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Correlated metals and the LDA+U method
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While the LDA+U method is well established for strongly correlated materials with well localized orbitals,
its application to weakly correlated metals is questionable. By extending the LDA Stoner approach onto
LDA +U, we show that LDA-U enhances the Stoner factor, while reducing the density of states. Arguably
the most important correlation effects in metals, fluctuation-induced mass renormalization, and suppression of
the Stoner factor, are missing from LBAU. On the other hand, famoderatelycorrelated metals LDA U
may be useful. With this in mind, we derive a version of LBA that is consistent with the Hohenberg-Kohn
theorem and can be formulated as a constrained density functional theory. We illustrate all of the above on
concrete examples, including the controversial case of magnetism in FeAl.

DOI: 10.1103/PhysRevB.67.153106 PACS nunifer71.15.Mb, 71.20.Be, 71.20.Eh, 75.10.Lp

One of the most influential, from a practical point of view, cally established, in a relatively new area of applying LDA
developments in density functional thediFT) in the last  + U to moderately correlated metallic systefrfs,the situa-
two decades was the LDAU method(see, e.g., Ref.)1  tion is very far from clear.
This method includes the orbital dependence of the self- In this Brief Report we analyze the effect of different DC
energy operators, missing from the Kohn-Sham potential, iprescriptions on the LDA U results in correlated metals.
a relatively crude, pseudoatomic way, neglecting the fine deWe also present a systematic approach to the DC problem, of
tails of the spatial variations of the Coulomb potential. Onwhich the existing recipes are special cases. Finally, we dis-
the contrary, the standard local density approximatiddA ) cuss which problems associated with this class of materials
accounts for the spatial variation of the Hartree potential excan, in principle, be solved within LDAU, and which can-
ceedingly well, but neglects the orbital dependence of théOt.
Coulomb interaction. We use for our analysis the spherically averaged form of
There is one inherent ambiguity in the LBAU method: the gotationally invariant LDA-U (Ref. 5 of Dudarev
In LDA, all electron-electron interactions have already beerft &l
taken into account in a mean-field way. The Hubbard Hamil-

tonian that represents the underlying physics of the LDA A 40 _— , /_i ,

+U method also incorporates a large part of the total Cou—AHLDA+U 2 mo—gn'tr' oo 2 mg’,a ot
lomb energy of the system. A simple combination of the 1 1 1

LDA and Hubbard Hamiltonian thus leads to double count- =ZUN2-23> NZ— ~(U=3)2 Tr(p” p°),
ing (DC) of the Coulomb energy, so one may want to iden- 2 2°% 2 o

tify those parts of the DFT expression for the total energy (1)

that correspond to the interaction included in the Hubbard
Hamiltonian and subtract them. However, since the DFTwhereU andJ are spherically averaged Hubbard repulsion
Hamiltonian is written in terms of the total density and theand intra-atomic exchange for electrons with the given angu-
Hubbard Hamiltonian in the orbital representation, one canlar momentuml, n,,, is the occupation number of thath
not build a direct link between the two. Second, even if itorbital, o= * 1 is the spin index, and the superscript 0 means
were possible, it would be undesirable. Spatial variation ofhat the double counting terms have not been subtracted yet.
the Hartree and exchange-correlation potentials is very imHerep,, . is the orbital occupation matrify,=Tr(p“), and
portant. It would be unreasonable to subtract that out jusN=2_N, .
because it has already been taken into account elsewhere in aTo subtract the DC term from Egl), one naturally starts
primitive way (roughly speakingUN?/2). Rather, one wants with the first two terms in Eq(1), i.e., the Hartree and Stoner
to identify the mean-field part of the Hubbard Hamiltonian, energies. Both are explicit functionals of the spin density,
and subtracthat, leaving only acorrectionto the LDA-type  and are likely to be better described by LDA. To identify the
mean-field solution. DC part of the last term of Edq1), which explicitely depends
This is not a uniquely defined procedure. Several recipesnn,,,, is less trivial; one needs to work out a “mean-field”
exist and it has been appreciated latelyat the results of approximation to this term, that is, substitute
LDA +U calculations may depend crucially on the choice of Tr(p“- p”) by some quantityk,, that depends solely on total
the DC recipe. It should be noted that while for strongly spin density. Czyygk and Sawatzkysuggested that, should
correlated systems the LDAU ideology is at least practi- be equal to Trf”- p?) in the limit of the uniform occupancy
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;';'?A= Smm N, and, consequently = (2l +1)n§, where 4 — Band gap, oV ' ' '
ny=N,/(2l+1). This leads to the following correctionsto ss{ [ o
the total energy and the effective potential: +—+— Magnetic moment, ji |

Uu-J
AEf\gl:HJ: Ty 2 Tr(8p”- p9), o5

AVYE  u(mm o)== (U=3)(p5  —NgSpm).  (2)

Here AMF stands for “around mean field"and Spp 1E

= P;mr —NyOmpy -
For strongly correlated systems the limit of the uniform O9[F

occupancy is not corredin fact, it is not correct even in . . .

weakly correlated systems, due to the crystal fi€ldhus, it 2 3 4 5 6 7 8

is not surprising that for the systems with strongly localized U V)

electrons the AMF functional leads to rather unrealistic re- g1 1. Mott-Hubbard band gaps and magnetic moments of an-

sults. This observation 1&d to another prescriptionx, tiferromagnetic NiO for three flavors of LDAU. The upper and

=(2I+1)n,, lower values of the “error bars” correspond to the FLL and AMF

functionals, respectively.

i
}
1
1N

ABpa+u="— ? > [Tr(p”-p”)—(2+1)n,]
7 ; Tr(8p- 5p°)

o _1 a= : ®
P~ 3 O | () (21+1)X n,(1-n,)

AV y(mm o) =—(U=J)

which produces the correct behavior in the fully localized ) ) ) o
limit (FLL) wheren,,,=0 or 1. Most of the modern LDA  We emphasize that is not adjustable, nor is it a formal
+U calculations utilize one of these two functionals, al-functional of the charge density, but it is a material-
though in real materials the occupation numbers lie betweef@Pendent parametgsimilar to, sayl itself), defined by the
these two limits. self-consistenbccupation matrix. However, in practical cal-
In the AMF the LDA+ U correction to the electronic po- culations it is better to recompute after each iteration, as
tential (2) averaged over all occupied states is zero. This is 4he current value op,, .. changes. Note that the total energy
possible way to define a mean fig(cf. the Slater approxi- is given by a regular LDA expression that only implicitly
mation to the Fock potentiglbut not the way used in the depends otJ andJ via the changing density distribution; it
DFT. The latter is a mean-field theory that produces the coris variational with respect to the charge density at a fixed
rect total energy, not the correct average potential. AMF andbut not variational with respect te itself. The fact that this
FLL represent the “DFT” mean field if all occupation num- prescription is derived according to the DFT ideology allows
bers are all the same, or are all 0 or 1, respectively. It is easgne to formulate the proposed LDAU functional (unlike
to show that (2+1)n2<Tr(p-p?)<(2l+1)n,, so that the existing LDA+U functionaly as a constrained DFT
AMF always gives a negative, and FLL a positive correctiontheory’ at a givena, with the constraint given by Ed5).
to the total energy, while the right recigi| the DFT sense (U —J)/2 then appears as a Lagrange multiplier.
should give zero correction to the total energy. That can be We have tested the proposed functiottdl on NiO, a
achieved by using a linear interpolation between the twgprototypical compound for LDA U calculations(see, e.g.,
extremes corresponding to AMF and FLIx, = (2l Ref. 10. Figure 1 shows the band gap and the mangetic
+1)[an,+(1—a)n?], where 0<a<1 and moment of NiO as a function dfJ at J=0.95 eV for three
different functional§ Eqs.(2), (3), and(4)], calculated within

u-J the linear-muffin-tin orbitalLMTO) method in the atomic

DFT _ o o
AEpa+u="— 2 ; [Tr(8p7- 6p°) sphere approximatiofASA). The parametew=0.5 is al-
most independent ol. Accordingly, the results of our cal-
—(2l+)any(1—n,)], culations based on E@4) for both band gaps and magnetic

moments lie right between those for AMF and FLL calcula-

” tions, and the effect ob) is reduced compared to the FLL
Py calculations. This is in accord with a known observatfon
that in NiO the FLL LDA+ U gives the best agreement with

AVEEL  u(mm a)=—(U-J)

o the experiment folU<6 eV, smaller tharlJ=8 eV calcu-
- ( (I=a)ngt 5 8mm |- (4 Jated from first principled®*
Our next example is a weakly correlated metal FeAl. This
In the spirit of the DFTAEDSA, ,=0, so paramagnetic material has attracted attention due to a recent
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suggestion by Mohret al? that the short-range Coulomb [ ' ' ' ' ' TP &
correlations within the LDA-U may be responsible for sup- O H
pression of ferromagnetism found in all LDA calculations. 8 Emm e T
More specifically, they found in their AMF LDA U calcu- -~ [ O g @ocp S 1
lations a reduction of the density of statd30S at the §06_ O g o |
Fermi level, D¢, which was sufficient to make the Stoner é ' O

. L . (]
criterion smaller than 1 and stabilize the paramagnetic stateg _ ]
To analyze this result, it is important to revisit the Stoner g o4} -|:||- v ::32:3: s wark O A P Y
theory for the LDA+U case. § O DFT LDA+U, this work +_ 9 o

In DFT, the Stoner parametedl is defined as = ® /
| = —23%E,./dM?, the second derivative of the exchange- o2} -
correlation energy with respect to the total magnetic mo- °
ment. The paramagnetic ground state is unstable vihdn hl eooo (X X J I“ o |
=1. This can be derived from the force theorem, which °® %2 %5 4 &
states that the total energy for small magnetizations can bc U (eV)

computed by assuming a rigid shift of the bands by FIG. 2. Magnetic moments of FeAl for AMF and DFT flavors of

=*M/2Dg, so that. the gain ip the interaction energy LDA +U compared with the results of Molet al. (Ref. 2.
—IM?/4 competes with the loss in the one-electron energy,

M2/4D¢ . In the LDA+ U the criterion holds, but the product . . )
D¢l changes, not only becauBg changes, but also because inside the MT sphere, as in Ref. 2; however, in less localized
the newly added interaction energy depends'\mmndeed’ cases, where a noticeable pal’t of therbitals SplllS out of
the force theorem calls for a chang®? ,=boD the MT sphere, the effect of the sarikis smaller when
where D= — 7~ 4m G, (Ex) Whenmgpplied to the applied only inside the MT sphere. One can see in Fig. 2
mm’ mm’ . . . . . ,
functionals(2)—(4), it generates a change in the interactionthat, indeed, our calculations with largeyield largea’s and
energy which results in an additional contribution to theadree very well with Ref. 2, while for small (small ) the
Stoner parameter effect of U in our ASA calculations is stronger than in Ref. 2.
All LDA +U functionals shift unoccupied bands up and

U—J (1—a)(TrD)2 occupied bands down. Therefore LBAJ broadens the
Al(@)=—| Tr(D-D)— ———"|. (6) bands crossing the Fermi level. Because of this broadening,
Dr 21+1 in FeAl for smallU the parameter is initially decreasing

(Fig. 2 with a minimuma=0.05 atU=2 eV. The magnetic

In the limit of the uniform occupancy, E¢6) for the FLL  moment also decreases in this region. At largera starts
case @=1) reduces to Y—J)/(2I+1). Given that the growing again. At this point it is instructive to apply the
LDA Stoner parametelr is of the same order ak we obtain  |ogic of the constrained LDA approach in which for every
for the total Stoner parametelry ~(U+21J)/(21+1), fixed « the total LDA energy is minimized under the con-
which is the well known expression for the Stoner factor instraint S, Tr(8p”- Sp?)I[ (21 +1)2 ,n,(1-n,)]=a,(U
the atomic Hubbard model. On the contratyl,sye (a=0) —J)/2 being the Lagrange multiplier. Fer<0.087 (Fig. 2
in this limit is zero. In real metal® ,,,y is complicated due of the two possible solutions with <2 eV andU>2 eV
to crystal field effects. Let us consider, for illustratiosh, we should choose the one with lower enetggallerU). As
electrons in a cubic environment, and introduce the differq result, we find two admissible domains for an AMF-like
enceAD=Dgy—Dyyy, WhereDeg andDyyq areeg andty;  one withU<2 eV and a FLL-like one wittJ=5 eV. The
DOS per orbital atEg, as a measure of the crystal field. latter is clearly unphysical. Both solutions are ferromagnetic.
This gives rise to a contribution toAlaye=3:(U  The solutions with intermediate values bf and reduced
—J)(AD/Dg)?. However, when LDA-U reducesD, and magnetic moments are inadmissible in the framework of the
Al ave IS Not large enough to overcome the decreadedn  constraint DFT formulation.
LDA +U may stabilize the paramagnetic stédee Ref. 12 On the contrary, our explanation of the paramagnetism in
as, for instance, observed in a very narrow range of lakge  FeAl is that the ferromagnetism instability is suppressed by
for FeAl by Mohnet al? [of course, only in the AMF func- the critical spin fluctuations. There are many other systems
tional; the FLL functional produces a largel ~(U —J)/5, for which the fluctuations in the vicinity of a quantum criti-
always increasing the tendency to magnetism cal point reduce the tendency to magnetism. Further ex-

With this in mind, we performed LMTO-ASA calcula- amples include SRu,O07(M pp~0.8 ug,Mey,=0), ZrZn,
tions for all three LDA+U functionals, using fixedd — (M pa~0.7 ug, Me=0.2 ug), and others. The physics
=0.95 eV. The results foJ dependence of the magnetic that is missing from both LDA and LDAU equations in
moment andx are shown in Fig. 2 and compared with thosesuch systems can be described as an exchange of virtual
by Mohn et al? In our AMF calculations we also found a electronic excitations, roughly speaking, plasmonspara-
paramagnetic solution fdd = 4.85 eV, which, however, co- magnong This leads to “dressing” of the one-particle exci-
exsits with a ferromagnetic high spin soluti@rig. 2). Note  tations in the same way as the electron-phonon coupling
that for well localized orbitals there is no difference whether“dresses” electrons near the Fermi surface, although in a
the (U—J) term is applied inside the atomic sphere or only correlated metal such mass renormalization effects occur on
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a large energy scal@f the order ofU or J). LDA calcula- 3
tions cannot reproduce such a dressing, which has been ob-
served in many different ways experimentally. For instance,
LDA calculations do not explain large mass renormalizations
in SLRUO,,*® and large specific heat renormalization in
many correlated metals produces too large plasma frequen-
cies, e.g., in YBgCu;O,, yield an optical absorption spec-
trum in CrQ, shifted by about 20% to higher frequency, as
compared with experiment,and overestimate the exchange
splitting in Ni by a factor of 2° In all these cases the total
width of thed bands isdecreasegdas opposed tbroadening
inherent to LDA+U. Here the essential physics is missing

]

—
T

<

—

Density of States ev'tn)

]

from the LDA+U as well as in LDA, while the spatial varia- 3 5 0 ' 7

tion of the mean-field Coulomb interaction is treated better E-Eg (V)

by the LDA. The missing physics is associated, to a large

degree, with dynamic fluctuations. FIG. 3. FeAl density of stateB(E) in DMFT (solid line) com-

The dynamic version of the LDAU method, the dy- pared with the nonmagnetic LDA. The DMFT solution is stable, the
namic mean field theoryDMFT) 16 \which can account for LDA is not (a ferromagnetic solution is stabledespite the same
some spin fluctuations, resolves many of these problems. D(Ee).

For instance, the mass renormalization ipFBIO; is 3—4,° ocalized electrons and can be recommended in this case
far greater than possible renormalization due to the phonon he other functional, labeled AMF, is exact in a hypothetical

We applied all three flavors of LDAU to SrLRuO, and . . ; . . ;
found no mass renormalization compared to LDA. On thematerlal with uniform orbital occupancies. Although neither

other hand, Eliashberg-type calculatibhsf the renormal- functional gccour)ts for'the quct'uation Eﬁ?CtS’ LBA) may
ization due to spin fluctuations, using a spectrum deduceBe useful, if applied W!th a grain of salt, in moder_ately cor-
from the LDA band structure, give mass renormalizations of elated metals. For this case, We propose a recipe that ac-
the right order. Similarly, DMFT explicitely narrows the counts for an mcompletg Ipcallz_atlon gnd reduces to AMF or
bands in SfRuQ, and enhances the electronic m&ssvith .FLL in the appropriate I|m|ts. Flnallyt itis \{vqrth noting that
this in mind, we applied the DMET with a realistid in many correlated materials the spin-orbit interaction plays

=2 eV to FeAl and found the paramagnetic state to be pers key role. Since outr does not depend on spin, this pre-

fectly stable, with bandsiarrower than in LDA, and the scription can also be_formula?ed in terms of the fulll (4

density of states practically the saitfiég. 3). In other words, E Z)ﬁi(il -("55) %cculgat[l)on :na}mp gnSv?t; T_F(p ) 5(4|t243|'

the spin fluctuations effectively reduce the Stoner fattor quatio shou € replace B 5p) = ( .
To conclude, we observe that no LBAUJ functional cor- +2)an(1-n). Th's. formulation has aT‘Other advantag_e n

rectly describes the essential physics of the weakly correlate, € case of a half-filled band,.such asin .Gd' bgcau_se in this

metals: (i) reducing the band dispersion by dressing of theImlt it reduces to more physically meamngful in this case

one-particle excitation andii) spin fluctuations near the FLL, rather than to AMF as the nonrelativistic He.

guantum critical point. One functional, labeled FLL here, This work is supported in part by ONR and by NSF
correctly describes the important physics in the limit of well (Grant No. DMR-00718283
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