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Andreev reflection at the interface between a ferromagnet and a superconductor has become a
foundation of a versatile new technique of measuring the spin polarization of magnetic materials. In
this paper we will briefly outline a general theory of Andreev reflection for spin-polarized systems
and arbitrary Fermi surface in two limiting cases of ballistic and diffusive transport.

Andreev reflection (AR) at the interface between a su-
perconductor and a ferromagnet has been attracting sig-
nificant interest (e.g., Refs.1–5) as the foundation of a
new technique1 to measure the spin polarization in fer-
romagnets. The technique is based on the idea6 that the
Andreev process is forbidden in half-metals, where only
electrons with one spin direction are present at the Fermi
level. Correspondingly, in a ferromagnet the Andreev
current is partially suppressed, as not all of the conduc-
tance channels (CC) are “open” for AR; some channels
exist in one spin direction, but not in the other, and thus
do not contribute to the Andreev current.

Building a stable and reliable technique for probing
spin polarization based on AR is not always straightfor-
ward and requires a quantitative theory. Such a theory
should take into account the following effects: (1) dif-
ferent number of CC for different spins, (2) finite inter-
face resistance, (3) band structure effects (deviation of
the Fermi surface from spherical and the band disper-
sion from parabolic), (4) effect of an evanescent Andreev
hole on quasiparticle current in half-metallic CC, and (5)
diffusive transport in the ferromagnet, if needed.

The existing works treat only some of these questions.
The first one was taken care of in Ref.6. The second one
was answered in part in the seminal paper of Blonder,
Tinkham and Klapwijk7, but only for “nonmagnetic”
channels (the CC that exist in both spin directions). The
third one was dealt with in Ref.3, but only in the ballis-
tic limit. The fourth one was mentioned in Refs.2, but
not investigated quantitatively. Finally, the last one was
briefly touched upon in Ref.5, but left in the form that
could not be directly applied to the experiment. Some
aspects of diffusive transport and AR were addressed in
Refs.4.

In this paper, we address all these issues and present a
compendium of formulas needed for a quantitative anal-
ysis of superconductor-ferromagnet AR. We start with
a ballistic contact, whose size is smaller than the mean
free path of electrons in the bulk. All electrons with a
positive projection of their velocity onto the current di-
rection, x, pass through the contact. Conductance of a
ballistic contact is8,3

G =
e2

h̄

1
2
〈N |vx|〉A, (1)

where A is the contact area, N is the volume density of

electronic states at the Fermi level, v is the Fermi veloc-
ity, and brackets denote Fermi surface averaging:

1
2
〈N |vx|〉 =

1
(2π)3

∑
iσ

∫
dSF
|vkiσ|

vkiσ,x. (2)

Integration and summations are over the states with
vkiσ,x > 0, and Ω is the unit cell volume. k, i, and σ de-
note the quasimomentum, the band index, and the elec-
tron spin, respectively. It is instructive to look at Eq.2
from the “mesoscopic” perspective, using as a starting
point the Landauer formula for the conductance of a sin-
gle electron9, G0 = e2/h. The total conductance is equal
to G0 times the number of CC, Ncc, which is defined as
the number of electrons that can pass through the con-
tact. If the translational symmetry in the interface plane
is not violated, then the quasimomentum in this plane,
k‖, is conserved, and Ncc is given by the total area of the
contact times the density of the two-dimensional quasi-
momenta. The latter is Sx/(2π)2, where Sx is the area of
the projection of the bulk Fermi surface onto the contact
plane. Thus G = e2

h
SxA
(2π)2 ≡ e2

h̄
1
2 〈N |vx|〉A .

This is an important result. To the best of our knowl-
edge, Walter Harrison was the first to spell it out in
196110, and there is no lack of the recent paper mani-
festing proper understanding of this issue (e.g., Ref.11).
However, till now many otherwise correct and useful pa-
per erroneously identify the number of conductivity chan-
nels and the density of states at the Fermi level, that is,

Ncc ∝ N(EF ) =
1

(2π)3

∑
iσ

∫
dSF
|vkiσ|

. (3)

incorrect!

Let us consider now the opposite limit, when the con-
tact size is much larger than the mean free path. The
conductance is then given by the the bulk conductivity,
which is known from the Bloch-Boltzmann theory:

σ = (e2/h̄)
〈
Nv2

x

〉
τ, (4)

where τ is the relaxation time. The Ohm’s law requires
that the conductance G = σA/L, where L is the length of
the disordered region. This can be reproduced within the
“mesoscopic” approach9, taking into account that now
each CC, that is, each separate k‖ state, has a finite

1



probability for an electron to get through the disordered
region, 0 ≤ T ≤ 1, and

G =
e2

h

∑
κ

Tκ =
e2

h

∫ ∞
λ

dζP (ζ)/ cosh2(L/ζ), (5)

where κ ≡ {k‖, i, σ}. Tκ is conveniently defined in terms
of the probability distribution, P (ζ), of the localization
lengths, ζ. The cutoff λ should be of the order of the
mean free path l; in fact, λ = 2l9. (the factor 2 ac-
counts for two possible directions of the electron veloc-
ity). Ohm’s law requires that G ∝ 1/L, thus the behavior
of P (ζ) at large ζ must be const/ζ2. Normalization re-
quires that const = λNcc. Substituting that in Eq.5, we
get

G =
e2

h

∫ ∞
λ

λNccdζ

ζ2 cosh2(L/ζ).
≈ e2λNcc

hL

=
e2

h̄

Aλ

ΩL

∑
iσ

∫
dSF
|vκ|

vκ,x. (6)

In the constant τ approximation, used in Eq.4, the aver-
age mean free path l =

∑
iσ

∫
dSF
|vκ| v

2
κ,xτ/

∑
iσ

∫
dSF
|vκ| vκ,x,

thus λκ = 2vκxτ. Thus

〈G〉L =
e2

h̄

A

ΩL

∑
iσ

∫
2dSF
|vκ|

v2
κ,xτ =

e2

h̄

〈
Nv2

x

〉 A
L

= σ
A

L
.

In the diffusive limit the conductance is determined by〈
Nv2

x

〉
, as it should.

The standard theory of AR (BTK)7, places a specular
barrier at the interface, and assumes the ballistic regime
and the free electron band structure in the bulk. Let
us reproduce the main results of the BTK paper using,
instead of their derivation, the “mesoscopic” approach9.
Probabilities of four processes must be considered: nor-
mal reflection, defined as the process where k‖ is con-
served, the group velocity in the direction perpendicular
to the interface changes sign, AR, when k‖ changes to
−k‖, and transmission into the superconductor with or
without the branch crossing7. The energy is conserved,
the electron wave function should be continuous, as well
as the current. This gives enough information to find the
probabilities, and the total current can be written as

〈G〉NS =
e2

h

∑
κ

TS(κ) =
e2

h

∑
κ

(1 +Aκ −Bκ), (7)

where A and B are the probabilities of the normal and
Andreev reflection, respectively. Beenakker showed9 that
the “Andreev transparency”, the probability of an An-
dreev process, can be expressed in terms of the normal
transparency TN of the interface. For zero bias :

TS =
2T 2

N (κ)(1 + β2)
β2T 2

N + [1 + r2
N ]2

=
2T 2

N (1 + β2)
β2T 2

N + [2− TN ]2
(8)

where TN (κ) is the normal state transparency, r2
κ =

1− TN (κ) is the corresponding normal state reflectance,
and β = V/

√
|∆2 − V 2| is the coherence factor. A sim-

ilar formula can be derived for V > ∆. For a specular
barrier, and neglecting the possible Fermi velocity mis-
match at the interface, TN (κ) = 1/[1 + Z2], where Z is
the BTK barrier strength parameter7. A simple algebra
shows that Eq. 8 is equivalent to the BTK formulas.

We will now apply this approach to the diffusive AR. A
diffusive Andreev contact can be viewed as a contact be-
tween the normal and the superconducting leads, which
in addition to the interface, are separated by a diffusive
region. The size of the region is larger than the electronic
mean free path5. In the zero temperature and zero bias
limit, Eq.8 reads:

〈G〉NS =
e2

h

∑
κ

TA =
e2

h

∑
κ

2T̃ 2
κ

(2− T̃κ)2
, (9)

where now the normal state transmittance for the con-
ductance channel κ is given by the sequential conductor’s
formula:

T̃−1 − 1 = (T−1
N − 1) + (t−1 − 1), (10)

where t is the transmittance of the diffusive region, and
TN is the barrier transparency. Using Eq. 5 for the dis-
tribution of t’s, we find

〈GNS〉L =
e2

h

∑
κ

2
(2/TN − 2 + 2/tκ − 1)2

=
e2

h

λNcc
L

∫ ∞
0

dy

[2(1− TN )/TN + cosh y]2
. (11)

The last integral can be taken analytically and gives

〈GNS〉L =
e2

h

λNcc
L

w coshw − sinhw
sinh3 w

, (12)

where coshw = 2(1−TN )/TN . For the clean (no-barrier)
interface, TN = 1, w = iπ/2, and this expression reduces
to Eq.6, thus reproducing the known result12,9 that the
diffusive Andreev contact with no interface barrier at zero
bias has the same resistance in the superconducting and
in the normal states.

Is it possible then to distinguish between the spin-
polarization suppression of the Andreev current and pos-
sible diffusive transport effect using the experimentally
measured conductance? The answer to this crucial ques-
tion is yes, as we demonstrate in Fig. 1: although it
is very difficult to discern the effect of a finite Z in a
ballistic contact from the effect of diffusive transport, it
is easy to separate both of them from the conductance
suppression due to the finite spin polarization.

This brings about a burning question: Is it possible,
by looking at a measured conductance, to tell the spin-
polarization suppression of the Andreev current, from the
suppression due to a finite barrier resistance and/or to
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possible diffusive transport in the ferromagnet. The an-
swer is yes, as we will demonstrate below. On the other
hand, it is basically impossible to tell the barrier resis-
tance suppression from the diffusive suppression, but for-
tunately this is of virtually no importance for determin-
ing the spin polarization.

We will now derive a full set of formulas for ar-
bitrary bias, temperature, and interface resistance for
both ballistic and diffusive regimes, generalizig the BTK
formulas7 in order to be able to use them for the half-
metallic CC and in the diffusive limit. These general
formulas are summarized in Table I.

We start with extending the BTK approach over the
half-metallic CC, which, by definition, correspond to the
k‖ allowed in one spin direction, but not in the other. Fol-
lowing BTK, we consider an incoming plane wave and the
transmitted plane wave (with and without branch cross-
ing)

ψin =
(

1
0

)
eikx; ψtr = c

(
u
v

)
eikx + d

(
v
u

)
e−ikx,

assuming, for simplicity, the same wave vector for all the
states. Here u and v have the standard BTK meaning,
e.g., at V > ∆ u2 = 1 − v2 = (1 + β)/2β. Unlike BTK,
though, now the reflected state is a combination of a
plane wave and an evanescent wave:

ψrefl = a

(
0
1

)
eκx + b

(
1
0

)
e−ikx. (13)

The total current is
GHS
G0

= 4β[1+(K−2Z)2]
4(β2−1)Z(K−Z)+[1+(K−2Z)2][(1+β)2+4Z2] at V >

∆, where K = κ/k,) and zero otherwise.
As V → ∆, GHS/G0 → 0 , and GHS/G0 → GN/G0 =

1/(1+Z2) as V →∞. We will not discuss all the aspects
of the non-trivial behavior of GHS/G0 at intermediate
biases. Importantly, GHS/G0 generally behaves non-
monotonically with V , and may have a maximum larger
than GN/G0 at an intermediate voltage. This maximum
is due to the fact that, although the Andreev-reflected
hole does not propagate and does not carry any current,
the Andreev process itself is allowed at V > ∆ and en-
hances the transparency of the barrier. This effect does
not exist, though, for Z = 0, nor for K → ∞. In the
formulas given in Table I we used K → ∞, to simplfy
the equations, since the actual value of K matters in a
relatively narrow region of voltages above the gap. Note
that the simple renormalization of the normal current at
V > ∆, used in Ref.1, gives a rather different result: in-
stead of 4β

(1+β)2+4Z2 it gives 1+β(1+2Z2)
(1+β)(1+2Z2)+2Z4 , which is

discontinuous at V = ∆.
Now we generalize the BTK formulas beyond the bal-

listic hypothesis. For the nonmagnetic CC the calcula-
tion follows Eqs.8 and 10. For zero temperature and a
subgap bias voltage V < ∆(T )

〈G〉NS =
e2

h

∑
k‖,i

4T̃ 2
N (κ)(1 + β2)

β2T̃ 2
N (κ) + [2− T̃N (κ)]2

(14)

and

T̃−1
N = T−1

N + t−1 − 1 = Z2 + t−1, (15)

with the distribution (5) for t. After some algebra we
obtain

〈GNS〉L =
e2

h

λNcc
L

∫ ∞
0

(1 + β2)dy
β2 + (2Z2 + cosh y)2

. (16)

Factor Ncc now stands for the number of CC allowed
in both spin channels, λ is given by the average mean
free path for the channels in question, and thus the to-
tal conductance is given by

〈
Nv2

x

〉
, averaged over these

channels. For Z = 0, this gives

〈σNS〉 =
e2τ

Ω
〈
Nv2

〉
↓↑

∆
V

log
∣∣∣∣V + ∆
V −∆

∣∣∣∣ , (17)

which starts from the normal conductivity and logarith-
mically diverges at V = ∆. For arbitrary Z the conduc-
tance still can be cast into an analytical form, namely14

〈σNS〉 =
e2τ

Ω
〈
Nv2

〉
↓↑

1 + β2

2β
Im[F (−iβ)− F (iβ)],

where

F (s) = cosh−1(2Z2 + s)/
√

(2Z2 + s)2 − 1

Similarly, for V > ∆

〈GNS〉L =
e2

h

λNcc
L

∫ ∞
0

2βdy
β + (2Z2 + cosh y)

(18)

〈σNS〉 =
e2τ

Ω
〈
Nv2

〉
↓↑ βF (β). (19)

At Z = 0 this reduces to

〈σNS〉 =
e2τ

Ω
〈
Nv2

〉
↓↑
V

∆
log
∣∣∣∣V + ∆
V −∆

∣∣∣∣ , (20)

an interesting symmetry13. At V � ∆ we get

〈σN 〉 =
e2τ

Ω
〈
Nv2

〉
↓↑

cosh−1(2Z2 + 1)
Z
√
Z2 + 1

, (21)

which should be used to normalize the whole conductance
curve.

Finally, for for the “half-metallic” CC, there is no con-
ductance at V < ∆. For V > ∆,

〈GHS〉L =
e2

h

λNcc
L

∫ ∞
0

2βdy
(β + 1)2 + 2(2Z2 − 1 + cosh y)

〈σHS〉 =
e2τ

Ω
〈
Nv2

〉
↓ βF [(β + 1)2/2)− 1],

where the arrow in the subscript shows that these chan-
nels are allowed only in one spin subband.
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It is again instructive to see how this expression be-
haves at V � ∆ :

〈σHS〉 =
e2τ

Ω
〈
Nv2

〉
↓

cosh−1(2Z2 + 1)
2Z
√
Z2 + 1

, (22)

which is exactly twice less than the corresponding non-
magnetic limit.

The formulas derived in this section, and summarized
in Table I, finalize our task of generalization of the BTK
equations over the finite spin polarization in both bal-
listic and diffusive limits. The finite temperatures are
taken into account straightforwardly in the same way as
in the original BTK paper and are not discussed here.
We thank E. Demler and I. Zutic for useful suggestions.
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∫ ∞
−∞
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λ→0

∫ ∞
−∞

R(coshx) exp(iλx)dx.

Closing the integration contour in the upper half-
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ates two rows of simple poles of R(coshx) at xjn =
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lim
λ→0
−2π

∑
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sin(λxj0)Res[R(zj)] exp(πλ)
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∑
j

xj0Res[R(zj)]

sinhxj0
.

The same formula holds for the higher order poles,
since the difference of the residues of R(coshx) and
R(coshx) exp(iλx), apart from the factor exp(±iλxj0 −
2πnλ), is of the higher order in λ..

TABLE I. Bias dependence of the total interface current in
different regimes: BNM = ballistic non-magnetic7; BHM =
ballistic half-metallic; DNM = diffusive non-magnetic; DHM
= diffusive half-metallic. F (s) is defined in the text

E < ∆ E > ∆

BNM 2(1+β2)

β2+(1+2Z2)2
2β

1+β+2Z2

BHM 0 4β
(1+β)2+4Z2

DNM 1+β2

2β
Im [F (−iβ)− F (iβ)] βF (β)

DHM 0 βF [(1 + β)2/2− 1].
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FIG. 1. Andreev conductance in in different regimes.
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