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Probing spin polarization with Andreev reflection: A theoretical basis
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Andreev reflection at the interface between a ferromagnet and a superconductor has become a
foundation of a versatile technique of measuring the spin polarization of magnetic materials. In this
article we will briefly outline a general theory of Andreev reflection for spin-polarized systems and
arbitrary Fermi surface in two limiting cases of ballistic and diffusive transport23©1 American
Institute of Physics.[DOI: 10.1063/1.1357137

Andreev reflectiofAR) between a superconductor and a
ferromagnet has been attracting significant inter@sy., (NJv,)=2(2m) 3 .2 f AdSviio ! |Viio] - (1)
Refs. 1-5 as the foundation of a techniqu® measure the 7
spin polarization in ferromagnets. The technique is based omtegration and summations are over the states with
the ided that the Andreev process is forbidden in half- >0, and() is the unit cell volumek, i, and o denote the
metals, where only electrons with one spin direction arequasimomentum, the band index, and the electron spin, re-
present at the Fermi level. Correspondingly, in a ferromagnespectively. It is instructive to look at Eql) from the “me-
the Andreev current is partially suppressed, as not all of th€oscopic” perspective, using as a starting point the Landauer
conductance channel€C) are “open” for AR; some chan- formula for the conductance of a single electfoiG,
nels exist in one spin direction, but not in the other, and thus=e%h. The total conductance is equal® times the num-
do not contribute to the Andreev current. ber of CC,N.., which is defined as the number of electrons

Building a stable and reliable technique for probing spinthat can pass through the contact. If the translational symme-
polarization based on AR is not always straightforward and'y in the interface plane is not violated, then the quasimo-
requires a quantitative theory. Such a theory should take intg'entum in this plang is conserved, anN is given by the
account the following effects1) different number of CC for total area of the contact times the density of the two-
different spins,(2) finite interface resistancé3) band struc-  dimensional quasimomenta. The latterSs/(2m)?, where
ture effects,(4) effect of an evanescent Andreev hole onSx IS the area of the projection of tr;e bulk Ferm|_szurface
quasiparticle current in half-metallic CC, art§) diffusive 0”2'[0 the contact plane. SoG=(e’/h) S A(2w) ‘=
transport in the ferromagnet, if needed. (e725)(NJv,)A.

The existing works treat only some of these questions. Let us consider now the opposite limit, when the contact
The first one was taken care of in Ref. 6. The second one wegize is muchlarger than the mean free path. The conduc-
answered in part in the seminal article of Bloneé¢ial,” but  tance is determined by the bulBloch—Boltzmanh conduc-
only for “nonmagnetic” channelg§the CC that exist in both tivity:
spin directions The third one was dealt with in Ref. 3, but
only in the ballistic limit. The fourth one was mentioned in o= (€?/%)(Nv3)7, 2

Ref. 2, but not investigated quantitatively. Finally, the last . . . , .

one was touched upon in Ref. 5, but left in the form thatWhereT is the relaxation time. The Ohm’s law requires that

could not be directly applied to t,he experiment. Some as:[he conductanc&=cA/L, whereL is the length of the dis-
y app P ] —ordered region. This can be reproduced within the “mesos-

pRe(.;(1‘:ts4 of diffusive transport and AR were addressed mcopic” approact? taking into account that now each CC,

In this article, we address all these issues and resentthat 's, each separalg state, has a finite probability for an
. ' > and p 'fectron to get through the disordered regioss <1, and
compendium of formulas needed for a quantitative analysis

of superconductor-ferromagnet AR. We start with a ballistic 2 o2 (e
contact, which is smaller than the mean free path of electrons G= Y > T":FJ d¢P(¢)/cosH(LI?), 3)
in the bulk. All electrons with a positive projection of their « A

velocity onto the current directionx pass through where k={k|,i,a}. T, is conveniently defined in terms of

. . ’3.
thi contact. Conductance of a ballistic conf[acf:’ 'S the probability distributionP(¢), of the localization lengths,
G=(e*/241)(N|v,|)A, whereA is the contact areay is the ¢. The cutoff\ should be of the order of the mean free path
density of electronic states at the Fermi levels the Fermi  |.: tact A =21.9 Ohm’s law requires thaB e 1/L, thus the
velocity, and brackets denote Fermi surface averaging behavior ofP(¢) at large¢ must be const?. Normalization
requires that constAN... Substituting that in Eq(3), we
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no-batrier ballistic regime, no spin polarization

ballistic regime, no spin polarization, Z=0.55 —e—;
®  no-barrier diffusive regime, no spin polarization —e—
no-barrier ballistic regime, spin polarization 50% ------ =
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e°ANg e A\ ds
TR TR RS @
In the constant approximation, used in E@2), the average ¢
mean free path &
ds ds
| = 2 -
3 i) Z [
thus\ ,=2v 7. Thus
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In the diffusive limit, the conductance is determined by
(Nv?), as it should.

The standard theory of ARplaces a specular barrier at
the interface, and assumes the ballistic regime and the free (G , ®)
electrons in the bulk. Let us reproduce the main results of the sinfPw
Blonder, Tinkham, and Klapwijk (BTK) article using the ~Wwhere costw=2(1-Ty)/Ty. For the clear(no-barriej inter-
“mesoscopic” approach. Probabilities of four processes face, Ty=1, w=in/2, and Eq.(8) reduces to Eq(4), thus
must be considered: normal reflection, AR, and transmissioreproducing the known restift’ that the diffusive Andreev
into the superconductor with or without the branch cros$ing. contact with no barrier has at zero bias the same resistance in
The total current can be written 46)ys=(e*h) =, Tg(x)  the superconducting and in the normal states.
= (e?/h) = ,(1+A,—B,), whereA andB are the probabili- Can one distinguish between the spin-polarization sup-
ties of the normal and Andreev reflection, respectively.pression of the Andreev current and possible diffusive trans-
Beenakker showédhat the probability of an Andreev pro- port effect using the experimentally measured conductance?
cess can be expressed in terms of the normal transpafgncy As Fig. 1 demonstrates, the answer to this crucial question is
of the interface. For a subgap bias yes. Although it is very difficult to discern the effect of a

Te= 2T§1(1+32)/[B2T§+(2—TN)2], ) finite Z in a ballistic contact from the effect of diffusive

. transport, it is easy to separate both of them from the con-
where Ty(k) is the normal state transparency, apt P y P

) . ductance suppression due to the finite spin polarization.
=V/\|AZ=V?| is the coherence factor. A similar formula PP pin p

be derived fov> A . F lar barri d lect We will now derive a set of formulas for arbitrary bias,
can be derived 1o - -ora specular barrier, and neg eC'temperature, and interface resistance for both ballistic and
ing the possible Fermi velocity mismatch at the interface

) . diffusive regimes, generalizing the BTK formufais order
Tn(k)=1[1+2Z?], where Z is the BTK barrier strength diffusive regimes, generalizing the ormufas orde

rametef A simple alaebra shows th {E) i valent to be able to use them for the half-metallic CC and in the
parameter.A simple algebra shows tha S equivale diffusive limit. These formulas are summarized in Table I.
to the BTK formulas.

We will now apply this approach to the diffusive AR. A N We start with extending the BTK approach over the half-

diffusive And tact be vi d tact b etallic CC, which, by definition, correspond to tke al-
Musive Andreev contact can be viewed as a contact bep, 0y iy one spin direction, but not in the other. Following

tween the normal and the superconducting leads which, i TK, we consider an incoming plane wave and the transmit-
addition to the interface, are separated by a diffusive regiotg d p;lane wavéwith and without branch crossing

; e

larger than the electronic mean free patin. the zero tem-
1 v efikx
0 u '

FIG. 1. Andreev conductance in different regimes.
The last integral can be taken analytically and gives

e? AN, wcoshw—sinhw
NS>L:F L

perature and zero bias limit, E¢p) reads B k%4 g

win

ikX. — u
e wtr_c
v

(Gyns=(€%/h) X, Ta=(e?h) X [2T4(2-T,)?],

where now the normal state transmittance for the €&
given by the sequential conductors formula

T l-1=(Ty'-D+@ -1, (6)

wheret is the transmittance of the diffusive region, ahglis
the barrier transparency. Using E) for the distribution of
t’s, we find

Gr =2 S 2
NIETh L omy—2+ 21— 1)2
_ e? )\Nccfx dy )
h L Jo[2(1-Ty)/Ty+coshy]?

assuming the same wave vector for all three states. Here
and v have the standard BTK meaning?=1—uv?=(1
+B)/2. Unlike BTK, here the reflected state is a combina-
tion of a plane wave and an evanescent wave

e+b| |e kx

9

0
Pren=2a 1 0

The total currentGys/Gg, is
Ghs
Go
- 48[ 1+(K—22)?]
41— BHZ(K—2)+[1+(K—22)][(1+ B)>+4B%Z?]
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TABLE I. The total interface current in different regimes: BNMallistic _ —1 2 \/272_
nonmagnetiqRef. 7); BHM =ballistic half-metallic; DNM=diffusive non- F(S) cosh (ZZ +S)/ (ZZ +S) 1.
magnetic; DHM=diffusive half-metallic.F(s) is defined in the text. Similarly, forev>A
E<A E>A eZ AN.. [ 2Bdy
1 <GNS>L:F Lccf 2 2’ (13
BNM (1+4°) 2B 0 B+ (2Z%+ coshy)
+(1+22) 1+p+222 )
BHM 0 48 _ T 2
1+
DNM z—ﬁﬂlm[F(*iB)*F(iﬁ)] 2BF(B) At Z=0 this reduces to
DHM 0 BF[(1+B)%12—1]. e2r , vV  V+A
<0'NS>:W<NU >uK|09m ' (19
an interesting symmetrif. At V=>A we get
ateV>A, whereK=«/k,) and zero otherwise. 5 1,n52
As eV—A, Gps/Go—0, andGys/Go— Gy /Ge=1/(1 <UN>:e_T<sz>”w, 16
+27?) asV—x. We will not discuss all the aspects of the Q z\Z%+1
nontrivial behavior ofGys/G, at intermediate biases. Im- which should be used to normalize the whole conductance

portantly,Gs/Gg generally behaves nonmonotonically with curve.

M and'may have a maximum 'afgef thai, /G, at an in- Finally, for the “half-metallic” CC, there is no conduc-

termediate voltage. This maximum is due to the fact thatt nce aleV<A. ForeV>A

although the Andreev-reflected hole does not propagate ang '

does not carry any current, the Andreev process itself is al- e? NN (= 2Bdy

Ipwed gteV>A and enhancgs the transparency of the bar- <GHS>L:F L fo (B+1)2+2(222— 1+ coshy)’

rier. This effect does not exist, though, fér=0, nor forK

—o0, In the formulas given in Table | we usd¢i—x, to

simplfy the equations, since the actual valuekofatters in

a relatively narrow region of voltages above the gap. Not

that the simple renormalization of the normal currene &t

>A, used in Ref. 1, gives a rather different result: instead o

ABI[(1+B)%+4Z2] it gives [1+B(1+2Z)]/[(1+B)(1

+227?%)+2Z*], which diverges aeV— A +0. e’r . coshi(2Z°+1)
Now we generalize the BTK formulas beyond the ballis- (on)= ﬁ(NU >LW'

tic hypothesis. For the nonmagnetic CC the calculation fol-

lows Egs.(5) and (6). For zero temperature and a subgaptwice less than the corresponding nonmagnetic limit. The

bias voltagee V<A(T) finite temperatures are taken into account straightforwardly

in the same way as in Ref. 7 and are not discussed here.

eer 5
(ons) =g (Nv) BFL(B+1)%2)~1],
Svhere the arrow in the subscript shows that these channels

f";tre allowed only in one spin subband.
It is again instructive to look at the>A limit:

(18

e’ AT (k) (1+ %)
<G>NSZF 2 232 _F 2 (10 The authors thank E. Demler and I. Zutic for useful
ki BETN(K) +[2=Tn(x) ] ,
N suggestions.
where Tyl=Ty '+t 1—1=22+t",with the distribution
(3) for t. After some algebra we obtain
€% AN (= (1+ B%)dy 'R. J. Soulen, Jret al, Science282, 5386(1998; S. K. Upadhyayet al,
(GnoL=§ T f > 2 x 11 Phys. Rev. Lett81, 3247(1998.
0 B+(2Z°+coshy) 23, Kashivayaet al, Phys. Rev. B60, 3572 (1999; I. Zutic and O. T.

. Valls, ibid. 60, 6320(1999.
FactorN. now stands for the number of CC allowed in both 3|_‘r’|‘. T\,,;Z'in Phys. Rév. thm 1427(1999.

spin channels) is given by the average mean free path for 4w. Belziget al, cond-mat/0005188; V. I. Fal’ko, C. J. Lambert, and A. F.
the channels in question, and thus the total conductance isvolkov, JETP Lett69, 532(1999; F. J. Jedemat al, Phys. Rev. B50,

: 2 16 549(1999.
given by (Nv;), averaged over these channels. Zor0, 5A. A, Golubov, Physica G327, 46 (1999,

this gives 6M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. [#t.1657

e’r L, A |V+A (1995.
(ong) = ﬁ(NU 1 Vi ivanE (120 7G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev.25, 4515
(1982.

which starts from the normal conductivity and logarithmi- °K- M. Schep, P. M. Kelly, and G. E. W. Bauer, Phys. Rev5B 8907

cally diverges aV=A. For arbitraryZ the conductance still  2"\," Beenakker, Rev. Mod. Phyg9, 731 (1997,

can be cast into an analytical form, namely 105, N. Artemenko, A. F. Volkov, and A. V. Zaitsev, Solid State Commun.
e2r 14 30, 771(1979.
— 2 i RY—F(i 1Equations(13) and (16) coincide with those obtained in Ref. 10 by a
ong = —{(Nv —Im[F(—i F(i , a y
{ons) Q (No%y; 2B [F(=1A)=F(iB)] different method.
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