4, 7, and 8 deviate from the
δ = 0◦ axis, i.e., the applied field direction. The other spins are
either ±68◦ from the applied field direction, as determined by the Ri-
etveld refined structures. Two values for |J2/J1| are reported, where
solid lines represent |J2/J1| = 0.56 (full model), and dashed lines
represent |J2/J1| = 0.36 (reduced model). In both cases, the energy
increases linearly as the spins deviate from the applied field direc-
tion for “model 2,” whereas the total energy initially decreases for
“model 1.”

described by the equations

Model 1 : E = |J2/J1| cos(68◦ + δ) − cos(2δ), (1)

Model 2 : E = |J2/J1| cos(68◦ − δ) − cos(0◦), (2)

where J1 is the ferromagnetic exchange between layers within
the nuclear unit cell, and J2 is the antiferromagnetic exchange
between layers on either side of the nuclear unit-cell bound-
ary, and the energy is in units of J1. Only nearest-neighbor
interlayer exchange has been included in the calculation. The
first term is the energy gain that results from spins connected
by the J2 exchange not being antiparallel. The second term is
the reduction in energy due to the relative alignment between
spins 3 and 4 (or 7 and 8), and it can be seen that the maximum
reduction in energy is realized when the spins are ferromag-
netically coupled.

Although the zero-field magnetic structure in YMn6Sn6

has been solved for quite some time [17], the polarized neu-
tron diffraction performed here provides some much needed
information in the study of this intriguing material. For ex-
ample, helical and spin-density wave magnetic structures can
often be difficult to distinguish from one another using unpo-
larized neutrons in a diffraction experiment (whether single
crystal or powder diffraction). Even the addition of polar-
ized neutrons with uniaxial polarization analysis may prove
unhelpful depending on the scattering geometry with respect
to the magnetic structure or if multiple helical domains are
evenly populated. Here, polarized neutron diffraction results
were able to show that the magnetic structure is helical and
that the chiral domains are not evenly populated.

In a uniaxial polarized neutron experiment, there are four
neutron scattering cross sections: I++, I+−, I−+, and I−−.
Nuclear coherent scattering never causes the reversal of the
spin and hence is only observed in the I++ and I−− cross sec-

tions. When the scattering vector, Q, is parallel to the neutron
polarization, P, all nuclear scattering is in the non-spin-flip
channels, I++ or I−−, and all magnetic scattering is in the
spin-flip channels, I+− or I−+, and hence can be distinguished
unambiguously. Following the polarization analysis theory in
Ref. [28], the scattering intensities I±∓ are proportional to the
spin-dependent cross sections:

dσ

d�±∓
=

∑
i, j

eiκ·(ri−r j ) pi p
∗
j[S⊥i · S⊥ j ∓ iZ̃ · (S⊥i × S∗

⊥ j )],

(3)

where the sum is over all magnetic atoms in the unit cell,
p = (|r0|/2)gf (Q) [r0 is the neutron magnetic moment mul-
tiplied by the classical electron radius, g is the Landé factor,
and f (Q) is the magnetic form factor], Si are the magnetic
moment vectors, and Z̃ is a unit vector in the direction of the
incoming neutron polarization. The last term in Eq. (3) is null
for spin-density waves and other collinear structures. In fact,
there is no way to obtain unequal I+− and I−+ intensities on
a magnetic Bragg peak without imaginary components in the
basis vectors, which result in a spiral-type structure. Typically,
for a centrosymmetric crystal, chiral domains will be present
in equal populations because there is no energetic reason to
favor one over the other. The scattering from the different
domains then would result in equal I+− and I−+ intensities.
This is in contrast to single domain chiral crystals, where
the sense (or sign) of the Dzyaloshinskii-Moriya interaction,
if present, will pick out a single chiral domain, resulting in
unequal I+− and I−+ intensities.

The results of the polarized neutron study point towards
the ability to manipulate or switch the chirality. Control of
magnetic properties with an electric current or electric field
has been well documented in multiferroics, materials exhibit-
ing the magnetoelectric effect, and materials with broken
inversion crystal symmetry. What can result in unequal spin-
flip channel populations for centrosymmetric crystals is some
external force to pick out a favorable chiral domain. For ex-
ample, the simultaneous application of a magnetic field and
electric current density was shown to control the chirality in
MnP via spin transfer torque [29]. The chiral inequality for the
YMn6Sn6 sample used in this paper was surprising because
no such external perturbation was intentionally applied. Strain
or stress imparted onto the sample via mounting cannot be
completely ruled out given that small uniaxial pressures can
induce the anisotropy needed for preferential helical domains
[30,31]. Since the established crystal structure is achiral, the
observation of a preferential chiral domain requires additional
breaking of the z → −z mirror symmetry. For instance, this
symmetry breaking may be affected through a particular de-
fect ordering, or through asymmetric surface termination. In
any event, this strong chirality not warranted by the underly-
ing crystal structure is very interesting and deserves further
investigation.

V. SUMMARY

A magnetic field applied in the ab plane of YMn6Sn6

leads to an extensive field-temperature phase diagram. This
is owing to the delicate balance of competing interplane
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exchange interactions between the magnetic kagome lattice
layers. The neutron diffraction results presented here solve
the magnetic structures for two of the previously identified
phases. These are the commensurate CAF, appearing around
room temperature and low fields, and the commensurate FL
structure, which appears at low temperatures and high fields.
Our paper also revealed that an additional incommensurate
magnetic structure exists between the FL and FF phases,
which explains the “phase I” region previously identified in
ac susceptibility measurements. Two incommensurate wave
vectors appear throughout many regions of the phase diagram,
including at zero field, where both magnetic structures are the
double-flat spiral, but with slightly differing periodicities. Via
our high-resolution synchrotron powder diffraction measure-
ments, we were able to show that the presence of the two wave
vectors is likely an intrinsic feature of YMn6Sn6. Polarized
neutron diffraction measurements showed that the zero-field
incommensurate magnetic structures have preferential, but
opposite, chiralities, which is a phenomenon usually reserved
for lattices with broken inversion symmetry.
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APPENDIX: STRUCTURE FACTOR CALCULATIONS

To elucidate any differences between the low-temperature,
high-field models (model 1 and model 2), we calculated
the magnetic structure factor, FM, for various reflections in
the (H, H, L) scattering plane. The geometry for calculating
the models is shown in Fig. 11, where n (n = 1, 2, 3, . . . , 8)
refers to a layer of Mn moments in the magnetic unit cell (a,
b, 4c), and the n = 1 layer is that which is closest to the c-axis
origin (above that layer is n = 2, etc.). The vectors, Sn, give
the magnitude and direction of spins in layer n. All spins can
be defined by S1 and S3, which define the angles γ and δ,
respectively. Because neutrons are only sensitive to the com-
ponent of spin which is perpendicular to the scattering vector,
S⊥, we must also define the scattering vector in the same
coordinate system as Q = Q̂e, where ê = exx̂ + eŷy + eẑz is
a unit vector parallel to the scattering vector. In the (H, H, L)
scattering geometry, ey is always zero, and we have assumed
moments are in the ab plane so that Sz,n = 0. S⊥ can then be
written as

S⊥,n = Sn − ê(̂e · Sn)

= Sx,n
(
1 − e2

x

)̂
x + Sy,n̂y − exezSx,n̂z. (A1)

FIG. 11. The coordinate system used in calculating the magnetic
structure factors, where x̂, ŷ, and ẑ are unit vectors which define a
right-handed Cartesian coordinate system. The vector, �Sn, is the spin
magnitude and direction for Mn moments in layer n, and γ and δ are
the values defined by the angle that �Sn makes with the applied field
direction, �H.

In the following structure factor calculations, L is with
respect to the magnetic unit cell (divide by 4 to get the equiv-
alent reflection in the nuclear unit cell), and the prefactor is
p = (|r0|/2)gf (Q), where r0 is the neutron magnetic moment
multiplied by the classical electron radius, g is the Landé
factor, and f (Q) is the magnetic form factor. The magnetic

FIG. 12. Results for model 2 of the low-temperature, high-
field fanlike phase with wave vectors, (0, 0, 0), (0, 0, 0.25), and
(0, 0, 0.5). Data were taken at 1.5 K and 7.8 T in the (H, H, L)
scattering plane. (a) The observed vs calculated magnetic structure
factor squared in barn/formula unit (f.u.). The calculated result was
obtained via Rietveld refinement for the magnetic intensity only.
The inset shows the refined magnetic structure in the ab plane for
1.5 K and 7.8 T, where γ = 69(3)◦ and δ = 12(6)◦. Only Mn ions
are shown (gray spheres), and the orange and blue arrows represent
the two different angle magnitudes, γ and δ, respectively, which
define the moment directions away from the applied field direction.
(b) The magnetic unit cell, where the dashed lines define the size of
the nuclear unit cell.
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structure factor for all (H, H, 0) peaks for both models is

|FM|2H,H,0 = 144|p|2(Sy,1 + Sy,3)2. (A2)

The magnetic structure factor for (H, H, L) peaks with L =
2m [where m = 1, 2, 3, . . ., and θ (x) is the Heaviside step

function] for both models is

|FM|2H,H,L=2m = 144|p|2{θ [(−1)m] − (−1m) sin2 (4πmrc,1)} [Sy,1 + (−1)mSy,3]2
. (A3)

The magnetic structure factor for (H, H, L) peaks with L = 2m + 1 for model 1 is

|FM|2H,H,L=2m+1 = 72|p|2[(1 − e2
x

)2 + e2
xe2

z

]{
S2

x,1 + S2
x,3 − 2Sx,1Sx,3 cos [4π (2m + 1)rc,1]

+ (−1)m
(
S2

x,1 − S2
x,3

)
sin [4π (2m + 1)rc,1]

}
. (A4)

The magnetic structure factor for (H, H, L) peaks with L = 2m + 1 for model 2 is

|FM|2H,H,L=2m+1 = 72|p|2[(1 − e2
x

)2 + e2
xe2

z

](
S2

x,1 + S2
x,3

){1 + (−1)m sin [4π (2m + 1)rc,1]}. (A5)

The structure factors for both models have the same depen-
dency on the Sy components, and only the Sy components, for
(H, H, 0) and (H, H, L = 2m) peaks. These include the peaks
coincident with the nuclear Bragg peaks and magnetic Bragg
peaks at L = 0.5 of the nuclear unit cell. The Sy components
are those which are along the applied field direction. The
models differ for the structure factors with L = 0.25 or 0.75
of the nuclear unit cell. This can be seen by Eqs. (A4) and
(A5). The structure factors for these peaks are only dependent

on the Sx components of the spins, and it can be seen why
the model 1 and model 2 refinements give practically the
same goodness of fit: as Sx,3 → 0, which equivalently means
δ → 0, Eqs. (A4) and (A5) converge. The refined δ for model
1 is zero within error, and δ for model 2 is 12◦ with a large
standard deviation of ±6◦. Both the moment size and angle,
γ (defined by �S1), are the same within error for model 1
and model 2. The model 2 refinement results are shown in
Fig. 12.
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