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‘We have performed ab initio calculations for the NMR relaxation rate in doped fullerenes and find
that the spin-dipolar relaxation mechanism dominates the orbital and Fermi-contact mechanisms.
The reason is that the states at the Fermi level are ppr-like so that the carbon orbitals have almost
exclusively radial p character. With the values 7.2 and 8.1 states /(eV spin molecule) for the bare
densities of states at the Fermi level for, respectively, KsCgo and Rb3zCeo, plus the ab initio value
1.7 eVspin C atom for the effective Stoner exchange parameter, good agreement is obtained with

the experimental relaxation rates.

The discovery of superconductivity in A3Cgp has stim-
ulated enormous interest in the electronic structure of
these molecular crystals.! For the superconductivity, one
of the most important parameters is the value N of
the electronic density of states at the Fermi level in
the normal state. Several groups have performed local-
density-functional-approximation (LDA) calculations of
this quantity and, for ordered K3Cgo, the most reli-
able results scatter between 6.5 and 9.5 states/[eV spin
(K3Cgo molecule)].2® For Rb3Cgp, the calculated value
is about 20% larger due to the increased lattice con-
stant. But how reliable are such calculations? Electronic
correlation effects may be important, orientational or-
der may be lacking even at low temperatures, and the
significant scatter within the LDA calculations for the
same structure is due to basis-set incompleteness for the
long intermolecular distances found in A3Cgg. Hence, the
importance of experimental determinations. For A3Cgg,
measurements of the electronic specific-heat coefficient
and magnetic susceptibility do not give much information
about N because the former is affected by the presence of
soft, rotational phonons,* and the latter contains a large
core contribution plus a Landau diamagnetic term.5¢

Another possibility is provided by the NMR spin-
lattice relaxation rate 1/ T;. Measurements of 3C NMR
in the normal state have been reported by Tycko et al.,”
who obtained 1/(T'T;) = 0.0061/(K sec) for K3Cgo, and
by Wong et al® obtaining 1/(TT;) = 0.0047/(K sec).
These authors interpreted their relaxation rates in terms
of the Fermi-contact interaction, which is proportional
to the square of the electronic density of states at
the Fermi level and at the carbon nucleus, that is, to
[¥(r = 0)|* N2, In order to extract N, Tycko et al.® es-
timated |(0)|> from Hartree-Fock calculations of the
probability density at a carbon nucleus, averaged over
the three ¢, orbitals, and arrived at the rather large
values: N~17 and 22 states/(eV spinmolecule) for, re-
spectively, K3Cgp and RbsCgp. It was noticed, that
these relaxation rates are considerably larger than ex-
pected from the Fermi-contact mechanism and the mea-
sured Knight shifts. Other relaxation mechanisms may
therefore be important. In fact, both the dipolar and
the orbital mechanisms, which are mainly determined by
the p, rather than the s, partial-wave projection of the
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density of states, might be important in A3Cgy whose
conduction band is ppn-like and formed by carbon p,. or-
bitals pointing radially outwards from the nearly spher-
ical molecule. In such a case, the s partial-wave pro-
jection may be thought of as arising from the expansion
around the nucleus of the tails of the p orbitals centered
on the neighboring atoms (that is, through rehybridiza-
tion, in the terminology of quantum chemistry). If, fur-
thermore, the radius of the molecule as large compared
with the intramolecular bond length (R/b = 2.48 in Cgp),
the s-projection would vanish. In that case, not only the
Fermi contact, but also the orbital mechanism would be
ineffective, because the orbital angular momentum would
be quenched.

In this paper we evaluate the relaxation rates for K3Cego
and Rb3Cgo using an ab initio LDA calculation. We
shall find that the spin-dipolar relaxation rate is about
five times larger than the orbital rate, and nearly twenty
times larger than the Fermi-contact rate. Still, our calcu-
lated total rates agree well with those measured,>” thus
indicating that the calculated LDA density of states is
basically correct.

Since the symmetry around a carbon nucleus in A3Cgg
is low, the common technique for computing the NMR
relaxation rate in a cubic or hexagonal metal (see, e.g.,
Ref. 9) cannot be applied. Moreover, since there seems
to be a need for making the numerics transparent, we
start from basic principles!® and specify the details: The
relaxation is caused by the dipole interaction -p-H be-
tween the nuclear magnetic moment pu=(u/I)I and the
hyperfine field H produced at the site of the nucleus by
the conduction electrons. For the 3C nucleus, the spin is
I = % and p=0.702p,, with p,=eh/2mpc=y,k/2 being
the nuclear magneton. The interaction may be split in
three terms: the interaction with the electronic orbital
moment, the dipole interaction with the electronic spin,
and the Fermi-contact interaction:

H=H°+H¢+HF

_ 23 [5314_5—3:3@-5) _ 87rs:;$(r)] .

Here, we have used the one-electron approximation and
B = 1836 ki, = vehi/2 is the Bohr magneton. r =rf and
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hl are, respectively, the position and angular momen-
tum operators of the electron with respect to the site of
the nucleus and fis is the electronic spin operator. In
addition to the terms mentioned, there could be a con-
tact term due to spin polarization of the inner s-shell
electrons, as well as an interaction between the nuclear
quadrupole moment and the electric field gradient. These
latter terms vanish for A3Cgo because the 13C nucleus
has no quadrupole moment, and the former one is small
because the 1s and the 2s shells polarize in the opposite
direction.! ' -

After the applied magnetic field is turned off, the nu-
clear magnetization relaxes with a rate which is twice the
transition probability of a nuclear spin flip and is there-
fore given in terms of the Fermi golden rule as

%1 - 4% Z Fle)[1 — few)]b(ew — ex)

k,k’
x (kT |2p1 - H|K' 1)[*.

Here, the electronic states are [k), with k being a joint
label for the Bloch vector and a band index n, which
takes two values for each band in case of Kramers de-
generacy. The electronic states are normalized to unity
in a cell volume V. The energy bands are €, with the
energy zero chosen at the Fermi level. Expansion of the
Fermi functions, use of I- H =L H, + {(I, H_+1_H,),
and subsequent integration over the nuclear spin variable,
yields

1 _ 4rksT o 3 6(ex)8ewe) | (k | H-| K2

/A h e
Introducing now the density-of-states matrix at the Fermi
level (k|N|k') = 6(ex)dki, the relaxation rate may be
expressed as

1 Ark B

TT, &
which is independent of the representation chosen for
the electronic variables; H and N are electronic opera-
tors. Since the samples are polycrystalline, we have to

average over all crystallographic directions, or over all
]

u?TrH_NH,N, (1)

1 8 —3\ -
§Tr [Hole = '562 Z <7' 3>)‘>‘ <7' 3>u [um |Nz\u,lm|2
AL
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directions of the applied field. This is most conveniently
done using tensor notation, that is, using the spheri-
cal vector components H_; = H_/+/2, Hy = H,, and
Hii=—H,/V2. As a result

1 8mkp 5 1 <, v
= h Trgug—;l(—) H_,NH,N
= (8kp/R)u*Tx [HN|? /3, (2)

where the numerical value of the relevant prefactor is
(8mkp/R)(uB)? = (0.063/K sec)(aj eV)?, &)

and ag is the Bohr radius.

In order to evaluate Eq. (2), we express the
Bloch states as partial-wave expansions around the
site of the nucleus!? and, assuming that the one-
electron potential has spherical symmetry in the
relevant range, these expansions become |ikm,) =
2 im Pil€ik, T)Yim (F)Cim,ik|ms), where % labels the para-
magnetic bands, k is the Bloch vector, and m, = =1.
The solution at energy ¢ of the radial Schroedinger equa-
tion is ¢i(e,7), and at the Fermi energy, it is wi(r).
For a paramagnet, and neglecting the spin-orbit cou-
pling, the density-of-states matrix is diagonal in spin,
ie., NLm,,L'm: = NLL'(Sm,,m; with L = Im. Here, the
orbital part,

|4
NLL’ = W Z/dSk CL’iks(Cik)Ci"ik, (4)
i

is the carbon on-site density-of-states matrix per spin and
at the Fermi level.

The orbital field —281/r® is diagonal in spin,
and the |H°N|® contribution to the relaxation rate
(2) is therefore calculated by first performing the
trace (Tr=Tr,Tr,) over spin, yielding: Tr,1 =
2. Since the matrix elements in orbital space are
(LIa|L) = Epbsmm/T—m) (Fm+1) /2,
(Llo| L) = 61,16pm,m'm, and (L |l;| L'} =
—61,061,m—m /(L + m) (I —m + 1) /2, the orbital contri-
bution is readily found to be . :

VA=) A+ o+ D) —m)(+m+ DReNxpimNigmryain),  (5)

where
(r“3>u, —E/o oi(ryr 3y (ryridr (6)

and A = Au. Only non-s terms are seen to contribute.
Moreover, if at the Fermi level, there were only m=0 par-
tial waves, the orbital relaxation mechanism would van-
ish. This would be the case if the curvature of the carbon
molecule were very large and the conduction states had
pure ppr character [provided that the high—/ components
can be neglected in the range picked up in the integral

(6)l.

| ,
For the dipole field, we first factorize the space and
spin variables according to

8y — 3F, P -5 =8 Z (2w, 10" | 1) Yau(£)s,-, )

w]<2
te'<1

where (jimi,jama | jm) are the vector-coupling coef-
ficients. In order to evaluate the |H*N|” contribution
to the relaxation rate, we substitute (7) in (2) and then
perform the trace over spin: Tres_,8, = (—)”8,,/2.
Since 3, (2w, 1(v —w) | 1v)? = £ for |w| < 2, and zero
otherwise, we find that
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1 Tr B |2 167 2Ty ng (%) Y2w (r) curacy of the present paper, it was sufficient to con-
3 l l '6 y = sider the fcc unidirectional crystal structure (space-group

Evaluation of the trace in the partlal-wave representation
yields the following result for the dipole relaxation rate:

1
S N = 4 Y s
AA' LL/ 3 5
x(r~ >AX canNaL
X (’r'—3>", CZLL’NLIA" (8)
Here CLLI A/ 2k+1 flflcm m' YL (r)YLI(r)dZA =

(=)ym—m'ck, . are the Gaunt coefficients, which for [,/ <
2 have nonvanishing pp, sd, and dd components. These,
then couple Npp, Ngp, Npd, Ngsy, Ngg, and Ngq. For the
51mp1e pp7r model, Ny im = 6316116,00m0Nz2, and since
Clo 10 = 5, we obtain

4 ' 2
§Tr |HeN|? = g2 (g (r™) Nu) . (9)

For the Fermi-contact mechanism, the result is

2 (som)

since Trgs? = ? With the notation used in the introduc-

tion, NV |¢(0)|" = N,s392(0)/4n. The Fermi-contact term
vanishes for the ppm model.

The cross terms in the relaxation rate (2) all va.msh
the HN-H%N and H°N-HF N terms, because Tr,s =
and the HF N-HN term, because s and N commute and
because Tr,s - [s—3#(f - 8)] = Trs[s%2 — 3(s - £)?] = 0. The
relaxation rate (2) for a polycrystal is thus given by the
sum of the orbital (5 ), the dipolar (8), and the Fermi-
contact (10) terms.

For our ppm model, the relaxation rate is entzrely dzpo-
lar and given by Eq. (0) Using in thls expression the free
carbon atom value, (r=3) ~~ 1. Tay 3, and N, ~(8/60)
states/(eV spin C atom) as a representative value for the
LDA density of states in K3Cgp, we find that the re-
laxation rate for the ppr model is 1/(TT;) ~0.002/(K
sec), which is about one third the experimental low-
tem%erature values of 0.0061 (Ref. 7) and 0.0047/(K
sec :

I)n order to obtain a more accurate estimate, we
have performed LDA linear-muffin-tin-orbital (LMTO)
method in the atomic-spheres-approximation (Ref. 13)
calculations for K3Csp (a=14.245 A) and Rbz C g
(a=14.420 A), as described in Refs. 3 and 14. A
fairly complete basis set, consisting of 1206 LMTOs per
molecule contracted to 317 LMTOs per molecule, was
used. Moreover, in order to obtain accurate wave func-
tions at the Fermi level the linear partial-wave expan-
sions were performed around ¢, = e€p. For the ac-

"n |BFN|* = (10)

Fm = 3). The Brillouin-zone integrations were per-
formed with the linear tetrahedron method and a mesh of
396 irreducible k points. We found that N =9.0 and 10.5
states/(eV spin molecule) for K3Cgp and RbgCgp, respec-
tively. The coefficients cip,, ik used in Eq. (4) are defined
so that the carbon partial waves ¢;(¢, ) be normalized in
a sphere of radius s¢g = 1.60a. Of course, the products
like Nyz? do not depend on the choice of the radius.
The convergence of the sums over angular momenta in
expressions (5) and (8) for the orbital and dipolar ma-
trix elements is governed by the product of the radial
integrals (6) and the matrix elements of the density of
states. For K3Cgg, we find that ((ag/r)3)pp = 3.71 is
much larger than {(ao/r)3)sq = 0.47 and {(ao/r)%)aqs =
0.54. Since also Np, =6.5 is much larger than Ngz=
0.25, and N,,=0.05 states/(eV spin60 C atom), where
Nu = 3, Nim,im, the ! convergence appears to be so

_ good that we can truncate after the d waves. Since the

above-mentioned radial integrals were, in fact, truncated
outside the *C-centered sphere of radius s¢, this good
convergence merely concerns the integrals inside the cen-
tral sphere.!® The integrals outside this sphere were not
taken into account,!® but we estimate the error associ-
ated herewith to be less than 5%.

With this procedure, we obtained the contributions to
the relaxation rate given in Table I. The dipole mecha-
nism is seen to dominate and the Fermi-contact mecha-
nism is the least important. The relaxation rates were
averaged over three kinds of carbon atoms, but the vari-
ation of the total rate was less than 10%, due to the
dominance of N,,. The relative variation of the Fermi-
contact rate was larger because the small |1/1(0)|4
caused by the tails of the radial p orbitals and there-
fore sensitive to overlap from the neighboring molecule
[1/(TTF) =0.00022, 0.00028, and 0.00039/(K sec) for,
respectively, the top-hexagon-edge atoms, the contact
atoms, and the remaining atoms]. The contributions
from the d partial waves to the dipole and orbital re-
laxation rates were small, at the order of 1%.

The calculated dipole rate, 0.0054/(K sec), given in
Table I is essentially what one obtains [0.0065/(K sec)]
from the ppm model (9) using for N, the calculated
Npp =6.5 states/(eV spin 60 C atom) and the calculated
((ao/r)3)pp=3.71. What increases the dipole rate from
the one previously estimated by a factor 3, is the increase
of the radial integral due to the compression of the wave
function in the molecule (“renormalized-atom effect”).
The Fermi-contact rate is very small due to the small-
ness of N,;=0.05 states/(eV spin60 C atom)~ Np,/150.
This ratio (150) is particularly large for the t1, orbital,!”
and is essentially a geometrical factor for a given orbital.
The calculated value of ady2(0) =81 is more than twice
the value obtained from the free-atom 2p orbital, whose

TABLE I. Contributions to (T71)~* [107*/(K sec)].

| Fermi Orbital Dipole Total Expt. (Ref. 5) Expt. (Ref. 7)
K3Ceo 3 9 54 66 47 61
RbaCso 4 13 75 92 . 100




12 376

energy is about 20 eV below the Fermi level.

The total relaxation rates, 0.0066 and 0.0092/(K sec),
calculated for, respectively, K3Cgo and Rb3zCgo agree
almost too well with the rates 0.0061/(Ksec) and
0.0100/(K sec) measured at temperatures slightly above
T..” An independent measurement for K3Cgo at 20 K
yields 0.0047/(K sec).®

The LDA density of states does not include exchange-
correlation enhancement. This we have estimated from
the splitting of the bands in the I" point due to an external
magnetic field, and the result for the effective Stoner ex-
change parameter is I = AE/m = 1.7 eVspin C atom, in
good agreement with the renormalized-atom value of 2.3
eV spin C atom sphere® (note that the first value should
be used with the total density of states, while the sec-
ond should be used with the density of states projected
onto a carbon sphere). For K3Cgo and Rb3Cgg, the den-
sities of states used for the relaxation rate should thus
be enhanced by factors of (1 — NI)~! =1.34 and 1.42
(NI =0.26 and 0.30), respectively. The good agreement
found with the experiments thus suggest that it is the
enhanced densities of states which should take the val-
ues N =9.0 and 10.5 states/(eV spinmolecule) for K3C
so and Rb3Cgo. The corresponding bare LDA values

V. P. ANTROPOV et al. 47

should have been 7.2 and 8.1 states/(eV spin molecule),
that is, 20% lower. This still lies within the range of
LDA calculations? for the unidirectional structure. A
physical, rather than computational, source of such an
overestimation could be the effect of orientational dis-
order which would tend to smear out the peaks in the
density-of-states function N(e).

In conclusion, we have performed ab initio LDA calcu-
lations for the NMR relaxation rate in doped fullerenes.
We find that the spin-dipolar relaxation mechanism dom-
inates the orbital and Fermi-contact mechanisms, be-
cause the states at the Fermi level are ppm-like so that the
carbon orbitals have almost exclusively radial p charac-
ter. With the values 7.2 and 8.1 states/(eV spin molecule)
for the bare densities of states at the Fermi level for
K3Cgp and Rb3Cgp, plus the value 1.7 eVspinC atom
for the effective Stoner exchange parameter, good agree-
ment is obtained with the experimental relaxation rates.
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