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QUANTUM MATERIALS

Topology and correlations on the kagome lattice
Both a Dirac band and a flat band — signatures of topology and correlation — are found in a prototypical 
antiferromagnetic kagome lattice compound FeSn.

Nirmal J. Ghimire and Igor I. Mazin

In the late 1980s it was realized, building on 
earlier work1, that the antiferromagnetic 
kagome lattice may be the most frustrated 

two-dimensional (2D) magnetic system that 
one can construct. In fact, it was thought 
that it may never order at any temperature, 
and it was later realized2 that this is not just 
a disordered paramagnet, but a new state 
called a spin liquid3. For a long time, it was 
this potential for hosting a quantum spin 
liquid that drove interest in the kagome 
lattice. However, more recently4–6 it was 
noted that the kagome lattice may be a host 
to both topologically protected bands as 
well as non-dispersing or flat bands. Now, 
writing in Nature Materials, Mingu Kang 
and colleagues7 observed both Dirac bands 
and flat bands in a three-dimensional (3D) 
antiferromagnetic kagome lattice FeSn.

Structurally, FeSn contains two 
alternating layers labelled K and S, as shown 
in Fig. 1a. The K layer consists of a kagome 
net of Fe atoms (Fig. 1b) that alternates with 
the Sn-containing S layer (Fig. 1c) vertically 
along the c axis. As such, the neighbouring 
kagome layers maintain a large separation 
(as there is only one K layer in the unit 
cell), making FeSn close to a 2D kagome 
lattice, despite its 3D crystal structure. 
Such a layered structure also allowed Kang 
and colleagues to exfoliate FeSn so as to 
expose the S and K layers individually and 
study their contributions to the electronic 
structure by means of a surface-sensitive 
probe — angle-resolved photoemission 
spectroscopy (ARPES). Additionally, the 
collinear antiferromagnetic stacking of 
the ferromagnetic kagome Fe planes made 
the interpretation of the measurement 
much more straightforward than in some 
other similar Fe–Sn compounds that have 
complicated magnetic spirals.

The Fermi surface mapped out by 
the ARPES experiment on the kagome 
termination (K layer) showed a circular 
electron pocket at the corner of the 
hexagonal Brillouin zone (K point). Such a 
Fermi surface is ascribed to the Dirac bands 
predicted by tight-binding calculations 
for the kagome lattice (that the authors 
confirmed by full ab initio calculations). 
Indeed, the energy–momentum dispersion 

measured across the K point showed the 
crossing of linearly dispersive bands slightly 
(0.43 eV) below the Fermi level, forming a 
Dirac cone (DC1) and establishing the Dirac 
fermiology of the kagome-derived bands. 
A similar experiment carried out on the Sn 
termination (S layer) showed two electron 
pockets at the K point — a circular pocket 
arising from the DC1, and a triangular 
pocket arising from a new Dirac cone 
DC2 with crossing at about 0.31 eV below 
the Fermi level. The inequivalence of the 
electronic spectra from the two terminations 
allowed the team to establish the bulk and 
surface origin of DC1 and DC2, respectively. 
Additionally, the observation that 
neither of the Dirac cones has shown any 
appreciable dispersion in the third direction 
(perpendicular to the planes) revealed the 
2D nature of both of the Dirac cones.

Kang and colleagues also utilized magneto-
quantum oscillation phenomena to access 
different properties of the Fermi surface. 
This is a bulk probe and measures the areas 
of extremal Fermi surface cross-sections, 
perpendicular to the external magnetic field. 
Three such measured cross-sections were 
insensitive to the magnetic field direction, 
typical for a quasi-isotropic closed 3D Fermi 
surface pocket, while at least one cross-section 

showed an angular dependence characteristic 
of 2D bands. A more detailed analysis allowed 
the researchers to relate this cross-section to 
DC1, whereas no cross-section corresponding 
to DC2 was found in this bulk probe, further 
confirming the bulk and surface nature of 
DC1 and DC2, respectively.

Arguably the most surprising finding was 
the observation, by ARPES, of an extremely 
flat band about 0.23 eV below the Fermi 
level. Indeed, first of all, in real life (and in 
ab initio calculations) this band is liable to 
acquire dispersion, typically of the order 
of at least several tenths of an electronvolt. 
Second, as shown schematically in Fig. 1d, 
the ‘classical’ kagome flat band is situated well 
above the Dirac points. Indeed, the ab initio 
calculation reported by Kang et al. fully agree 
with this reasoning. Their calculations do 
not show any flat or low-dispersion feature 
below the Fermi level. So, as tempting as it 
is to identify the observed flat band with the 
famous flat band in the single-orbital nearest-
neighbour kagome model, it is probably not 
the case. The nature of this band, showing 
zero dispersion within the experimental 
resolution, therefore remains a mystery.

Dirac bands, in different context,  
have been observed in numerous 2D  
and 3D materials. To some extent, this 
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Fig. 1 | Crystal and electronic structure of a kagome lattice. a, Structure of FeSn. b, Kagome lattice 
formed by Fe atoms. c, Layer of Sn atoms. d, Schematic of electronic structure as may be measured using 
angle-resolved photoemission (ArPES). FB, flat band; DC, Dirac cone.
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is thanks to the fact that they enjoy 
considerable topological protection. A 
topological flat band is another entity with 
promising prospects for the realization 
of the fractional quantum Hall effect8–11. 
However, coexisting Dirac and flat bands 
in magnetic materials — as identified by 
Kang and colleagues — are much more 
rare, and in many ways more interesting. 
Flat bands, at least the flat bands of the type 
known in kagome Hamiltonians (Fig. 1d), 
are parametric, rather than topological, 
and therefore difficult to observe. In this 

regard, Kang and colleagues’ work provides 
new prospects for the field of correlated 
topological materials. ❐
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