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Anisotropy of magnetic interactions and symmetry of the order
parameter in unconventional superconductor Sr2RuO4
Bongjae Kim1, Sergii Khmelevskyi1,2, Igor I. Mazin3, Daniel F. Agterberg4 and Cesare Franchini1

Sr2RuO4 is the best candidate for spin-triplet superconductivity, an unusual and elusive superconducting state of fundamental
importance. In the last three decades, Sr2RuO4 has been very carefully studied and despite its apparent simplicity when compared with
strongly correlated high-Tc cuprates, for which the pairing symmetry is understood, there is no scenario that can explain all the major
experimental observations, a conundrum that has generated tremendous interest. Here, we present a density-functional-based analysis
of magnetic interactions in Sr2RuO4 and discuss the role of magnetic anisotropy in its unconventional superconductivity. Our goal is
twofold. First, we access the possibility of the superconducting order parameter rotation in an external magnetic field of 200 Oe, and
conclude that the spin–orbit interaction in this material is several orders of magnitude too strong to be consistent with this hypothesis.
Thus, the observed invariance of the Knight shift across Tc has no plausible explanation, and casts doubt on using the Knight shift as an
ultimate litmus paper for the pairing symmetry. Second, we propose a quantitative double-exchange-like model for combining itinerant
fermions with an anisotropic Heisenberg magnetic Hamiltonian. This model is complementary to the Hubbard-model-based calculations
published so far, and forms an alternative framework for exploring superconducting symmetry in Sr2RuO4. As an example, we use this
model to analyze the degeneracy between various p-triplet states in the simplest mean-field approximation, and show that it splits into a
single and two doublets with the ground state defined by the competition between the “Ising” and “compass” anisotropic terms.
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INTRODUCTION
Superconductivity in Sr2RuO4, even though it occurs at a rather
low temperature, has been attracting attention comparable to that
attached to high-temperature superconductors.1 For many years
the dominant opinion was that it represents a unique example of
a chiral triplet pairing state.2–5 Interestingly, the original premise
that led to this hypothesis was the presumed proximity of Sr2RuO4

to ferromagnetism, and thus it was touted as a three-dimensional
analogue of 3He.6, 7 It was soon discovered, first theoretically,8

and then experimentally,9 that the leading instability occurs
in an antiferromagnetic, not ferromagnetic channel, and thus a
spin-fluctuation exchange (FLEX) in the Berk-Schrieffer
spirit would normally lead to a d-wave, not p-wave superconduc-
tivity.
The issue seems to have been decided conclusively when the

Knight shift on Ru was shown to be temperature-independent
across Tc,

2 and later also on O,3 and the neutron-measured spin-
susceptibility was found to be roughly constant across the
transition as well.4 The chiral p-wave state with an order
parameter d ¼ const x þ iyð Þẑ; where the Cooper pair spins can
freely rotate in-plane, is the only state that could have this
property. Moreover, since in this state spins are confined in the xy
plane, the Knight shift in a magnetic field parallel to ẑ is supposed
to drop below Tc in pretty much the same manner as in singlet
superconductors. Nonetheless, when eventually this experiment
was performed,10 it appeared that Kz is also independent of
temperature. The authors of ref. 10 attempted to reconcile the

accepted pairing symmetry with their experiment, by assuming
that the experimental magnetic field of 200 Oe is affecting
drastically the pairing state and converting it to d ¼ f ðx; yÞŷ (or
the corresponding x↔ y partner state). One goal of our paper is to
estimate whether this hypothesis is tenable with realistic material
parameters.
It is worth noting that the invariance of the in-plane

susceptibility is the only experiment consistent exclusively with a
chiral p-state (CpS). Some probes indicate chirality (μSR detects
spontaneous currents below Tc

5), while others indicate breaking of
time-reversal symmetry,11 but the triplet parity is not, in principle,
necessary to explain these experiments. For instance, the singlet
chiral state Δ = const(xz + iyz), or even Δ = const(x2 + y2 + iαxy),
which is not chiral (although this second state would require two-
phase transitions with decreasing temperature, which has never
been detected), but breaks the time reversal symmetry, are other
admissible candidates. Josephson junction experiments12 sug-
gested that the order parameter changes sign under the (x, y) ↔
(−x, −y) transformation, which is consistent with a CpS, but also
with other order parameters.13

Spin–orbit (SO) coupling plays an important role not only in
selecting between different triplet states (chiral vs. planar), but
also in the structure of the chiral state itself. For instance, in
CuxBi2Se3, instead of the expected chiral state, a nematic spin-
triplet state was observed.14, 15 Indeed, in CuxBi2Se3 the large SO
coupling necessarily implies that a d ¼ constðx þ iyÞẑ induces also
an in-plane d-vector component const x̂þ i ŷð Þz.16 This in-plane
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component leads to a non-unitary pairing state, which is not
energetically favored in weak coupling,17 and, instead, the lower-
symmetry nematic state with d ¼ c1x ẑþ c2zx̂ is realized. In
principle, similar physics must occur in Sr2RuO4, but there the
corresponding induced in-plane d-vector component should be
much smaller, thus allowing for a chiral p-wave state to exist.
However, this is a quantitative, not qualitative difference, and
needs a better understanding of the role of SO coupling.
Finally, recent years have brought about an array of experi-

ments that are actually inconsistent with the CpS. One prediction
of a CpS is the existence of edge states at boundaries and at
domain walls.18–20 However, no evidence for these edge states has
been found.19, 21 There are a variety of predictions about the
response of CpS to in-plane magnetic fields that have not been
observed experimentally. In particular, it is known that a finite in-
plane magnetic field should lead to two superconducting
transitions as temperature is reduced22, 23 and that the slope of
the upper critical field with temperature at Tc should depend on
the in-plane field direction (this is only true for pairing states that
can break time-reversal symmetry).23, 24 In addition, several
different probes indicate behavior resembling substantial Pauli
paramagnetic effects (see ref. 25 for discussion and original
references). The latest cloud on the CpS sky appeared because of
the uniaxial strain experiments. For the CpS (or, in fact, any other
two-component state) the critical temperature, Tc, under an
orthorhombic stress must change linearly with the strain (the x ẑ
and y ẑ state will not degenerate any more, and the splitting is
linear in strain). In the experiment26 Tc varies at least quadratically
(more likely, quartically), whereas the linear term is absent within
the experimental accuracy, and only one, very well-expressed
specific heat jump, ΔC, has been observed, with no trace of a
second transition even while the critical temperature changes a lot
(Note: Li, Gibbs, Mackenzie, Hicks, and Nicklas (2017). Heat
capacity measurements of Sr2RuO4 under uniaxial stress. Unpub-
lished (reported at the APS March Meeting, New Orlean)).
Moreover, it was established that both Tc and the ΔC variations
trace the changes in the density of states, and peak when the
Fermi level passes the van Hove singularities at the X or Y points.
This observation is particularly important, because, by symmetry,
the superconducting gap in a triplet channel in a tetragonal
superconductor is identically zero at X and Y (it need not be zero
at a finite kz, but in a highly 2D material like Sr2RuO4 it will be still
very small by virtue of continuity). Correspondingly, one expects
these van Hove singularities to have little effect on super-
conductivity. A slightly more subtle, but even more convincing
argument against triplet pairing in ref. 26 is related to the reduced
critical field anisotropy. Finally, a recent detailed study of thermal
conductivity has concluded that a d-wave state is by far better
consistent with the thermal transport than the CpS.27

In fact, only one fact unambiguously points toward the CpS: the
invariance of the spin susceptibility in the in-plane magnetic field
—but, as discussed above, the analogous experiment for the out-
of-plane field also shows such an invariance. Thus, our acceptance
of the nuclear magnetic resonance data as an ultimate proof of
the CpS hinges upon the possibility of a magnetic field B ≈ 200 Oe
(0.02 T, or 13 mK in temperature units) to overcome the energy
difference between the helical d?ẑð Þ and chiral dkẑð Þ states. One
can show (the derivation is presented below) that this implies that
the two states, whose energy difference comes from the SO
interaction, are nearly degenerate with the accuracy δ ≈ 10−7 K ≈
10−10 λ, where λ ≈ 100meV is the SO constant. Moreover, it is often
claimed that the solution of other paradoxes outlined above may
be obtained (although nobody has convincingly succeeded in
that) in a formalism where the relativistic effects would be fully
accounted for, since the separation between singlet and triplet
channels is only possible in terms of the full angular moment,
rather than just electron spins.

RESULTS AND DISCUSSION
In order to illustrate how SO coupling affects the core assumption
of the field-induced d-vector rotation, let us show a simple back-
of-the-envelope calculation: suppose that the one-electron
Hamiltonian has a relativistic term of the order of κM2

z . The
physical meaning of this term is that in the normal state when n
electron spins are confined in the xy plane (as opposed to be
parallel to z), this affects the exchange part of the effective crystal
potential, and, correspondingly, one-electron energies. The
change is proportional to n, and so is the number of affected
one-electron states, leading to an energy loss of the order of κn2,
where κ is the magnetic anisotropy scale that is determined by the
SO coupling. One way in which this energy contribution manifests
itself is the conventional magnetic anisotropy in a spin-ordered
state in which case n ≈M/μB. However, the same “feedback” effect
must be present in a triplet superconducting state. The number of
electrons bound in Cooper pairs and thus forced to be either
parallel or perpendicular to z can be estimated as n ~ ΔN, where Δ
is some average superconducting gap, and N is the density of
states, which has been experimentally measured to be about 8
states/spin/Ru/eV.1 Assuming Δ ~7.5 K, we estimate n ~0.005 e/Ru.
If the magnetic anisotropy scale κ is of the order of 10 K (we will
show later that this is the case), then the total energy loss incurred
by rotating the spins of the Cooper pairs is ΔEsc ≈ 2 × 10−4 K (this is
smaller than various model estimates of the change in Tc, as
reviewed in ref. 28; we use the above estimate because we
wanted to have a conservative lower bound on ΔEsc and a model-
independent estimate of the energy, and not simply a critical
temperature difference, since the latter may, in principle,
dramatically differ from the former). This seems like a small
number, but we shall compare it with the energy gained by
allowing screening of an external field of 200 Oe by Cooper pairs,
which is ΔEmag � μ2BB

2N � 10�7 K. This is four orders of magnitude
smaller than the estimated loss of superconducting energy. In
other words, to allow for the presumed d-vector rotation, various
relativistic effects must fortuitously cancel each other with a 10−3

accuracy. Note that in ref. 28, instead, ΔTc was compared with the
Zeeman splitting, μBB, but this comparison is hardly relevant at all
for the problem at hands; the correct way is to compare the
energy gain with the energy loss.
This simple estimate emphasizes the importance of getting a

handle of the type and scale of relativistic effects in Sr2RuO4. So
far all efforts in this direction have been performed either
within simplified models or by educated guesses from the
experiment.29–33 The goal of this paper is to address the issue
from a first-principle perspective. It is known that this approach
correctly describes (only slightly underestimating) the SO interac-
tions34 (our SO splitting is exactly the same as calculated in that
reference, 90meV), and, by comparing the Fourier transform of
the calculated exchange interaction with the experimentally
measured q-dependent spin susceptibility, we observe that the
latter is also well reproduced. The only serious problem with this
approach is that it overestimates the tendency to magnetic
ordering for a given set of magnetic interactions because of the
mean field nature of the density functional theory (DFT). Thus, we
start with a realistic paramagnetic state of Sr2RuO4, using the alloy
analogy model in the first-principles DFT framework and calculate
the isotropic exchange interactions (see “Methods”). The Fourier
transform of these interactions gives us the shape of the full spin
susceptibility in the momentum space; as expected, this is peaked
at the nesting vector q3 ¼ 1; 1; 0ð Þ 2π3a, in agreement with the
experiment. Next, we calculate the mean-field energy of several
ordered magnetic states, all characterized by the same wave
vector q = q3, and degenerate without SO interaction. This shall
allow us to calculate nearest neighbor (NN) relativistic Ising terms
(see below). Finally, we calculate magnetic anisotropy for the q ¼
1; 0; 0ð Þ πa states, which breaks the tetragonal symmetry, and from
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there we extract the NN compass exchange (see “Methods”). The
energy scale of magnetic anisotropy appears rather large, which
not only renders the hypothesis of a d-vector rotation unlikely, but
also supports the idea that anisotropic interactions must be
properly accounted for before drawing conclusions from the
experiment. The set of interactions that we derived should serve
as a launching pad and testbed for model calculation of the
superconducting properties. We maintain that a model where all
interelectron interactions are absorbed into spin–spin interactions
(with Hund’s coupling between the spins and non-interacting
electrons) is complementary to the widely used Hubbard-model
and at least as realistic.
Experimentally, Sr2RuO4 shows no sign of magnetic ordering

down to the low temperatures. However, neutron diffraction
studies have revealed35–37 spin-fluctuations in the paramagnetic
state with a characteristic nearly commensurate wave vector
q ¼ 0:3; 0:3; 0ð Þ 2πa , close to q3 ¼ 1; 1; 0ð Þ 2π3a, which persist even at
the room temperature.38 The DFT, being a static mean field theory
(by some criteria, the best such theory possible), overestimates the
tendency to magnetism. In its generalized gradient approximation
flavor DFT stabilizes even ferromagnetic order, albeit with small
moments.39 Unsurprisingly, spin-density waves (SDWs) with q = q3

are even lower in energy. This deficiency of the DFT can, however,
be put to a good use by mapping the DFT (i.e., mean field)
energetics onto a spin-Hamiltonian, as it is often done, for
instance, for Fe-based superconductors.40 Since the isotropic and
anisotropic magnetic interactions entails completely different
energy scales, and require different level of accuracy, we have
chosen two different techniques to calculate them; as discussed
below, the isotropic calculations were performed perturbatively,
allowing us to fully account for the long-range, nesting-driven
interaction, while the NN exchange interactions were calculated
by brute force comparing highly accurate energy values in
different magnetic configurations.
First, we have calculated the Heisenberg part of the Hamilto-

nian, defined as:

HH ¼ �
X
i≠jh i

JijMi �Mj ; (1)

where Mi is the Ru moment on the site i, and the summation is
performed over all bonds up to a given coordination sphere. The
parameters are calculated in the disordered local moments (DLM)
approximation,41 which is used to model the paramagnetic state
of Sr2RuO4 (see “Methods” for more details and employed
approximations).
The results presented in the Fig. 1 are derived for the Ru local

moment being fixed to 1 μB in the DLM state. The obtained values
of the exchange constants, however, are fairly independent of the
values of the local moment fixed in the DLM state; the minimum
of the Fourier transform is always at q = (α, α, 0) with α = 0.3 − 0.31.
Note that the interplane exchanges nearly vanish, indicating an
almost perfect 2D character of the magnetism in Sr2RuO4. For
instance, the NNs between-the-planes J001 ≈ 0.5 − 1 K/μ2B (ferro-
magnetic), or about −0.01J200.
The leading term is the in-plane third NN antiferromagnetic

interaction J200, which is quite counterintuitive from the point of
view of the Hubbard-model and superexchange mechanism that
is often employed as a starting point. This is a consequence of the
Ru electrons itinerancy, since Sr2RuO4 is a metal. The lattice Fourier
transform, J(q), of the calculated interactions is shown in the
Fig. 1b. J(q) has a meaning of a measure of the energy (J(q)·M2) of
the spin-density fluctuations with a wave-vector q and a given
amplitude M [the quantitity that is directly related to the static
zero-temperature spin susceptibility is 1/J(q)]. The deep minima of
J(q) at q ¼ 0:31; 0:31; 0ð Þ 2πa suggest that the spin-fluctuations with
the wave vector q will be dominant in the paramagnetic state of
Sr2RuO4. The position of these minima is indeed in perfect

agreement with the sharp maxima of the integrated magnetic
scattering intensity, experimentally observed in neutron diffrac-
tion.38 Thus, both our calculation and the experiment suggest the
dominance of the spin-fluctuations with the wave vector q3 in the
excitation spectra of Sr2RuO4.
In order to extract the relevant anisotropic exchange interaction

parameters, we used direct calculations of the total energy in
different magnetic configurations compatible with the ordering
vector q3. Note that anisotropic magnetic interactions appear
exclusively due to the SO coupling (see “Methods” for the
description of codes and approximations used in these calcula-
tions). Allowed anisotropic terms for the NN terms are absorbed in
the following Hamiltonian (simplified compared to a more
complete expression discussed in the “Methods” section):

HrH ¼ HH þ
X
<nn>

JzzMz
i M

z
j

þ
X
<nnx>

Jxy Mx
i M

x
j �My

i M
y
j

� �

þ
X
<nny>

Jxy My
i M

y
j �Mx

i M
x
j

� �
;

(2)

where the first term is given by Eq. (1), the second is Ising
exchange (sometimes called the Kitaev interaction), and the last
two represent the compass term. Summation in the last two terms

Fig. 1 Calculated exchange interactions up to the 7th coordination
sphere in Sr2RuO4. a The distance dependence (in terms of planar
lattice constant) of isotropic exchange interactions for in-plane (filled
square) and out-of-plane (open circle). b The Fourier transform of the
exchange interactions shown in the panel a
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is over all horizontal and all vertical bonds, respectively, while in
the Ising term it is over all inequivalent bonds. Note that
Dzyaloshinskii-Moriya terms42, 43 are not allowed by symmetry.
The six most energetically favorable states are depicted in Fig. 2.

The first three states can be described as harmonic SDWs:

Mijk ¼ mA exp �iRijk � q3

� �
; (3)

where Aa ¼ � 1
2 ;

ffiffi
3

p
2 ; 0

h i
, Ab ¼ i

2
ffiffi
2

p ;� i
2
ffiffi
2

p ; 12

h i
, Ac ¼ i

2
ffiffi
2

p ; i
2
ffiffi
2

p ; 12

h i
,

with m hardly varying between the three states and equal to 0.76
μB. The fourth to sixth states are collinear where the amplitude of
the moments varies along each of the crystallographic directions
100, 010, and 110 as m′, −m′/2, −m′/2 (more precisely, 1.07, −0.56,
−0.56 μB). Note that m′ is very close to

ffiffiffi
2

p
m in the harmonic

SDWs, and the average 〈M2〉 is the same in all these states (within
a 1.3% error). In this collinear state the direction of the
magnetization can be selected in three inequivalent ways, namely,
along 110, 110, or 001. Upon inclusion of the SO term, the 001
collinear up-up-down structure is the ground state (Table 1).
Next, we fit the energy differences in Table 1 to the Hamiltonian

(Eq. (2)), extracting Jzz and Jxy (the fitting procedure included more
parameters than in Eq. (2), and is discussed in the “Methods”
section). All isotropic (Heisenberg) parts of the exchange
interactions are included in the HH. The compass parameter Jxy

does not affect the states with q ∝ (1, 1, 0), and was extracted
from a separate set of calculations with q2 ¼ 0; 1; 0ð Þ πa and
Mijk ¼ mA exp �iRijk � q2

� �
, where A⊥ = (1, 0, 0) and A|| = (0, 1, 0),

andm was fixed to be equal to its value in the spiral states, 0.76 μB.
These wave vectors define so-called single stripe antiferromag-
netic order, well known in Fe-based superconductors.
Thus, obtained parameters are Jzz = −1.2 ± 0.6 meV/μ2B and Jxy =

1.0 meV/μ2B (Jzzm2 = −0.70 ± 0.35 meV, Jxy = 0.57 meV, for m = 0.76
μB). The details of the fitting are described in the “Methods”
section. Note that Jxy does not have an error bar not because it
was accurately determined, but because we did not have enough
calculations to estimate the error. First, one observes that the scale
of the anisotropy induced by SO is of the order of 10 K. As
discussed in the introduction, this renders the explanation of the
invariance of the Knight shift below Tc in term of the order
parameter rotation10 untenable and shakes the main argument in
favor of the chiral triplet superconductivity in Sr2RuO4. Second, our
fitting provides a powerful tool for modeling normal and
especially superconducting properties of Sr2RuO4 from an entirely
different perspective. Compared to the generally accepted models
based on the Hubbard-Hund Hamiltonians, our new approach is
based entirely on first-principles calculations, and emphasizes the
role of magnetic interactions. The corresponding DFT-inspired
model Hamiltonian reads:

H ¼ HrH þ He; (4)

He ¼
X
kαs

εkαc
†
kαsckαs � I

X
kqαss0

c†k�q;αsMq � σss0ckαs0 ; (5)

where the first term is the non-interacting energy, with the band
(spin) indices α (s), and the second is the Hund’s rule (Stoner, in
the DFT parlance) coupling. All electron–electron interactions
carried by spin fluctuations are absorbed in the local Hund’s
interaction I and the intersite magnetic interactions HrH, while
interactions due to charge fluctuations are not included in Eq. (5),
but can be added separately, if needed (or just collected in one
Coulomb pseudopotential μ*, as in the Eliashberg theory).
Equation (5) can be understood as a generalized double-
exchange Hamiltonian.44 Indeed, this model, inspired by DFT
calculations, entails electrons moving in the same effective
potential as used in other techniques, and described by the same
tight-binding parameters. However, as it is usual in DFT, all
electron–electron interactions are implicitly integrated out.
Instead, we introduce quasi-local magnetic moments that interact
with the electrons via the local Hund’s rule coupling (parameter-
ized as the Stoner parameter in DFT), while the moments interact
among themselves according to the sum of the long-range
Heisenberg and the short-range anisotropic Hamiltonian (Eq. (2)).
The former part incorporates implicitly all Fermi surface effects,
including nesting at q ¼ 0:3; 0:3; 0f g 2π

a , while the latter selects
between different triplet states. It is important not to attempt to
integrate out the free carriers ckαs in Eq. (5) in order to extract
additional interaction between the local moments M; that would
have been incorrect, because all such interactions had been
computed previously and embedded in HrH. On the contrary, the
intended solution of these equations is integrating out the M’s in
order to obtain the effective pairing interaction, as illustrated
below.
It might be instructive to demonstrate how Eqs. (4) and (5) can

be reduced to a Hamiltonian including only the itinerant electrons
(as convenient for analyzing superconductivity). We can safely
assume that all Js are much smaller than I, introduce the itinerant
spin polarization siα ¼

P
ss0 c

†
iαsσss0ciαs0 , and single out the terms

relevant to the pairwise interaction between siα and sjβ:

Eij;αβ ¼ �IMi � siα � IMj � siβ � JijMi �Mi: (6)

In the lowest order in J, the mean field solution requires that Mi

and siα be parallel, Eij;αβ ¼ �2IMs� JijM2 ŝiα � ŝiβ, and the effective
pairwise interaction can be written as �JijM2 ŝiα � ŝiβ (note that
essentially the same Hamiltonian, only written in the orbital basis
rather than the band basis, which can also be done in this case,

Fig. 2 Lowest energy magnetic structures q ¼ ð1; 1; 0Þ 2π3a
� �

of RuO2

basal plane in Sr2RuO4. The a–c structures represent different types
of spiral magnetic order and d–f corresponds to the collinear up-up-
down magnetic order with different moment directions

Table 1. Calculated total energies (meV/Ru) of various states with the
q3 ¼ ð1; 1; 0Þ 2π3a periodicity

q Spin orientation Energy

Planar 0

(1, 1, 0)(2π/3a) Spiral Rolling −0.42

Transverse −0.22

(110) −0.34

(1, 1, 0)(2π/3a) Collinear (010) −0.24

(001) −1.27

(1, 0, 0)(π/a) Collinear (100) 38.06

Stripes (010) 39.57

Note: For spiral phases, the magnitude of the calculated local moments is
0.76 μB, for collinear up-up-down phase is 0.57 μB, and 1.03μS is for up and
down spin, respectively
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was applied to Fe-based superconductors in several papers, for
instance, in ref. 45; after summation of the total energy over the
band indices α, β these approaches become equivalent). In
principle, one can easily derive the next-order correction to the
interaction, which is þ J2ijM

3=Is
� �

ŝiα � ŝiβ
� �2

:
As an example of how this Hamiltonian can be used to address

superconductivity, we solve in the simplest mean field approx-
imation the problem of the relative energetics of the five unitary
p-triplet states. In particular, beginning with H ¼ �JijM2 ŝiα � ŝiβ
and restricting the electronic spins to a single band for simplicity
(generalizing onto three bands with realistic dispersions is
straighforward), we find that the Ising and compass exchange
modify the pairing interaction δV in different pairing channels
differently, as shown in Table 2.
Thus, in this approximation the five states split into two planar

doublets (of course, this degeneracy is not driven by symmetry,
and will be lifted in more sophisticated calculations, but likely the
splitting will be small) and a CpS singlet, which is located between
the doublets if Jzz > −|Jxy| and below both of them otherwise (note
that we found Jzz to be negative). In other words, we have shown
that selection between chiral and planar superconductivity is
driven by the competition between the Ising and compass
anisotropic exchange. Of course, this is just an illustration of
principle; in principle, this approach should be applied to the true
three-band electronic structure and extended to singlet as well as
triplet states, but this is beyond the scope of this paper.
We reiterate that we do not insist that this approach is superior

to the Hubbard-Hamiltonian, but it is different and complementary,
having the potential to uncover new physics. Similar to the former,
it can be used in the contexts of, e.g., random-phase approxima-
tion, FLEX, or functional renormalization group calculations.
A final note relates to the recent experiments on strained

Sr2RuO4. This is a large topic mostly outside of the scope of this
paper. However, we would like to make one comment in this
regard. The fact that Tc rapidly grows with the strain and peaks at
the strain corresponding to the Lifshits transition (where the γ
band touches the X-point) can be explained by either a DOS effect
(van Hove singularity) or by a change in pairing interaction. The
former explanation, as mentioned before, is realistic for singlet,
but not triplet pairing symmetries. The latter would be viable if the
changes in DOS were sufficient to shift the balance between the
AF and FM tendencies toward the latter. To verify that, we have
repeated the calculations of the Heisenberg parameters in the
strained case. However, we found that the main effect of the strain
is not related to the van Hove singularity, and that the average
exchange coupling does not become more ferromagnetic. Instead,
the strain introduces a splitting between J1a and J1b, while the
average value barely changes, as shown in Fig. 3. These results
therefore indicate that the peak in Tc is directly related to the peak
in DOS, and not via enhanced pairing interaction. This conclusion
is supported by recently reported thermodynamic results (see
Note), which strongly suggest that not only Tc, but also ΔC/Tc is
peaked at the van Hove singularity.
To summarize, we have presented first-principles calculations of

the leading isotropic and anisotropic magnetic interactions in

Sr2RuO4. Our results indicate that rotating a p-wave super-
conducting order parameter during measurements of the Knight
shift is impossible by several orders of magnitude, and thus the
invariance of the Knight shift across the transition remains an
unresolved puzzle. We further proposed a model framework,
based on a double-exchange type Hamiltonian, and incorporating
the calculated magnetic interactions in their entirety, and present
an example of using this framework for addressing superconduct-
ing pairing symmetry.

METHODS
First-principles calculations
For relativistic total energy calculations we have employed the projector
augmented wave method46 as implemented in the Vienna Ab initio
Simulation Package,47 including SO coupling.48 We have used the DFT
within the Perdew–Burke–Ernzerhof parametrization for the exchange and
correlation potential,49 and the experimental lattice structure is employed
in all calculations. The energy cutoff was set to 400 eV with convergence
criteria of 10−6 eV. We used up to 1386 irreducible k-points, reduced to 900
for the four formula units cell. For Ru, a pseudopotential with p-states
included as valence states was selected.
For the calculation of the isotropic exchange constants we used the

Korringa–Kohn–Rostokker method within the atomic sphere approxima-
tion50 and the Green function-based magnetic-force theorem.51 The
implementation of this technique has been described elsewhere.52

Physically, this technique can be considered to be a magnetic analogue
of the disordered alloys theory based on coherent potential approxima-
tion52 and is known as the DLM approximation.41, 53 Upon fixing the Ru
magnetic moments in the DLM state we achieved self-consistency using
115 irreducible k-points in the Brillouin zone, and then used an extended
set of k-points (1529) to compute the isotropic exchange constants in the
framework of the magnetic force theorem.

Fitting procedure
The full equation used to describe the calculated energies, including all
bilinear terms up to the second neighbors, reads:

Hr ¼
P
i
K Mz

i

� �2 þ P
<nn>

Jzz1 M
z
i M

z
j

þ P
<100>

Jxy1 Mx
i M

x
j �My

i M
y
j

� �
þ P

<010>
Jxy1 My

i M
y
j �Mx

i M
x
j

� � (7)

þ
X
<nnn>

Jzz2 M
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i M

z
j þ

X
<110>

Jxy2 Mx
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x
j �My

i M
y
j

� �
þ

X
<110>

Jxy2 My
i M

y
j �Mx

i M
x
j

� �
(8)

Table 2. Relative change in pairing interaction for spin-triplet pairing
channels due to Ising and compass exchange terms

Pairing channel δV/2

sin kx ± i sin ky
� �

ẑ Axial chiral Jzz

sin kxx̂ þ sin ky ŷ Planar radial −Jzz + 2Jxy

sin kxŷ þ sin ky x̂ Planar quadrupolar −Jzz − 2Jxy

sin kxx̂ � sin ky ŷ Planar quadrupolar −Jzz + 2Jxy

sin kxŷ � sin ky x̂ Planar tangential −Jzz − 2Jxy

Fig. 3 Same as Fig. 1a, but as a function of uniaxial strain. Only the
nearest neigbor exchange constant is affected by the strain (split
into Ja and Jb) at a noticeable level
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Here, for completeness, we have included the single-site anisotropy
term K; since it always enters in the same combination with Jzz, they cannot
be decoupled within this set of calculations. While this term is, in principle,
allowed because of itinerancy, we note that the calculated magnetization
is close to the S = 1/2 and therefore we expect K � Jzz . This approximation
was used in the main text. We have also included, besides the NN
anisotropic interaction Jzz1 and Jxy1 ; the corresponding second NN
interactions Jzz2 and Jxy2 . The latter distinguishes between the collinear
state polarized along the (110) tetragonal direction and the one polarized
along (100), and the transverse and rolling spirals. We found it to be
relatively small, 0.17 ± 0.05meV/μ2B . The second NN Ising interaction Jzz2
simply adds to Jzz, and therefore was absorbed into the latter in the fitting
procedure. The difference in energies between the planar spiral and the
(100) collinear structure, 0.24 meV, is likely related to the fact that the
isotropic exchange constants enter these two state differently. Our non-
relativistic calculations find them degenerate within the computational
accuracy, apparently, fortuitously. Since SOC also affects the isotropic
constants, it is no surprise that relativistic effects break this accidental
degeneracy.
One can calculate K − Jzz and Jxy2 either from the set of spiral calculations,

or from collinear calculations; the results differ by ±30%. It is unlikely that
this is due to computational inaccuracy, but rather to other interactions not
accounted for, such as third neighbors (which is the leading isotropic
exchange) or anisotropic biquadratic coupling.
The full summary of the magnetic patterns and their energies used for

the fitting, as well as the expressions for the total energies in terms of the
parameters in Eq. (8), are presented in Table 3.

Mean-field comparison of pairing energies
To find the interactions in Table 2, we begin with the following
Hamiltonian Hint that includes charge and spin fluctuations. As an example
of how this approach can be used we ask a relatively simple question of
how the magnetic anisotropy we have found affects spin-triplet pairing
states. To this end, we generalize ref. 54 and consider only a single band
with the following Hamiltonian with charge, ρ(q), and spin, Si(q),
interactions:

Hint ¼ P
q

UðqÞρðqÞρð�qÞ þP
i
JiðqÞSiðqÞSið�qÞ

� �

¼ P
k;k0

P
q
a†kþq=2;sa

†
�kþq=2;s0a�k0þq=2;m0ak0þq=2;m

´ ρ k � k0ð Þδs;mδs0 ;m0 þ Jz k � k0ð Þσzs;mσzs0 ;m0

h

þ Jx k � k0ð Þσxs;m0σxs0 ;m þ Jy k � k0ð Þσys;m0σ
y
s0 ;m

i
Focussing on superconductivity with zero momentum Cooper pairs, Hint

can be rewritten as:

Hint ¼ 1
2

X
k;k0

Vs k � k0ð Þs†ksk0 þ
X
i¼x;y;z

Vt;i k � k0ð Þt†i;kti;k0
" #

;

where sk ¼
P

s;s0 iσy
� �

s;s0c�k;sck;s0 and ti;k ¼
P

s;s0 iσiσy
� �

s;s0 c�k;sck;s0 are the

possible singlet and triplet Cooper pair operators, and the effective
interactions for the different pairing channels are found to be

Vs ¼ ρ k � k0ð Þ � Jx k � k0ð Þ � Jy k � k0ð Þ � Jz k � k0ð Þ

Vt;x ¼ ρ k � k0ð Þ � Jx k � k0ð Þ þ Jy k � k0ð Þ þ Jz k � k0ð Þ

Vt;y ¼ ρ k � k0ð Þ þ Jx k � k0ð Þ � Jy k � k0ð Þ þ Jz k � k0ð Þ

Vt;z ¼ ρ k � k0ð Þ þ Jx k � k0ð Þ þ Jy k � k0ð Þ � Jz k � k0ð Þ:

This result reduces to that found when spin interactions are
isotropic54, 55 or have uniaxial symmetry.56 In our case, the specific form
of the spin anisotropy is

Jz ¼ 2Jz0 cos kx � k′x
� �þ cos ky � k′y

� �h i

Jx ¼ 2J?0 cos kx � k′x
� �� cos ky � k′y

� �h i

Jy ¼ 2J?0 cos ky � k′y
� �

� cos kx � k′x
� �h i

:

Expressing Hint with the above spin anisotropy in terms of irreducible
representations of tetragonal symmetry for the Cooper pairs leads to
Table 2.

Data availability
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study are available within the paper.
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