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ON MICROSCOPICAL DERIVATION OP LORENTZ-LORENZFORMULA.
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Lorentz—Lorenz formula may be derived microacopical].y by
the analytical inversion of the dielectric matrix (DM) in
the limit of tightly bound electrons. Exchange and corre-
lation effects are to be taken into account and atomic
polarisability is to be defined correctly in terms of the
atomic susceptibility instead of the polarization operator.
A wrong definition was the origin of usual contradictions
between microscopical calculations and classical formula.
The inversion of the DM diminishes dielectric constant in
comparison with the diagonal element of EM but this proce-
dure takes into account only a part of the local field
effects caused by rapidly oscillating fields. Another part
is connected with exchange interaction and increases the
diagonal element of DM in comparison with dielectric cons-
tant without any local field effects,hence all local
field effects do increase the dielectric constant.

1. It is well known that the polari— discuss~d in the review article by Agra—
zability of the system of atoms or mole— novich
culea may differ very much from the sum An interest in microscopial aspects
of polarizabilities of constituent par— of local field effects.has grown in the
ticles,even when the wave functions of last years. It may have its origin in
electrons on different atoms do not the fact that local field effects are of
o].verlap. In classical electrodynamics the considerable importance in lattice
such a phenomenon is usually described dynamics 4 and high—temperature super—
by Lorentz—Lorentz (LL) or Clausius— conductivity 5.
Mossotti formula for dielectric constant 2. At present many papers are avail—
(DC) 1; able which deal with a quantum—mechanical

£* 1~~ (i) approach to the derivation of DC for in-
sulators and the attemptg_~ justify LLHere ~. is the polarizability of a single formula microscopically . The main

atom, is the number of atoms in the idea known from 1960 is that the die].ect—
unit volume. The difference between El rio function in crystal is to be written
and 4$Tns~. is due to the atom interac— as a matrix in the reciprocal lattice
tion in the system and is called local vectors K and K’ , i.e. ~

field effects. and non—diagonalmatrix elements (#(* K’)
The dielectris constant without 100— play an important part in dielectric

al field effects may be expressed as screening.
Er ~fla(. (2)

It was shown by Adler 6and WiserComparing (i) and (2) one can see that the macroscopical DC for email mo—
that the local field corrections always ment~ q~ E(~,e~Jmaybe expressed in
lead to the increasing of DC within the terms of inverse ~ie1ectric matrix (DM)
framework of the classical electrodyna— as follows
mica.

We should mention here that even ~
within the framework of classical elect— The usual way for the derivation of DC
rodynamics an applicability of LL for— is obtaining in some approximation the
mula is rather limited: it deals only DM ~ ~K’, c.O) and eubeequ—
with cpstala with the tetrabed~al syw— ent inverting it.Recent].y an effective
metry , does not include spatial din— method for such an inversion has been
persion effects and takes into account developed using Wannier repr~se~tation
only dipoler terms in the wultipole ex— for electron wave functionsl~,l .The
pension. The possibility of phenomenolo— main part of the above—mentioned works
gica]. generalisation of LL formula was 6—12 was made within a simple random
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phase approximation (RPA).Moreover ,the ~ (9)
diagonal matrix element
was assumed to be identical to the DC ~&C~~Rs)is the Wannier function of an
without local field correctkon: electron in the zone .e. , centered

E(~#o,oiJ~4’Jr,im~c’w)(2’) in the cell with the coordinate ~a
where cc(c

4,)is the atomic polarizabili— ‘~ai~ (L”u is the matrix element of
ty. the polarization operator with respectto Wannier functions.

The expression for the DC obtained The inversion of (7) gives:
in these papers by the inversion of the
EM from formula (3) does not coincide
in fact with the LL formula even in the
limit of thightly—bound eleotrons.More— £ A.; (~.sc)s (q~jO~) ~ (10)
over, this expreesion~ as has been exam—
phasized by Johnson 1~, contrasts sharp— ~

ly with LL formula and diminishes the
DC rei.ative to ~ 4
(see Bq. 4.15 of this work).

where the matrix S is defined by

acp<E(~~~0,~4 SJi~V (ii)
the matrix C~ is given byRPA neglect completly exchange and cor— ,,.

relation eff~ts.It was sup~osed by
Sinha et al and Onodera 0 that the ~ (12)
situation with the microscopic derivati-
on of the DC can be remedied by includ— Since we are interested in the LL limit
ing exchange and correlation interac— (we call the limit of non—overlapping
tiona. But they believed that Eq. (2’) atomic wave functions the “LL limit” be—
which connects the diagonal element of cause LL formula must exist just in this
the DM with the atomic polarizability, limit), we may suppose that 4,~ ~
would remain fajthfull. We shall show rAms 4’.,, Therefore we can write the
that the microscopic derivation of LL following relation 17:
formula require both the including cx— ~,,, y(~)e~ffd

3?d’x
change and correlation factors and the
correct determination of the atomic pola—
rizability. Z*(z)~9*(;)?(z,)40(z~)/ (13)

3. For the subsequent discussion
let us display some computations related + 8J7I,~1t4 /~
to the EM. We may write down an eque— where are the matrix elements of
tion for DI! in the rigid lattice as: the at~io dipole

�(x,x’)”ã(x-x)- e~Jd3r$(x~i~?/lt-ti(4) Using the ~ei*l relation
£

where $(x”,x’) is the non-reducible ~ ~ ~rc (14)
polarization part of polarization ope-
rator: we see from Eqs. (ii) and (13) that the

matrix S is given by
3T~i,r).’-JG(X,X.~)G(xz,X)x ~ ~ - i~~-:sA.i4,j/3 (15)

(‘(x,X
1,x’) d~’x,41

P(x,~ X~,X3) is the vertex function where Vice is the operator of the exchan—
including all exchange and correlation ge and correlation interaction. We have
terms. called the first term in (13) V0 be—

In RPA r(x1, x~,X~) is simply cause it represents simply Hartree in—
the product of uf —functions: teraction between electrons located in

the same cell.r (~c.,4,X3)rJ(x,)J(J~-~)(6) In the LL limit we may say that the
first three terms in (14) are connectedUsing Wormier representationwe may only with the properties of electrons in

perform Fourier transformation the sameatom and may be expressedin
terms of the atomic susceptibility func—

- tion
~ tVxc —V,, - (16)

I It is well known 18 that the atomic sum—A:A(1#k)s;;; A~7(g#H’ ceptibilitv matrix %t~iJ and the inver-

where we have introduced the following se matrix Yt~u~ may be diagonalized
notations: with respect to transition indices

and J4’. ( J~~)
(8)
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In order to clear up these question
~,Z~,(W)ct~JsdJu’ (17) we consider for ~implicity the one—os-cillator model I • In this approxiina—

In such a representation the matrix has tion we can write down the static DM
this very simple form: in the LL limit

sJ4I-9~7I/~~/3 (18) 1 (24)

Then this matrix may be inverted very V(j4K) a4*(yj#I() $(o)A(’q#*’~l
easily

a Here ~‘a)is the polarization operator

______________ including exchange and correlation cor-rections. It may be written in the one—oscillator model as follows

Using Eq. (19) in Eq. (10) and taking ST(o) _~_‘~~°“ (~~? (25)
into account the limit ft Vtc (s)$p411(o)

~m A*(t)im .�‘.t,~ (20) Then the static microscopic DC may
L.a be written inverting the matrix (24)

we obtain for the diagonal matrix ele-
ment of the inverse EM the following
expression: E(~,o)i- Y(~j4~j)i~’o,14(q) (26)

a
S...

4c~~X,(w)).tsI~... (21) where is the reducible polariza—
= 1’ ~i-:snçx~ J.i~r/~ tion operator

Using Eq. (3) for DC we obtain finally $~~

e(~.)~i- (.1’- L’ ‘A
t( ~#1j*.tcl,*1t4gflr(013 (27)

(22)
which is exactly the LL formula because The sum in the denominator in Eq . (27)
the correct determination of the atomic does not include the term with ,cro
polarizability is it is clear from Eqs. (26), and (27)

— ,~ /~ (23) that the inversion procedure is no more
than accounting Umklapp ~roceases (or

4. It was seen that the correct rapidly oscillating fieldsj with all mo—
microscopic óerivation of the LL formula menta ~‘*#K. ~It is well known that
required only one assumption,namely in RPA there exists an inequality
Eq.(16). It means that the exchange and ~ (o) <0 (28)
correlation interactions between elect-
rons on different atoms must be ignored. It is easy to check that in RPA such
It is not necessary to make any additio— condition does exist
nal assumption about the specific form t!~~p< (29)
of these interactions.

Some difficulties with the LL for— The correct polarization operator is
mula in the oreceding microscopic calcu— very likely also to obey inequality
lationa 101~,17 arose due to incorrect (28). Then inequality (29) will remain
determination of the atomic polarizabi— faithfull. St~me interesting questionsmight arise for systems with negativlity in terms of the polarization opera— DC 19 but we shall not touch upon thistor • Moreover as one can see matter now.

from EqB. (16) and (23), the DC without It is easy to rewrite Eq. (25) in
local field corrections which is defin— the usual LL form adding and subtract-
ed by Eq’ • (2) is not equal to the dia— ing the term /I’(L)S(o) A(3/ in the
gonal element of EM as was supposed in denominator and using Eq. (13).
previous works 1O,11~ It is not strange Acknowledgements — the authors are
therefore diminishing DC in comparison grateful to prs.L.V.Keldysh and D.A.
with the diagonal matrix element of ICirzhnita for fruitfull discussions.

~(‘!~.4 ~.O, 0) as a result of the Pr. V.L.Ginaburg and the participants
inversion pr~cedure,as ~ bien noted of his seminarare also great acknow—
by Johnson ~ and Lannoo ~. ledged.
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