
PRL 95, 257003 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 DECEMBER 2005
Critical Temperature and Enhanced Isotope Effect in the Presence of Paramagnons
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We reconsider the long-standing problem of the effect of spin fluctuations on the critical temperature
and isotope effect in a phonon-mediated superconductor. Although the general physics of the interplay
between phonons and paramagnons has been rather well understood, the existing approximate formulas
fail to describe the correct behavior of Tc for general phonon and paramagnon spectra. Using a
controllable approximation, we derive an analytical formula for Tc which agrees well with exact
numerical solutions of the Eliashberg equations for a broad range of parameters. Based on both numerical
and analytical results, we predict a strong enhancement of the isotope effect when the frequencies of spin
fluctuation and phonons are of the same order. This effect may have important consequences for near-
magnetic superconductors such as MgCNi3.
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In the last decade, a large number of superconductors
were discovered in which enhanced spin fluctuations (SF)
play a role in the superconductivity, e.g., Sr2RuO4,
MgCNi3, "-Fe, ZrZn2, and others, bringing about new
and interesting physics. However, understanding such ma-
terials, even at an intuitive level, has been hindered by the
lack of a simple formula that would approximate the full
Eliashberg theory in a compact analytical form, as the
conventional McMillan formula (MMF) does. As a result,
uncritical generalizations of the latter have been used as a
substitute, despite the fact that, as we will show below,
some of them are too approximate or outright incorrect. In
this Letter we present an analogue of the MMF, derived in a
controllable way and tested against numerical solutions of
full Eliashberg equations, including interaction with SF
(paramagnons). We point out the possibility of a giant
phonon isotope effect induced by SF. We will also apply
this theory, as an example, to a nearly ferromagnetic su-
perconductor, MgCNi3.

The understanding that SF are pair breakers in conven-
tional superconductors is nearly as old as the BCS theory
itself [1]. Moreover, it was soon realized that strong cou-
pling manifests itself in a nontrivial way in the presence of
SF [2,3]. In a number of papers, numerical solutions of the
Eliashberg equations were presented, incorporating pho-
non �2Fp�!� as well as SF �2Fs�!� spectral functions
(see, e.g., Ref. [4]). However, solving the full Eliashberg
equations is not always an option and does not provide as
much physical insight as an analytical treatment. An ana-
lytical tool comparable to the famed MMF is needed.

Retrospectively, one can realize that the overwhelming
success of the MMF is due to three facts: (a) it can be
derived analytically using simple approximations; (b) it
includes Coulomb repulsion effects; (c) it has three uni-
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versal adjustable parameters, which, after little tuning,
produce an expression which is surprisingly accurate for
a large variety of spectra. Compared to the BCS equation,
the MMF includes three essential pieces of additional
physics: effective mass renormalization, reduction of the
Coulomb repulsion, and proper (logarithmic) averaging of
the phonon frequency. All three effects can be derived
analytically in some approximations. In fact, the functional
form of the MMF can be derived in two different ways.
One, known as the square-well model [5], uses the
Matsubara representation, where the coupling is parame-
trized in terms of the matrix ��n; n0�. The model assumes
two different approximations for the same function
��n; n0�, depending on whether it is used in the equation
for the mass renormalization Z or in the one for the gap
function �:

�Z�n; n
0� � �p��!p � j!n�n0 j�;

���n; n
0� � �p��!p � j!nj���!p � j!n0 j�;

(1)

leading to an equation for the critical temperature:

Tc � a!log expf�b�1� �Z�=��� ��
��1� c�Z��g; (2)

where the theoretical parameters are a � 1:14, b � c � 1,
�Z � �� � �p � 2

R
1
0 !

�1�2Fp�!�d!, and �p ln!log �

2
R
1
0 !

�1 ln!�2Fp�!�d!. The Coulomb potential is re-
duced from its bare value � as �� � �=�1�� ln!C

!log
�,

where !C is the frequency cutoff of the Coulomb interac-
tion. The MMF formula is given by Eq. (2) with optimized
parameters a � 1=1:2, b � 1:04, and c � 0:62.

SF, as opposed to phonons, induce repulsion for singlet
pairs. However, they contribute to the mass renor-
malization just the same. Therefore the first instinct
is to let �Z � �p � �s, where �s describes the SF, and
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�� � �p � �s. Equation (2) with this modification and
standard a, b, and c is the one routinely used in the
literature for materials with SF (e.g., Refs. [6–8]).

Obviously, using two different approximations for the
same physical function ��n; n0� depending on whether it
appears in the first or second Eliashberg equation cannot be
justified by any logic. It appears that the MMF formula can
be fortuitously derived in this way, but, as we will see
below, this approach fails when SF are included. An alter-
native derivation of the MMF utilizes the real frequency
axis formalism [9]. One assumes an Einstein phonon at
frequency !p. The Eliashberg equations are then solved
iteratively. After the first iteration, one obtains [9]

Tc � 1:14!p exp
�
�

1

2
�

1� �p

�p ��
��1� 0:5

�p
1��p
�

�
; (3)

which is similar to the square-well formula Eq. (2) with
a � 1:14=

���
e
p
� 1=1:44 (note that this value of a is much

closer to the optimized one), b � 1, and c � 0:5=�1� �p�.
This approach is a controllable approximation with a con-
crete physical meaning. However, it has never been applied
to superconductors with SF.

On the contrary, several attempts to apply the square-
well model to SF have been reported. In Refs. [3,4] the
following expression was derived (for �� � 0):

Tc � 1:14!�
p!

1��
s exp

�
�

1� �p � �s
�p � �s

�
; (4)

where Carbotte et al. [4] suggested the following �:

� � �p=��p � �s�: (4a)

Vonsovsky et al. [3] proposed another expression:

� �
�2
p

�p � �s

�
�p � �s �

�p�s
1� �p � �s

ln
!p

!s

�
�1
: (4b)

Unfortunately, neither Ref. [3] nor Ref. [4] gives details of
their derivations, so we do not know what was different in
their models. We were not able to reproduce either result.
The latest paper utilizing the square-well model (in the
weak coupling limit) is Ref. [10]. Our own result for the
square-well model reduces to that of Ref. [10] in the weak
limit, and reads

Tc � 1:14!p exp
�
�

1� �s � �p

�p �
�s�1��s�

1��s��s ln�!s=!p�

�
; (5)

Tc � 1:14!s exp
�
�

1� �s � �p
�p�1��p�

1��p��p ln�!p=!s�
� �s

�
; (6)

for !s 	 !p and !s 
 !p, respectively. Unlike Eq. (4),
Eqs. (5) and (6) reduce to the McMillan form upon sub-
stitution !s ! !C � !p, �s ! �, as it should.

Given the controversy about the square-well model, it is
desirable to have a derivation in a controllable approxima-
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tion, such as the real frequency axis formalism of Ref. [9].
Assuming an Einstein phonon at a frequency !p and an
‘‘Einstein’’ paramagnon at !s, 2�2F�!� � �p!p��!�
!p� � �s!s��!�!s�, we obtain the following iterative
solution of the Eliashberg equations:

Tc � 1:14!
�p=��p��s�
p !

��s=��p��s�
s

� exp�K� exp
�
�

1� �p � �s

�p � �s ��
��1� K �p��s

1��p��s
�

�
;

K � �
1

2
�

�p�s
��p � �s�

2

�
1�

!2
p �!

2
s

!2
p �!

2
s

ln
!s

!p

�
: (7)

For !p ! !s, K � �1=2, and at �� � 0, Eq. (7) reduces
to Eq. (4) with � � �p=��p � �s�.

As usual, the ultimate test for any approximation is
numerical calculations. We solved the Eliashberg equa-
tions for a variety of model �2F�!� including SF and
compared them with the proposed analytical formulas. In
Fig. 1 we show this comparison for the simplest ‘‘one-
mode’’ approximation, one phonon and one paramagnon
(we have verified that other model spectra lead to similar
results). As we can see, while Eq. (7) as well as its
simplified version Eq. (4a) describe the numerical results
rather well when!s and!p are comparable, the latter fails
at!s � !p, and both fail at!s 
 !p. Both effects can be
easily understood: Eq. (4) includes !s in a negative power
in all regimes, thus leading to a total suppression of super-
conductivity at !s ! 1. In reality, in this limit the nega-
tive effect of the SF is renormalized down logarithmically
in the same spirit as the Coulomb repulsion.

Equations (4) and (7) diverge at !s ! 0. This is due to
the fact that the derivations above assume that !s;!p *

�Tc. It is possible to treat this regime separately. If !s 

Tc, the SF act as static magnetic defects, and the standard
theory of the magnetic pair breaking [11] can be applied.
Thus, at !s � 0 one needs only to keep the term with n �
m in �s�!n �!m�. Then the equations reduce to the
standard form [5,11] with the pair-breaking parameter � �
�1=2	P�=�Tc � �s. In the weak coupling limit, Tc is

Tc � Tc0 exp� �1=2� �  �1=2� ���; (8)

where Tc0 � Tc��s � 0�. One important difference exists
between pair breaking by SF with!s � 0 and by magnetic
impurities: in the former case, the pair-breaking parameter
� now does not depend on Tc. This has consequences for
the isotope effect, as we will see below.

For small but finite !s 
 �Tc summation of �s�n�m�
over n�m provides the expression for the pair-breaking
rate in Eq. (8): � � �s

Tc
2!s

coth Tc
2!s

. This result coincides
with Eq. (5.8) of Ref. [12] for dynamical pair breaking in
anisotropic superconductors if the anisotropy parameter g
(as defined in Ref. [12]) is set to �1. When !s increases,
Tc drops sharply with a complete loss of superconductivity
at !s � !�s � e�CTc0=2� (where eC ’ 1:78). However,
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FIG. 1 (color online). Comparison of Tc and isotope coeffi-
cient with the exact numerical calculations. Note that both
Eq. (4b) (the upper broken line) and the square-well model
[Eqs. (5) and (6)] disagree qualitatively with the numerical
results in the whole range of !s.
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the condition!s 
 �Tc used in the derivation of Eq. (8) is
lost well before !�s (in fact, at !s ’ !�s=2�.

One can take into account the strong coupling effects in
the square-well model, resulting in a renormalization �!

�=�1� �p� �
�s

1��p
Tc

2!s
coth Tc

2!s
. As the comparison with

numerical calculations shows (Fig. 1), this approximation
underestimates Tc. However, it illustrates why Tc flattens
out at a finite value smaller than Tc0, when!s ! 0, instead
of raising as Eq. (7) suggests.

We will now turn to the isotope effect. Looking at
Eq. (4), one observes that the isotope coefficient, 
 �
�=2 � �p=2��p � �s�> 0:5, is always enhanced com-
pared to its BCS value and is independent of the SF
frequencies. Clearly, this should hold approximately in
the range of the applicability of this formula, !s ’ !p �

�Tc. Indeed, the more accurate Eq. (7) yields for 



 � 0:5
�p

�p � �s

�
1�

�s
�p � �s

F
�
!2
s

!2
p

��
;

F�r� � �r2 � 2r lnr� 1�=�r� 1�2:
(9)

The second term is the correction to Eq. (4). It can be of
either sign. [The F�r� monotonically grows from �1 to 1,
and F�1� � 0.] As discussed, Eq. (4) itself becomes invalid
at !s < �Tc. As !s ! 0, according to Eq. (8), 
 � 0:5
(note that in the case of magnetic impurities 
> 0:5 due to
the dependence of � on Tc [5]). Therefore, the isotope
effect has to have a maximum at some 0<!s < !p, and

max > �p=2��p � �s� [13]. This is confirmed by numeri-
cal calculations, which do show that the maximum isotope
effect for given �s; �p is achieved at !s �!p and is close
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to �p=2��p � �s�. Let us emphasize this result: if super-
conductivity is depressed by spin fluctuations, the total
isotope effect increases compared to its BCS value.

We shall now apply this formalism to a superconductor
where Tc is substantially suppressed by SF, MgCNi3
[7,14,15]. It has attracted substantial interest despite its
modest critical temperature, Tc � 8 K, but because of its
unusual crystal structure and proximity to ferromagnetic
instability. The latter was first pointed out by Rosner et al.
[7], who believed in such strong coupling with SF that they
proposed a p-wave superconductivity. Singh and Mazin
[14] also concluded that SF play a role in superconductiv-
ity of MgCNi3, but, based on their frozen phonon calcu-
lation, they found strong coupling with the phonons
(�p * 1� due to the bond-bending Ni phonons. They rec-
onciled this large �p with a modest Tc within a scenario of
s-wave phonon-induced superconductivity depressed by
SF. Later this scenario was reinvented by Shan et al.
[15], who proved the s symmetry by tunneling experi-
ments. This point has been since confirmed by several
groups and seems to be well established.

The prediction [14] of the Ni phonon playing the major
role in the electron-phonon coupling in MgNiC3 was based
on a limited number of calculations at a high-symmetry
point in the Brillouin zone, and therefore was more an
educated guess than a quantitative argument. A quantita-
tive analysis was provided in Ref. [16] via linear-response
calculations of the phonon frequencies and their coupling
with electrons for the whole Brillouin zone. They found a
gigantic coupling for the Ni bond-bending modes, and the
most strongly coupled modes (the mode considered in
Ref. [14] was not among them) actually unstable. In other
words, they found double-well–type instabilities involving
mostly Ni atoms, and they have verified that experimen-
tally. They estimated that �p � 0:5 and !log � 131 K.

Thus, the scenario of Ref. [14] was modified in Ref. [16]
in the sense that electron-phonon coupling and super-
conductivity were coming from highly anharmonic pre-
dominantly Ni modes, but not exactly the simple rotations
of the Ni6 octahedra considered in Ref. [14]. Strong an-
harmonicity of these modes makes it impossible to evalu-
ate their coupling with electrons in the linear-response
calculations, but it is obviously strong. However, one can
estimate the coupling with phonons and paramagnons in-
directly from experimental data. Indeed, specific heat re-
normalization ranges from 2.6 to 3.1 (see Ref. [17] and
references therein), implying that the sum �p � �s varies
between 1.6 and 2.1. Wälte et al. [17] estimated !p �

143 K, comparable to the calculation in Ref. [16], !s �
25 K, and �s � 0:43. Then, using MMF, �� � 0:13 and
Tc � 6:8 K, as measured for their samples, they deduced
�p � 1:91.

However, there are several problems with this deriva-
tion. First of all, as shown above, the proper formula is
Eq. (4). Using it instead of Eq. (2), and keeping all their
other parameters, we get a more realistic number, �p � 1:6
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FIG. 2 (color online). Tc for the electron-phonon spectral
function calculated in [16] for MgCNi3 (inset).
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(cf. �� 1:5 obtained in Ref. [16]). However, the SF model
adopted in Ref. [17] cannot be considered as proven. It is
based on the disputable assumption that the upturn of the
specific heat quotient at low temperature and high mag-
netic field is due to the paramagnon contribution to specific
heat, while there many other explanations of this effect.
!p � 25 K seems to be unrealistically soft. Also, low Tc
and high residual resistance cast doubt on the sample
quality in this study.

Here we use a different approach: we adopt the calcu-
lated values �p � 1:5 and !p � 131 K, in the harmonic
approximation, and total mass renormalization 1� �p �
�s � 2:85, so that �s � 0:35. The results of the numerical
solution of the Eliashberg equations with the �2F�!� from
Ref. [16] and �� � 0:12 are shown in Fig. 2, together with
the curve calculated from Eq. (7). This way, we find !s �
50 K, which we believe is a more realistic number than
25 K. The corresponding total isotope effect is 0.75.

This may sound in agreement with the recent experiment
by Klimczuk and Cava [18], who have measured the
isotope effect 
C � 0:54 on carbon only. If the total 
 �
0:75, this suggests for Ni a seemingly reasonable 
Ni �
0:21, suggesting that Ni phonons couple with the electrons
twice weaker than C ones. Unfortunately, the first-
principles calculations indicate that the Ni modes couple
with electrons at least an order of magnitude stronger than
the C modes (there is hardly any C character present at the
Fermi level). Currently, the only way to reconcile this with
the measurements of Ref. [18] is to assume that the ob-
served isotope effect is not a result of the frequency shift of
the C modes, but of some subtle changes in the crystal
structure induced by the isotope substitution. Such a pos-
sibility is suggested by an earlier study [19], where it was
found that (i) Tc depends on the lattice parameter at a rate
of � 310 K= �A, which translates an error of �0:0015 �A in
the lattice parameter [18] into an error of �0:46 K in Tc,
larger than the isotope shift of 0.3 K, and (ii) that two
samples with the same lattice parameter and the same
25700
neutron-measured C content have Tc differing by 0.71 K.
A possible explanation is that, given the proximity of
MgCNi3 to a ferromagnetic instability, crystallographic
defects may induce local magnetic moments which work
as pair breakers. The concentration of such defects, even
for the same C content, may depend on the sample prepa-
ration and, possibly, on isotope substitution. Therefore
further studies of the isotope effect on both C and Ni are
necessary, in particular, combined with accurate measure-
ments of the isotope shift of the phonon modes.
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