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Probing spin polarization with Andreev reflection: A theoretical basis
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Andreev reflection at the interface between a ferromagnet and a superconductor has become a
foundation of a versatile technique of measuring the spin polarization of magnetic materials. In this
article we will briefly outline a general theory of Andreev reflection for spin-polarized systems and
arbitrary Fermi surface in two limiting cases of ballistic and diffusive transport. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1357127#
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Andreev reflection~AR! between a superconductor and
ferromagnet has been attracting significant interest~e.g.,
Refs. 1–5! as the foundation of a technique1 to measure the
spin polarization in ferromagnets. The technique is based
the idea6 that the Andreev process is forbidden in ha
metals, where only electrons with one spin direction
present at the Fermi level. Correspondingly, in a ferromag
the Andreev current is partially suppressed, as not all of
conductance channels~CC! are ‘‘open’’ for AR; some chan-
nels exist in one spin direction, but not in the other, and t
do not contribute to the Andreev current.

Building a stable and reliable technique for probing sp
polarization based on AR is not always straightforward a
requires a quantitative theory. Such a theory should take
account the following effects:~1! different number of CC for
different spins,~2! finite interface resistance,~3! band struc-
ture effects,~4! effect of an evanescent Andreev hole
quasiparticle current in half-metallic CC, and~5! diffusive
transport in the ferromagnet, if needed.

The existing works treat only some of these questio
The first one was taken care of in Ref. 6. The second one
answered in part in the seminal article of Blonderet al.,7 but
only for ‘‘nonmagnetic’’ channels~the CC that exist in both
spin directions!. The third one was dealt with in Ref. 3, bu
only in the ballistic limit. The fourth one was mentioned
Ref. 2, but not investigated quantitatively. Finally, the la
one was touched upon in Ref. 5, but left in the form th
could not be directly applied to the experiment. Some
pects of diffusive transport and AR were addressed
Ref. 4.

In this article, we address all these issues and prese
compendium of formulas needed for a quantitative analy
of superconductor-ferromagnet AR. We start with a ballis
contact, which is smaller than the mean free path of electr
in the bulk. All electrons with a positive projection of the
velocity onto the current directionx pass through
the contact. Conductance of a ballistic contact is8,3

G5(e2/2\)^Nuvxu&A, whereA is the contact area,N is the
density of electronic states at the Fermi level,v is the Fermi
velocity, and brackets denote Fermi surface averaging

a!Electronic mail: mazin@nrl.navy.mil
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^Nuvxu&52~2p!23 (
is

E dSFvkis,x /uvkisu . ~1!

Integration and summations are over the states withvkis,x

.0, andV is the unit cell volume.k, i, ands denote the
quasimomentum, the band index, and the electron spin,
spectively. It is instructive to look at Eq.~1! from the ‘‘me-
soscopic’’ perspective, using as a starting point the Landa
formula for the conductance of a single electron,9 G0

5e2/h. The total conductance is equal toG0 times the num-
ber of CC,Ncc, which is defined as the number of electro
that can pass through the contact. If the translational sym
try in the interface plane is not violated, then the quasim
mentum in this planeki is conserved, andNcc is given by the
total area of the contact times the density of the tw
dimensional quasimomenta. The latter isSx /(2p)2, where
Sx is the area of the projection of the bulk Fermi surfa
onto the contact plane. So,G5(e2/\) Sx A(2p)22[
(e2/2\)^Nuvxu&A.

Let us consider now the opposite limit, when the cont
size is muchlarger than the mean free path. The condu
tance is determined by the bulk~Bloch–Boltzmann! conduc-
tivity:

s5~e2/\!^Nvx
2&t, ~2!

wheret is the relaxation time. The Ohm’s law requires th
the conductanceG5sA/L, whereL is the length of the dis-
ordered region. This can be reproduced within the ‘‘mes
copic’’ approach,9 taking into account that now each CC
that is, each separateki state, has a finite probability for a
electron to get through the disordered region, 0<T<1, and

G5
e2

h (
k

Tk5
e2

h El

`

dzP~z!/cosh2~L/z!, ~3!

wherek[$ki ,i ,s%. Tk is conveniently defined in terms o
the probability distribution,P(z), of the localization lengths
z. The cutoffl should be of the order of the mean free pa
l; in fact, l52l .9 Ohm’s law requires thatG}1/L, thus the
behavior ofP(z) at largez must be const/z2. Normalization
requires that const5lNcc. Substituting that in Eq.~3!, we
get
6 © 2001 American Institute of Physics
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G5
e2

h El

` lNccdz

z2 cosh2~L/z!

'
e2lNcc

hL
5

e2

\

Al

VL (
is

E dSF

uvku vk,x . ~4!

In the constantt approximation, used in Eq.~2!, the average
mean free path

l 5(
is

E dSF

uvku vk,x
2 tY (

is
E dSF

uvku vk,x ,

thuslk52vkxt. Thus

^G&L5
e2

\

A

VL (
is

E 2dSF

uvku vk,x
2 t 5

e2

\
^Nvx

2&
A

L
5s

A

L
.

In the diffusive limit, the conductance is determined
^Nvx

2&, as it should.
The standard theory of AR,7 places a specular barrier a

the interface, and assumes the ballistic regime and the
electrons in the bulk. Let us reproduce the main results of
Blonder, Tinkham, and Klapwijk7 ~BTK! article using the
‘‘mesoscopic’’ approach.9 Probabilities of four processe
must be considered: normal reflection, AR, and transmiss
into the superconductor with or without the branch crossin7

The total current can be written as^G&NS5(e2/h) (kTS(k)
5 (e2/h) (k(11Ak2Bk), whereA andB are the probabili-
ties of the normal and Andreev reflection, respective
Beenakker showed9 that the probability of an Andreev pro
cess can be expressed in terms of the normal transparencTN

of the interface. For a subgap bias

TS5 2TN
2 ~11b2!/@b2TN

2 1~22TN!2# , ~5!
where TN(k) is the normal state transparency, andb
5V/AuD22V2u is the coherence factor. A similar formul
can be derived forV.D. For a specular barrier, and neglec
ing the possible Fermi velocity mismatch at the interfa
TN(k)51/@11Z2#, where Z is the BTK barrier strength
parameter.7 A simple algebra shows that Eq.~5! is equivalent
to the BTK formulas.

We will now apply this approach to the diffusive AR. A
diffusive Andreev contact can be viewed as a contact
tween the normal and the superconducting leads which
addition to the interface, are separated by a diffusive reg
larger than the electronic mean free path.5 In the zero tem-
perature and zero bias limit, Eq.~5! reads

^G&NS5~e2/h! (
k

TA5~e2/h!(
k

@2T̃k
2/~22T̃k!2# ,

where now the normal state transmittance for the CCk is
given by the sequential conductors formula

T̃21215~TN
2121!1~ t2121!, ~6!

wheret is the transmittance of the diffusive region, andTN is
the barrier transparency. Using Eq.~3! for the distribution of
t ’s, we find

^GNS&L5
e2

h (
k

2

~2/TN2212/tk21!2

5
e2

h

lNcc

L E
0

` dy

@2~12TN!/TN1coshy#2
. ~7!
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The last integral can be taken analytically and gives

^GNS&L5
e2

h

lNcc

L

w coshw2sinhw

sinh3 w
, ~8!

where coshw52(12TN)/TN . For the clean~no-barrier! inter-
face,TN51, w5 ip/2, and Eq.~8! reduces to Eq.~4!, thus
reproducing the known result9,10 that the diffusive Andreev
contact with no barrier has at zero bias the same resistan
the superconducting and in the normal states.

Can one distinguish between the spin-polarization s
pression of the Andreev current and possible diffusive tra
port effect using the experimentally measured conductan
As Fig. 1 demonstrates, the answer to this crucial questio
yes. Although it is very difficult to discern the effect of
finite Z in a ballistic contact from the effect of diffusive
transport, it is easy to separate both of them from the c
ductance suppression due to the finite spin polarization.

We will now derive a set of formulas for arbitrary bia
temperature, and interface resistance for both ballistic
diffusive regimes, generalizing the BTK formulas7 in order
to be able to use them for the half-metallic CC and in t
diffusive limit. These formulas are summarized in Table

We start with extending the BTK approach over the ha
metallic CC, which, by definition, correspond to theki al-
lowed in one spin direction, but not in the other. Followin
BTK, we consider an incoming plane wave and the transm
ted plane wave~with and without branch crossing!

c in5S 1

0D eikx; c tr5cS u

v D eikx1dS v

uD e2 ikx,

assuming the same wave vector for all three states. Heu
and v have the standard BTK meaning,u2512v25(1
1b)/2. Unlike BTK, here the reflected state is a combin
tion of a plane wave and an evanescent wave

c refl5aS 0

1D ekx1bS 1

0D e2 ikx. ~9!

The total current,GHS /G0 , is

GHS

G0

5
4b@11~K22Z!2#

4~12b2!Z~K2Z!1@11~K22Z!2#@~11b!214b2Z2#

FIG. 1. Andreev conductance in different regimes.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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at eV.D, whereK5k/k,) and zero otherwise.
As eV→D, GHS /G0→0, andGHS /G0→GN /G051/(1

1Z2) as V→`. We will not discuss all the aspects of th
nontrivial behavior ofGHS /G0 at intermediate biases. Im
portantly,GHS /G0 generally behaves nonmonotonically wi
V, and may have a maximum larger thanGN /G0 at an in-
termediate voltage. This maximum is due to the fact th
although the Andreev-reflected hole does not propagate
does not carry any current, the Andreev process itself is
lowed ateV.D and enhances the transparency of the b
rier. This effect does not exist, though, forZ50, nor for K
→`. In the formulas given in Table I we usedK→`, to
simplfy the equations, since the actual value ofK matters in
a relatively narrow region of voltages above the gap. N
that the simple renormalization of the normal current ateV
.D, used in Ref. 1, gives a rather different result: instead
4b/@(11b)214Z2# it gives @11b(112Z2)#/@(11b)(1
12Z2)12Z4#, which diverges ateV→D10.

Now we generalize the BTK formulas beyond the ball
tic hypothesis. For the nonmagnetic CC the calculation
lows Eqs.~5! and ~6!. For zero temperature and a subg
bias voltageeV,D(T)

^G&NS5
e2

h (
ki ,i

4T̃N
2 ~k!~11b2!

b2T̃N
2 ~k!1@22T̃N~k!#2

~10!

where T̃N
215TN

211t21215Z21t21,with the distribution
~3! for t. After some algebra we obtain

^GNS&L5
e2

h

lNcc

L E
0

` ~11b2!dy

b21~2Z21coshy!2
. ~11!

FactorNcc now stands for the number of CC allowed in bo
spin channels,l is given by the average mean free path
the channels in question, and thus the total conductanc
given by ^Nvx

2&, averaged over these channels. ForZ50,
this gives

^sNS&5
e2t

V
^Nv2&↓↑

D

V
logUV1D

V2DU, ~12!

which starts from the normal conductivity and logarithm
cally diverges atV5D. For arbitraryZ the conductance stil
can be cast into an analytical form, namely

^sNS&5
e2t

V
^Nv2&↓↑

11b

2b
Im@F~2 ib!2F~ ib!#,

TABLE I. The total interface current in different regimes: BNM5ballistic
nonmagnetic~Ref. 7!; BHM5ballistic half-metallic; DNM5diffusive non-
magnetic; DHM5diffusive half-metallic.F(s) is defined in the text.

E,D E.D

BNM
2~11b2!

b21~112Z2!2

2b

11b12Z2

BHM 0 4b

~11b!214Z2

DNM
11b

2b
Im@F~2 ib!2F~ ib!# 2bF(b)

DHM 0 bF@(11b)2/221#.
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F~s!5cosh21~2Z21s!/A~2Z21s!221.

Similarly, for eV.D

^GNS&L5
e2

h

lNcc

L E
0

` 2bdy

b1~2Z21coshy!2
, ~13!

^sNS&5
e2t

V
^Nv2&↓↑2bF~b!. ~14!

At Z50 this reduces to

^sNS&5
e2t

V
^Nv2&↓↑

V

D
logUV1D

V2DU, ~15!

an interesting symmetry.11 At V@D we get

^sN&5
e2t

V
^Nv2&↓↑

cosh21~2Z211!

ZAZ211
, ~16!

which should be used to normalize the whole conducta
curve.

Finally, for the ‘‘half-metallic’’ CC, there is no conduc
tance ateV,D. For eV.D,

^GHS&L5
e2

h

lNcc

L E
0

` 2bdy

~b11!212~2Z2211coshy!
,

^sHS&5
e2t

V
^Nv2&↓bF@~b11!2/2!21],

where the arrow in the subscript shows that these chan
are allowed only in one spin subband.

It is again instructive to look at theV@D limit:

^sH&5
e2t

V
^Nv2&↓

cosh21~2Z211!

2ZAZ211
, ~18!

twice less than the corresponding nonmagnetic limit. T
finite temperatures are taken into account straightforwar
in the same way as in Ref. 7 and are not discussed here

The authors thank E. Demler and I. Zutic for usef
suggestions.
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