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Lorentz-Lorenz formula may be derived microscopically by
the snalytical inversion of the dielectric matrix (DM) in
the limit of tightly bound electrons. Exchange and corre-
lation effects are to be taken into account and atomic
polarisability is to be defined correctly in terms of the
atomic susceptibility instead of the polarization operator.
A wrong definition was the origin of usual contradictions
between microscopical calculations and classical formula.
The inversion of the DM diminishes dielectric comstant in

comparison with the diagonal element of DM but this
dure takes into account only a

roce~
art of the local field

effects caused by rapidly oscillating fields. Another part
i8 connected with exchange interaction and increases the
diagonal element of DM in comparison with dielectric cons-
tant without any local field effects,hence all local

field effects do increase the dielectric constant.

1s¢ It is well known that the polari-

zability of the system of atoms or mole-
cules may differ very much from the sum
of polarizabilities of constituent par-
ticlea,even when the wave functions of
electrons on different atoms do not
olverlap. In classical electrodynamics
such a phenomenon is usually described
by Lorentz-Lorentz (LL) or Clausius-
%ggaogti formula for dielectric constant

€= 1+ 4Fnot/(1-49net/3) (1)

Here ol is the polarizability of a single
atoun, is the number of atoms in the
unit volume, The difference between £-{
and 48fne is due to the atom interac-
tion in the system and is called local
field effects.

The dielectyiz constant without loc-
al field effects may be expressed as

€'z 41+ 4F3nck (2)

Comparing (1) and (2) one can see
that the local field corrections always
lead to the increasing of DC within the
riamework of the classical electrodyna-
MmicBe

We should mention here that even
within the framework of classical elect-
rodynamics an agplicability of LL for~-
mula is rather limited: it deals only
with cyystals with the tetrahedral asyum-
metry ©, does not include spatial dis-
persion effecte and takes into account
only dipolar terms in the wultipole ex-
pansion. The possibility of phenomenolo-
gical generalisation of LI formula was
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discuss
novich

An interest in microscopial aspects
of local field effects.has grown in the
last years. It may have its origin in
the fact that local field effects are of
the consigerable importance in lattice
dynamice eand high-temperature super-
conductivity >,

2+ At present many papers are avail-
able which deal with a quantum-mechanical
approach to the derivation of DC for in-
sugators and the attemptg *2 Justify LL
formula microscopically °~1%, The wain
idea known from 1960 is that the dielect-
ric function in crystal is to be written
as a watrix in the reciprocal lattice
vectors K and K', i.e. E(G+K @+ K', W)
and non-diagonal matrix elements (XK x)
play an important part in dielectric
screening.

It was shown by Adler and Wiser
that the macroscopical DC for small mo~
menta ¢ €(R,wmay be expressed in
terms of inverse dielectric matrix (DM)

EXNQtH,9¢H,w0) as follows

-o P .
Etre, = [ElR+K, 86k co)fw- 5o0(3)
The usual way for the derivation of DC
is obtaining in some approximation the
M E(2tH,2+K,0) and subsequ~
ent inverting it.Recently an effective
method for such an inversion has been
developed using Wannier repﬁgs?gtation
for electron wave functions12s1°,The
Eain part of the above-mentioned works
=12 was made within a simple random

!d in the review article by Agra-

7
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ghase approximation (RPA).Moreover,the

iagonal matrix element

was assumed to be identical to the DC

without local tield correction:
€(g/099¢0dw)=1+4T ned(w)(2')

where o¢(w)is the atomic polarizabili-

ty.

The expression for the DC obtained
in these papers by the inversion of the
DM from formula (3) does not coincide
in fact with the LL formula even in the
limit of thightly-~bound electrons.More-
over, this expresaioq2 a8 has been exam-
phasized by Johnson s contrasts sharp-
ly with LL formula and diminishes the
DC reiative to € (¢2+0 2+0,ce)

(see Eq. 4.15 of this work).

Emacro 4, e0) <& (340,300, cw)

RPA neglect completly exchange and coxr-
relation effq?ta.It wasg supgoaed by
Sinha et 8l 1! and Onodera 10 %hat the
gituation with the wicroscopic derivati~
on of the DC can be remedied by includ-
ing exchange and correlation interac-
tions, But they believed that Eq. (2')
which connects the diagonal element of
the DM with the atomic polarizability,
would remain faithfull. We shall show
that the microscopic derivation of LL
formula require both the including ex-
change and correlation factors and the
correct determination of the atomic pola-
rizability.

3. For the subsequent discussion
let us display sowme computations related
to the DM, We may write down an equa-
tion for DM in the rigid lattice as:

E(x,x)= 8(x-x)- eYfdk FarY izl (4

where J (x",x’') 1is the non-reducible
polarization part of polarization ope-
rator:

Ji(x, %)= ~ JG (x,X, )G (xy,X) x
r(xe, Xz ,x’) d'x, d"a
l(x:, Xs ,X3) is the vertex function

including all exchange and correlation

terma. Cix, Ko, %3)

In RPA
the product of o ~functions:

e, %, %5 )= (x5 ) d0x-23) (6

Using Wannier representation we may
perform Fourier transformation

E(3+k, 2+ K') = S fut - V(gek) 37
wpdd

ant
” . an' *n ’
Ay (e k) S50 ART s o)
where we have introduced the following

notations:
L * ~i(Qe X)L
A= JR)e Bk )d'e (g

(5)

is simply

(7
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V(g+K)= 4re?/13+x1? (9)

¥, (t+ R,)is the Wannier function of an
electron in the zone ot ,» centered
E?_the cell with the coordinate &)

uAFd (9,w) is the matrix element of
the polarization operator with respect
to Wannier functions.

The inversion of (7) gives:

E QoK 24K, @) = Iy’ 4 V(gorinx
-sfﬂ Aup(24k) Soy o (90) A (gek) 0
nn'

A
where the‘ matrix AS
~f
S=J -V
the matrix Vv 18 given by

Vips ()2 S8, aon) WewAS Taon) (12)

is defined by
(11)

Since we are interested in the LL limit
(we call the limit of non-overlapping
atomic wave functions the "LL limit"™ be~
cause LL formula must exist just in this
limit), we may suppose that 4. =
2 Auo don Therefore we can wriﬁ% the
following relation 17;

£im Vigrs(t) =elds d*%, =
Y S n) Bl B2 )/

[2-2%) + Bﬂ&ﬁ {es /3
where 4: are the matrix elements of
the affp c dipole -

& PTG (2)d*
Using the ysual relation
W.“z 5;-";‘ + ch (14)

we see from Eqs. (11) and (13) that the
matrix § 1is given by

a . 4
S<Fana Ve -V~ 85Lig fps /3

(13)

(15)

where Vke is the operator of the exchan-
ge and correlation interaction. We have
called the first term in (13) Vu be-
cause it represents simply Hartree in-
teraction between electrons located in
the same cell.

In the LL limit we way say that the
firat three terms in (14) are connected
only with the properties of electrons in
the same atom and may be expressed in
terms of the atomic susceptibility func-
tion

- -~/
Vern *Vie ~Wu = Xaz (16)

It is well known 1® that the atomic sus-
ceptibility matrix Xys&d and the inver-
ge matrix X«pdd mey be diagonalized

with respect to transition indices A = (e, p)

and '« ( 4,4)
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Ko (a0) = Xl pp (1)

In such a representation the matrix has
this very eimple form:

Spp < Kpilup =85 L o3 09

Then this matrix may be inverted very
easily

- 852 fo fot %,
Sﬂﬁ‘-lwaﬂ"j:a;ﬁ%-ﬁ/f“g)

Using Eq. (19) in Eq. (10) and taking
into account the limit

fﬁnav Acp(2)= Lup (20)

we obtain for the diagonal matrix ele-
ment of the inverse DM the following
expression:

’Zgn £t 200, w) = .
- o 45n & Ke(w) Vs |
N T
Using Eq. (3) for DC we obtain finally

. FnZ Xs(w) | 4s)®
elard 1-4SnEX )\ (22

which is exactly the LL formula because
the correct determination of the atomic
polarizability 1is (23)

A ‘.é: ){: '1:’1

4. It was seen that the correct
microscopic derivation of the LL formula
required only one assumption,namely
Eq.(16). It means that the exchange and
correlation interactions hetween elect-
rons on different atoms must be ignored.
It 18 not necessary to make any additio-
nal assumption about the specific form
of these interactions.

Some difficulties with the LL for-
mula in the greceding microscopic calcu~
lations 10-12,17 arose due to incorrect
determination of the atomic polarizabi-
lity in terms of the polarization opera-
tor JE%P" « Moreover as one can see

from Eqe. (16) and (23), the DC without
local field corrections which is defin~-
ed by Eq « (2) is not equal to the dia-
gonal element of DM as was supposed in
previous works 10,11, It is not strange
therefore diminishing DC in comparison
with the diagonal matrix element of

E(2+6 2+0,0) as a result of the
inversion prgcedure, as h?i bgen noted
by Johnson 1€ and Lannoo 14,

(21)
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In order to clear up these question
we consider for simplicity the one-o08=
cillator model 12 , In this approxima-
tion we can write down the static DM
in the LL limit

E(een ,g+x0) = 1-

(24)
x

V(2+Kk) A7 (9+K) F(0)A(2¢K)
Here 5&%913 the polarization operator
including exchange and correlation cor-
rections. It may be written in the one-
ogcillator model as follows

dopp (o)
Jito) 1+ Vec ©) Samn (o)

Then the static microscopic DC may
be written inverting the matrix (24)

(25)

E(2,0) <1~ V(g )RR (o) Ag) (26)

/
where Jf (@) is the reducible polariza-
tion operator

7= J(o)/
(1- z ‘0% (g +x) Ngrx)Agex) ST ()] (2T)

The sum in the denominator in Eq . (27)
does not include the term with o .

It is clear from Eqs. (26), and (27)
that the inversion procedure is no more
than accounting Umklapp processes (ox
rapidly oscillating fieldsg with all mo~
menta ¢'= sk . .It is well known that
in RPA there exists an inequality

Jgon (0) <O (28)
It is easy to check that in RPA such
condition does exist
£(q,0) < E(9+0,9+9,0) (29)

The correct polarization operator is
very likely also to obey inequality
(28). Then inequality (29) will remain
faithfull. Spme interesting questions
might arise for systems with negativ
DC 19 but we shall not touch upon this
matter now.

It is easy to rewrite Eq. (25) in
the usual LL form adding and subtract-
ing the term A%*(¢) (o) ”(?I )in the

13).

denominator and using Eq.
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