
PHYSICAL REVIEW B 67, 153106 ~2003!
Correlated metals and the LDA¿U method
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While the LDA1U method is well established for strongly correlated materials with well localized orbitals,
its application to weakly correlated metals is questionable. By extending the LDA Stoner approach onto
LDA1U, we show that LDA1U enhances the Stoner factor, while reducing the density of states. Arguably
the most important correlation effects in metals, fluctuation-induced mass renormalization, and suppression of
the Stoner factor, are missing from LDA1U. On the other hand, formoderatelycorrelated metals LDA1U
may be useful. With this in mind, we derive a version of LDA1U that is consistent with the Hohenberg-Kohn
theorem and can be formulated as a constrained density functional theory. We illustrate all of the above on
concrete examples, including the controversial case of magnetism in FeAl.
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One of the most influential, from a practical point of vie
developments in density functional theory~DFT! in the last
two decades was the LDA1U method ~see, e.g., Ref. 1!.
This method includes the orbital dependence of the s
energy operators, missing from the Kohn-Sham potentia
a relatively crude, pseudoatomic way, neglecting the fine
tails of the spatial variations of the Coulomb potential. O
the contrary, the standard local density approximation~LDA !
accounts for the spatial variation of the Hartree potential
ceedingly well, but neglects the orbital dependence of
Coulomb interaction.

There is one inherent ambiguity in the LDA1U method:
In LDA, all electron-electron interactions have already be
taken into account in a mean-field way. The Hubbard Ham
tonian that represents the underlying physics of the L
1U method also incorporates a large part of the total C
lomb energy of the system. A simple combination of t
LDA and Hubbard Hamiltonian thus leads to double cou
ing ~DC! of the Coulomb energy, so one may want to ide
tify those parts of the DFT expression for the total ene
that correspond to the interaction included in the Hubb
Hamiltonian and subtract them. However, since the D
Hamiltonian is written in terms of the total density and t
Hubbard Hamiltonian in the orbital representation, one c
not build a direct link between the two. Second, even i
were possible, it would be undesirable. Spatial variation
the Hartree and exchange-correlation potentials is very
portant. It would be unreasonable to subtract that out
because it has already been taken into account elsewhere
primitive way ~roughly speaking,UN2/2). Rather, one wants
to identify the mean-field part of the Hubbard Hamiltonia
and subtractthat, leaving only acorrection to the LDA-type
mean-field solution.

This is not a uniquely defined procedure. Several reci
exist and it has been appreciated lately2 that the results of
LDA1U calculations may depend crucially on the choice
the DC recipe. It should be noted that while for strong
correlated systems the LDA1U ideology is at least practi
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cally established, in a relatively new area of applying LD
1U to moderately correlated metallic systems,3,2,4 the situa-
tion is very far from clear.

In this Brief Report we analyze the effect of different D
prescriptions on the LDA1U results in correlated metals
We also present a systematic approach to the DC problem
which the existing recipes are special cases. Finally, we
cuss which problems associated with this class of mater
can, in principle, be solved within LDA1U, and which can-
not.

We use for our analysis the spherically averaged form
the rotationally invariant LDA1U ~Ref. 5! of Dudarev
et al.6
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whereU and J are spherically averaged Hubbard repulsi
and intra-atomic exchange for electrons with the given an
lar momentuml, nms is the occupation number of themth
orbital,s561 is the spin index, and the superscript 0 mea
that the double counting terms have not been subtracted
Herermm8

s is the orbital occupation matrix,Ns5Tr(rs), and
N5(sNs .

To subtract the DC term from Eq.~1!, one naturally starts
with the first two terms in Eq.~1!, i.e., the Hartree and Stone
energies. Both are explicit functionals of the spin dens
and are likely to be better described by LDA. To identify th
DC part of the last term of Eq.~1!, which explicitely depends
on nms , is less trivial; one needs to work out a ‘‘mean-field
approximation to this term, that is, substitu
Tr(rs

•rs) by some quantityxs that depends solely on tota
spin density. Czyz˙yk and Sawatzky7 suggested thatxs should
be equal to Tr(rs

•rs) in the limit of the uniform occupancy
©2003 The American Physical Society06-1
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rmm8
s,LDA

5dmm8ns and, consequently,xs5(2l 11)ns
2 , where

ns5Ns /(2l 11). This leads to the following corrections t
the total energy and the effective potential:

DELDA1U
AMF 52

U2J

2 (
s

Tr~drs
•drs!,

DVLDA1U
AMF ~mm8s!52~U2J!~rmm8

s
2nsdmm8!. ~2!

Here AMF stands for ‘‘around mean field’’7 and drmm8
s

5rmm8
s

2nsdmm8 .
For strongly correlated systems the limit of the unifor

occupancy is not correct~in fact, it is not correct even in
weakly correlated systems, due to the crystal field!. Thus, it
is not surprising that for the systems with strongly localiz
electrons the AMF functional leads to rather unrealistic
sults. This observation led7,8 to another prescription,xs

5(2l 11)ns ,

DELDA1U
FLL 52

U2J

2 (
s

@Tr~rs
•rs!2~2l 11!ns#

DVLDA1U
FLL ~mm8s!52~U2J!S rmm8

s
2

1

2
dmm8D , ~3!

which produces the correct behavior in the fully localiz
limit ~FLL! wherenms50 or 1. Most of the modern LDA
1U calculations utilize one of these two functionals, a
though in real materials the occupation numbers lie betw
these two limits.

In the AMF the LDA1U correction to the electronic po
tential ~2! averaged over all occupied states is zero. This
possible way to define a mean field~cf. the Slater approxi-
mation to the Fock potential!, but not the way used in the
DFT. The latter is a mean-field theory that produces the c
rect total energy, not the correct average potential. AMF
FLL represent the ‘‘DFT’’ mean field if all occupation num
bers are all the same, or are all 0 or 1, respectively. It is e
to show that (2l 11)ns

2<Tr(rs
•rs)<(2l 11)ns , so that

AMF always gives a negative, and FLL a positive correcti
to the total energy, while the right recipe~in the DFT sense!
should give zero correction to the total energy. That can
achieved by using a linear interpolation between the t
extremes corresponding to AMF and FLLxs5(2l
11)@ans1(12a)ns

2 #, where 0<a<1 and

DELDA1U
DFT 52

U2J

2 (
s

@Tr~drs
•drs!

2~2l 11!ans~12ns!#,

DVLDA1U
DFT ~mm8s!52~U2J!Frmm8

s

2S ~12a!ns1
a

2 D dmm8G . ~4!

In the spirit of the DFT,DELDA1U
DFT 50, so
15310
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We emphasize thata is not adjustable, nor is it a forma
functional of the charge density, but it is a materia
dependent parameter~similar to, say,U itself!, defined by the
self-consistentoccupation matrix. However, in practical ca
culations it is better to recomputea after each iteration, as
the current value ofrmm8

s changes. Note that the total energ
is given by a regular LDA expression that only implicitl
depends onU andJ via the changing density distribution;
is variational with respect to the charge density at a fixeda,
but not variational with respect toa itself. The fact that this
prescription is derived according to the DFT ideology allo
one to formulate the proposed LDA1U functional ~unlike
the existing LDA1U functionals! as a constrained DFT
theory9 at a givena, with the constraint given by Eq.~5!.
(U2J)/2 then appears as a Lagrange multiplier.

We have tested the proposed functional~4! on NiO, a
prototypical compound for LDA1U calculations~see, e.g.,
Ref. 10!. Figure 1 shows the band gap and the mange
moment of NiO as a function ofU at J50.95 eV for three
different functionals@Eqs.~2!, ~3!, and~4!#, calculated within
the linear-muffin-tin orbital~LMTO! method in the atomic
sphere approximation~ASA!. The parametera.0.5 is al-
most independent onU. Accordingly, the results of our cal
culations based on Eq.~4! for both band gaps and magnet
moments lie right between those for AMF and FLL calcu
tions, and the effect ofU is reduced compared to the FL
calculations. This is in accord with a known observation10

that in NiO the FLL LDA1U gives the best agreement wit
the experiment forU&6 eV, smaller thanU.8 eV calcu-
lated from first principles.10,11

Our next example is a weakly correlated metal FeAl. T
paramagnetic material has attracted attention due to a re

FIG. 1. Mott-Hubbard band gaps and magnetic moments of
tiferromagnetic NiO for three flavors of LDA1U. The upper and
lower values of the ‘‘error bars’’ correspond to the FLL and AM
functionals, respectively.
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suggestion by Mohnet al.2 that the short-range Coulom
correlations within the LDA1U may be responsible for sup
pression of ferromagnetism found in all LDA calculation
More specifically, they found in their AMF LDA1U calcu-
lations a reduction of the density of states~DOS! at the
Fermi level,DF, which was sufficient to make the Ston
criterion smaller than 1 and stabilize the paramagnetic st
To analyze this result, it is important to revisit the Ston
theory for the LDA1U case.

In DFT, the Stoner parameterI is defined as
I 522]2Exc /]M2, the second derivative of the exchang
correlation energy with respect to the total magnetic m
ment. The paramagnetic ground state is unstable whenDFI
>1. This can be derived from the force theorem, wh
states that the total energy for small magnetizations can
computed by assuming a rigid shift of the bands byb
56M /2DF , so that the gain in the interaction energ
2IM 2/4 competes with the loss in the one-electron ene
M2/4DF . In the LDA1U the criterion holds, but the produc
DFI changes, not only becauseDF changes, but also becaus
the newly added interaction energy depends onM. Indeed,
the force theorem calls for a changedrmm8

s
5bsDmm8 ,

where Dmm852p21Im Gmm8(EF). When applied to the
functionals~2!–~4!, it generates a change in the interacti
energy which results in an additional contribution to t
Stoner parameter

DI ~a!5
U2J

DF
2 S Tr~D•D !2

~12a!~Tr D !2

2l 11
D . ~6!

In the limit of the uniform occupancy, Eq.~6! for the FLL
case (a51) reduces to (U2J)/(2l 11). Given that the
LDA Stoner parameterI is of the same order asJ, we obtain
for the total Stoner parameterI FLL'(U12lJ)/(2l 11),
which is the well known expression for the Stoner factor
the atomic Hubbard model. On the contrary,DI AMF (a50)
in this limit is zero. In real metalsDmm8 is complicated due
to crystal field effects. Let us consider, for illustration,d
electrons in a cubic environment, and introduce the diff
enceDD5Deg2Dt2g , whereDeg and Dt2g are eg and t2g
DOS per orbital atEF , as a measure of the crystal fiel
This gives rise to a contribution toDI AMF5 5

24 (U
2J)(DD/DF)2. However, when LDA1U reducesDF , and
DI AMF is not large enough to overcome the decrease inDF ,
LDA1U may stabilize the paramagnetic state~see Ref. 12!,
as, for instance, observed in a very narrow range of largeU ’s
for FeAl by Mohnet al.2 @of course, only in the AMF func-
tional; the FLL functional produces a largeDI'(U2J)/5,
always increasing the tendency to magnetism#.

With this in mind, we performed LMTO-ASA calcula
tions for all three LDA1U functionals, using fixedJ
50.95 eV. The results forU dependence of the magnet
moment anda are shown in Fig. 2 and compared with tho
by Mohn et al.2 In our AMF calculations we also found
paramagnetic solution forU5 4.85 eV, which, however, co
exsits with a ferromagnetic high spin solution~Fig. 2!. Note
that for well localized orbitals there is no difference wheth
the (U2J) term is applied inside the atomic sphere or on
15310
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inside the MT sphere, as in Ref. 2; however, in less localiz
cases, where a noticeable part of thed-orbitals spills out of
the MT sphere, the effect of the sameU is smaller when
applied only inside the MT sphere. One can see in Fig
that, indeed, our calculations with largeU yield largea ’s and
agree very well with Ref. 2, while for smallU ~smalla) the
effect ofU in our ASA calculations is stronger than in Ref.

All LDA 1U functionals shift unoccupied bands up an
occupied bands down. Therefore LDA1U broadens the
bands crossing the Fermi level. Because of this broaden
in FeAl for small U the parametera is initially decreasing
~Fig. 2! with a minimuma50.05 atU52 eV. The magnetic
moment also decreases in this region. At largerU, a starts
growing again. At this point it is instructive to apply th
logic of the constrained LDA approach in which for eve
fixed a the total LDA energy is minimized under the con
straint (sTr(drs

•drs)/@(2l 11)(sns(12ns)#5a,(U
2J)/2 being the Lagrange multiplier. Fora<0.087~Fig. 2!
of the two possible solutions withU,2 eV andU.2 eV
we should choose the one with lower energy~smallerU). As
a result, we find two admissible domains forU: an AMF-like
one withU,2 eV and a FLL-like one withU*5 eV. The
latter is clearly unphysical. Both solutions are ferromagne
The solutions with intermediate values ofU and reduced
magnetic moments are inadmissible in the framework of
constraint DFT formulation.

On the contrary, our explanation of the paramagnetism
FeAl is that the ferromagnetism instability is suppressed
the critical spin fluctuations. There are many other syste
for which the fluctuations in the vicinity of a quantum crit
cal point reduce the tendency to magnetism. Further
amples include Sr3Ru2O7(MLDA'0.8 mB ,Mexp50), ZrZn2
(MLDA'0.7 mB , Mexp50.2 mB), and others. The physic
that is missing from both LDA and LDA1U equations in
such systems can be described as an exchange of vi
electronic excitations, roughly speaking, plasmons or~para-
magnons!. This leads to ‘‘dressing’’ of the one-particle exc
tations in the same way as the electron-phonon coup
‘‘dresses’’ electrons near the Fermi surface, although in
correlated metal such mass renormalization effects occu

FIG. 2. Magnetic moments of FeAl for AMF and DFT flavors o
LDA1U compared with the results of Mohnet al. ~Ref. 2!.
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a large energy scale~of the order ofU or J). LDA calcula-
tions cannot reproduce such a dressing, which has been
served in many different ways experimentally. For instan
LDA calculations do not explain large mass renormalizatio
in Sr2RuO4,13 and large specific heat renormalization
many correlated metals produces too large plasma freq
cies, e.g., in YBa2Cu3O7, yield an optical absorption spec
trum in CrO2 shifted by about 20% to higher frequency,
compared with experiment,14 and overestimate the exchang
splitting in Ni by a factor of 2.15 In all these cases the tota
width of thed bands isdecreased, as opposed tobroadening
inherent to LDA1U. Here the essential physics is missin
from the LDA1U as well as in LDA, while the spatial varia
tion of the mean-field Coulomb interaction is treated be
by the LDA. The missing physics is associated, to a la
degree, with dynamic fluctuations.

The dynamic version of the LDA1U method, the dy-
namic mean field theory~DMFT!,16 which can account for
some spin fluctuations,17 resolves many of these problem
For instance, the mass renormalization in Sr2RuO4 is 3–4,13

far greater than possible renormalization due to the phon
We applied all three flavors of LDA1U to Sr2RuO4 and
found no mass renormalization compared to LDA. On
other hand, Eliashberg-type calculations18 of the renormal-
ization due to spin fluctuations, using a spectrum dedu
from the LDA band structure, give mass renormalizations
the right order. Similarly, DMFT explicitely narrows th
bands in Sr2RuO4 and enhances the electronic mass.19 With
this in mind, we applied the DMFT with a realisticU
52 eV to FeAl and found the paramagnetic state to be p
fectly stable, with bandsnarrower than in LDA, and the
density of states practically the same~Fig. 3!. In other words,
the spin fluctuations effectively reduce the Stoner factorI.

To conclude, we observe that no LDA1U functional cor-
rectly describes the essential physics of the weakly correl
metals:~i! reducing the band dispersion by dressing of
one-particle excitation and~ii ! spin fluctuations near the
quantum critical point. One functional, labeled FLL her
correctly describes the important physics in the limit of w

*Permanent address: Dept. of Physics, South Dakota Schoo
Mines and Technology, Rapid City, SD 57701.
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FIG. 3. FeAl density of statesD(E) in DMFT ~solid line! com-
pared with the nonmagnetic LDA. The DMFT solution is stable, t
LDA is not ~a ferromagnetic solution is stable!, despite the same
D(EF).
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