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Density functional theory (DFT), including its extensions designed to treat strongly correlated
localized electron systems such as DFT+U and DFT+dynamical mean field theory, has proven
exceedingly useful in studying the magnetic properties of solids. However, materials with rare
earths (R) have remained a notable exception. The most vital rare-earth magnetic properties, such
as magnetocrystalline anisotropy (MA), have been notoriously elusive due to the ubiquitous self-
interaction error present in nearly all available DFT flavors. In this work, we show explicitly how the
orbital dependence of self-interaction error may contradict Hund’s rules and plague MA calculations,
and how analyzing DFT metastable states that respect Hund’s rules can alleviate the problem. We
systematically investigate and discuss several rare-earth-containing families, RCo5, R2Fe14B, RFe12,
and RMn6Sn6, to benchmark the MA calculations in DFT+U . For all compounds we investigated,
we found that our methodology reproduces the magnetic easy-axis, easy-plane, and non-trivial easy-
cone anisotropies in full agreement with low-temperature experimental measurements. Besides the
fully-numerical ab initio approach, we further illustrate an efficient semi-analytical perturbation
method that treats the crystal field as a perturbation in the limit of large spin-orbit coupling. This
approach evaluates the rare-earth anisotropy by assessing the dependence of crystal-field energy on
spin-quantization axis rotation using 4f crystal-field levels obtained from non-spin-orbit calculations.
Our analytical method provides a quantitative microscopic understanding of the factors that control
MA and can be used for predicting new high-MA materials.

I. INTRODUCTION

Among all the elements, the open-shelled lanthanides
provide the largest magnetocrystalline anisotropy (MA),
due to the strongly-localized nature of 4f orbitals and
strong spin-orbit coupling (SOC), which can evolve sub-
stantially, including changing sign while varying the rare
earth (R) element in an isostructural series of com-
pounds. The unparalleled strength and tunability of
rare-earth MA allows for a wide range of applications,
ranging from conventional high-performance permanent
magnets [1–4] to recent rare-earth-containing topological
magnets [5, 6]. To further exploit existing systems and
explore new ones, ab initio methods that can provide a
microscopic understanding of rare-earth anisotropy and
reliably predict new materials are highly desired.

The MA originates from the interplay between SOC
and the crystal field (CF) [7, 8]. The 4f states are
the most-localized among all shells and generally well-
shielded by the outermost electrons, resulting in a small
CF splitting (∆) of tens of meV. Considering the rela-
tively large SOC strength ξ, CF effects can be treated as a
perturbation, and the 4f orbital largely remains atomic-
like. The mechanism of R MA can be understood in the
following picture. When the spin of 4f electrons rotates,
in the first approximation, the charge of the strongly-
correlated 4f electrons remains the same shape and fol-
lows the spin, as the spin and orbitals are locked by the
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large SOC. The MA then arises from the energy variation
corresponding to the rotating aspherical 4f cloud under
the ligand-induced CF potential. In the conventional CF
theory, this energy dependence on spin direction (θ, φ)
can be written as:

E(θ, φ) =

∫
drn4f (r; θ, φ)VCF(r) =

∑
Am

l Qm
l (θ, ϕ).

(1)
Here, the CF potential of isostructural compounds is
characterized by CF parameters (CFPs) Am

l , while the
asphericity of the rotating 4f charge, evolved with 4f
orbital filling, is characterized by multipole moment
Qm

l (θ, ϕ). The multipole moment can be expressed in
terms of the Stevens coefficients Θl, the operator equiv-
alents Om

l , and the rare-earth radii ⟨rl⟩4f , e.g., Q0
l =

Θl⟨rl⟩4fO0
l [9–11]. Overall, the 4f electron configura-

tions in solids, especially those of heavy R elements,
generally obey the same Hund’s rules as in a free ion,
according to the so-called standard rare-earth model
(SRM) [12–14]. The MA of 4f elements can reach the
same order of magnitude as the CF strength, which typ-
ically ranges in tens of meV.

The atomic nature of the strongly-correlated, lo-
calized 4f electrons poses great challenges for mean-
field methods such as density functional theory
(DFT). Various approaches, including the 4f -open-core
method, DFT+U [6, 15], dynamical mean-field theory
(DMFT) [16, 17], and quasiparticle self-consistent GW
(QSGW) [18], have been employed depending on the spe-
cific rare-earth properties being targeted. DFT+U is the
simplest and most widely-used method to treat strong
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correlations. Regarding the 4f MA, the primary issue
with DFT+U is that it is known to fail in reproducing
the experimental ground-state 4f configuration [15, 19–
24]. Specifically, it fails to reproduce Hund’s second rule,
which maximizes orbital polarization.

In general, DFT+U can have many metastable 4f -
configuration solutions [13, 24, 25], and the correct
ground state often appears in DFT+U as a metastable
state that is hundreds of meV higher. As discussed in de-
tail, for instance, in Ref. [24], the root of the problem is
the orbital-dependent self-interaction error (SIE), stem-
ming from the fact that each Kohn-Sham particle inter-
acts with the total charge density, including its own. This
orbital dependence of SIE is particularly significant for
4f orbitals, leading to incorrect orbital occupancies and
4f charge density, and consequently to incorrect MAE.
A key question arises: Can DFT+U accurately de-

scribe the MA of tens of meV, even though it overesti-
mates the energy of the true ground state by hundreds
of meV? Our recent systematic study on topological
magnetic compounds RMn6Sn6 with heavy-R elements
has shown promise [6], provided that their Hund’s rule
ground states are enforced. Not only are the easy di-
rections of the entire series of compounds reproduced
if Hund’s rules are enforced [6], but the calculated
MAE amplitude also agrees reasonably well with experi-
ments [26, 27]. However, it remains unclear how well the
delicate MA in other rare-earth-containing magnets can
be described using the SRM in the simplistic DFT+U
framework. To better establish the validity and effec-
tiveness of these methods, systematic investigations of
MA in more rare-earth-based compounds are needed.

In this work, we first review and illustrate how the or-
bital dependence of SIE affects the 4f ground state and
MA calculation in DFT-based methods. We then discuss
various methods that attempt to enforce Hund’s rules,
such as DFT+U , self-interaction corrections (SIC), and
orbital polarization corrections (OPC), and how the addi-
tional terms therein affect the MA calculations. We fur-
ther systematically benchmark DFT+U calculations of
MA in several isostructural R-transition-metal (R-TM)
intermetallic series, including well-established permanent
magnet systems, RCo5, R2Fe14B, and RFe12 with heavy
R elements. In all cases, with the enforcement of Hund’s
rules, DFT+U calculations provide a useful description
of the MA without the need to include SIC and OPC cor-
rections. Finally, we demonstrate that the evolution of
MA can be modeled purely analytically based on a per-
turbative treatment of the crystal field using the single-
particle 4f levels obtained in DFT+U [6].

II. SIE EFFECTS ON 4F GROUND STATE AND
MA IN DFT: TBMN6SN6 AS AN EXAMPLE

Many-body effects are crucial for accurately describ-
ing the strongly-correlated 4f electrons. Especially for
light rare-earth elements, multiple Slater determinants

are typically required to capture their complex electronic
structure. Here, in this study, we focus primarily on the
heavy R elements with a large R-TM exchange coupling
because their ground states effectively satisfy Hund’s
rules, and the |L, S, J,mJ = J⟩ state with J = L+S can,
in principle, be represented using a single Slater determi-
nant, as in methods such as DFT [28]. However, even for
these “relatively easier” heavy-R cases, challenges arise
in describing 4f electrons, specifically related to the SIE
and the corresponding violation of Hund’s rules.
To gain a quantitative understanding of how SIE af-

fects the ground state and MA, we illustrate this with a
DFT+U calculation of TbMn6Sn6—a recently discovered
quantum magnet with very strong easy-axis anisotropy.
According to Hund’s rules, Tb3+ (4f8) is expected to
have a fully-filled 4f majority-spin channel and one

electron in the minority spin channel, with 4f1,↓
|ml=3⟩.

This expectation is consistent with neutron scattering
and magnetization measurements of TbMn6Sn6 [26] and
TbV6Sn6 [27]. However, DFT+U instead found a 4f

ground state corresponding to 4f1,↓
|ml=2⟩. The experi-

mental ground state is approximately ∆ϵ = 340 meV
higher in TbMn6Sn6, appearing as a metastable state
in DFT+U (performed with SOC included and the ex-
perimental out-of-plane spin orientation at U = 10 eV).
Considering that the SOC included in calculation al-
ready lowers the |3⟩ state relative to |2⟩ by approximately
1
2ξ

Tb
4f ≈ 120meV, the orbital dependence of SIE for these

two orbitals is about 460 meV, which is more than one
order of magnitude larger than MA.
The SIE, while sizable, is practically independent of

the crystallographic environment and is rotationally in-
variant. The energy difference between these two 4f con-
figurations remains essentially the same as for the free
Tb3+ ion, where we found ∆ϵatom = 350 meV using a
large supercell calculation. Moreover, to ensure numeri-
cal accuracy, we calculated the variation of ∆ϵatom with
spin rotation and found that the change is negligible. In
other words, the SIE is spin-rotationally invariant.
If, as we just established, the SIE is rotationally invari-

ant, one may work around that by calculating the MA
(and similar effects) not in the DFT ground state, but in
a metastable state that respects Hund’s rules. This can
be achieved by starting DFT+U calculations from a 4f
occupation matrix constructed according to the desired
orbital state, and by monitoring and controlling the or-
bital occupancy through the self-consistency process to
ensure convergence closely to the targeted state. Such
capability is easy to implement and is generally avail-
able in popular DFT packages, including Wien2k and
Vasp [29].
Figure 1 shows the total energy variation as a func-

tion of the spin-quantization axis rotation, characterized
by polar angle θ, calculated for the two 4f configura-
tions corresponding to the experimental and DFT ground
states, respectively. As illustrated in Fig. 1, at each po-
lar angle, using the procedure discussed above, the cal-
culations converge to solutions closely approximating the
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FIG. 1. Magnetocrystalline anisotropy in TbMn6Sn6, repre-
sented by the variation of magnetic energy as a function of
spin-axis rotation, calculated using DFT+U . The true ground
state of Tb3+ (4f8 = 4f7↑+4f1↓), following Hund’s rules, ap-
pears as a metastable state in DFT+U . The anisotropy cal-
culated for two configurations, the true ground state 4f1,↓

|ml=3⟩

and the DFT+U ground state 4f1,↓
|ml=2⟩, is represented by the

blue and red lines, respectively. The two 4f1,↓ configurations
are illustrated with polar plots of the corresponding complex
spherical harmonics Y m

l=3(θ, ϕ), where the radius represents
the amplitude and the color represents the phase at the point
(θ, ϕ).

4f1,↓
|ml=3⟩ and 4f1,↓

|ml=2⟩ configurations, respectively, in the

local coordinate system (with the z-axis along the local
spin direction). The MA profiles calculated with these
two solutions are markedly different. Calculations us-
ing the |ml = 2⟩ DFT+U ground state yield an incorrect
easy-cone MA, while those calculated with the |ml = 3⟩
configuration, the true ground state but metastable in
DFT+U calculations, correctly host a strong easy-axis
MA.

This is not surprising, as the |ml = 2⟩ and |ml = 3⟩
configurations lead to different asphericities of the 4f
charge distribution, or equivalently, different multipole
moments Ql, which result in drastically different MA.
Therefore, for accurate MA calculations, it is crucial to
enforce solutions that represent the correct 4f orbital
configurations.

III. ORIGIN OF ERRONEOUS TB-4f GROUND
STATE: ORBITAL DEPENDENCE OF SIE

The origin of the erroneous f1,↓
|ml=2⟩ ground state in

DFT calculations for the Tb3+ ion is due to the strong
orbital dependence of the SIE for 4f orbitals. The Tb3+

atom, with a 4f8 configuration, has a fully-occupied 4f
majority-spin channel that produces an s-type spherical
charge and potential. In a single-particle Hamiltonian,
without considering SOC, the seven 4f states should

be degenerate if the potential is orbital-independent, as
in plain DFT, and spherical. Therefore, excluding self-
interaction, the additional electron in the minority-spin
channel, f1,↓, experiences a nearly spherical potential
that does not lift the degeneracy of the seven 4f orbital
states. This is the same reason behind the well-known
issue of 4f states being pinned at the Fermi level in DFT
calculations unless a sizable Hubbard U interaction is
introduced in schemes such as DFT+U to polarize the
occupied and unoccupied 4f states. However, in DFT,
the occupied f1,↓ electron generates an aspherical charge
density that acts upon itself, as the functionals are eval-
uated using the total electron density. The total SIE
in the local density approximation (LDA), ϵLDA, origi-
nates from the Hartree energy, EH, and the exchange-
correlation energy, Exc, and can be written as

ϵLDA = ϵH + ϵxc, (2)

where ϵH and ϵxc are the corresponding SIE contribu-
tions associated with EH and Exc, respectively. Due to
the local approximation of the unknown exact exchange-
correlation functional, ϵH and ϵxc do not cancel out
as they do in the Hartree-Fock method, resulting in a
nonzero ϵLDA. Moreover, the orbital dependence of ϵLDA

is substantial for 4f states, leading to an incorrect 4f
ground state.

Since the 4f charge asphericity and orbital dependence
of SIE for the Tb3+ ion (with f7,↑ + f1,↓ configuration)
are predominantly associated with the single electron in
the minority-spin channel, we now present an analyti-
cal estimation of ϵH and ϵxc for the f1 configurations
with various |ml⟩ states. Obviously, we have ϵH = EH

and ϵxc = Exc for this single-electron model. Here, we
consider the eigenstates of the f electron, where the an-
gular part of the wavefunction is described by complex
spherical harmonics Y m

l=3. As we will show, ϵH favors the
|ml = 2⟩ state, with the energy order |2⟩ < |1⟩ < |3⟩ <
|0⟩. Conversely, ϵxc favors the |ml = 0⟩ state, with the
energy hierarchy |2⟩ > |1⟩ > |3⟩ > |0⟩. However, these
contributions do not cancel each other out, resulting in
an overall ϵLDA that disfavors the |ml = 3⟩ state.

A. Hartree self-interaction for f1

For the f1 single-electron state, the ϵH of the |±m⟩
state can be written as:

ϵHm =
1

2

∫∫
dr1 dr2

ρm(r1)ρm(r2)

|r1 − r2|
, (3)

where the electron density can be expressed in terms
of the radial and angular parts of the wavefunction as
ρm(r) = R2

4f (r)|Y3m(θ, ϕ)|2, with m ∈ 0, 1, 2, 3. The
Coulomb interaction can be expanded using complex
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spherical harmonics as:

1

|r1 − r2|
=

∞∑
k=0

rk<
rk+1
>

4π

2k + 1

q=k∑
q=−k

Ykq(θ1, ϕ1)Y
∗
kq(θ2, ϕ2),

(4)
where ri = ri(sin θi cosϕi, sin θi sinϕi, cos θi), and r< =
min(r1, r2) and r> = max(r1, r2).
Substituting Eq. (4) into Eq. (3) and separating the

radial and angular parts of the integration, we obtain:ϵ0
ϵ1
ϵ2
ϵ3


H

= F0+

a02 a04 a06
a12 a14 a16
a22 a24 a26
a32 a34 a36


F2

F4

F6

 ≈ F0+

ã02
ã12
ã22
ã32

F2.

(5)
Here, the radial integrals are represented by the Slater

integrals [F0, F2, F4, F6], and the angular integrals are
represented by the matrix element amk, which can be
evaluated using the Gaunt coefficients as follows:

amk =
4π

2k + 1
[Gaunt(3, k, 3;−m, 0,m)]

2
. (6)

The last step of Eq. (5) is obtained using am0 = 1 and
assuming F4/F2 ≈ 0.6681 and F6/F2 ≈ 0.4943.

TABLE I. The coefficients amk, where m denotes the com-
plex spherical harmonics. The coefficients ãm2 = am2 +
0.6681am4 + 0.4943am6 is calculated by assuming the ratio
between F2, F4, and F6 values as 1 : 0.6681 : 0.4943. The
orbital-dependent part of ϵHm, ∆ϵHm (in units of meV), is then
calculated by further assuming F2 = 10 eV, with the value of
the |±2⟩ state as the reference zero. For complex |m⟩ states,
the ordering is |±2⟩ < |±1⟩ < |±3⟩ < |0⟩.

m am2 am4 am6 ãm2 ∆ϵHm

0 0.0711 0.0331 0.0543 0.1201 876

±1 0.0400 0.0009 0.0306 0.0557 232

±2 0 0.0450 0.0049 0.0325 0

±3 0.1111 0.0083 0.0001 0.1167 842

Table I lists the matrix elements amk and the effective
element ãm2, as well as the orbital-dependent part of ϵ

H
m,

∆ϵHm ≈ ãm2F2, calculated with F2 = 10 eV, with re-
spect to the |ml = 2⟩ state. Clearly, ϵH favors |ml = ±2⟩
states while disfavoring |ml = 0⟩ and |ml = ±3⟩ states.
The small SIE of |±2⟩ is due to the vanishing of the
matrix element a22 calculated using Eq. (6), which re-
sults from the fact that they satisfy one of the con-
ditions for non-trivial zeros of Wigner-3j symbols, i.e.,
Wigner3j(3, k, 3;m, 0,−m) = 0 with k = 2.

B. Exchange-correlation self-interaction for f1

For the LDA exchange-correlation energy Exc[ρ] ∝
−
∫
ρ

4
3 (r)dr, the orbital-dependent ϵxcm for the f1 = |±m⟩

states is characterized by the angular part of the integra-
tion,

Ω(ϵxcm) = −
∫

dΩ
(
|Ylm(θ, ϕ)|2

) 4
3 . (7)

TABLE II. Angular part integration of ϵxc, denoted as Ω(ϵxcm),
for the f1 configuration. ∆Ω(ϵxcm) represents the Ω(ϵxcm) values
with respect to the |m = 0⟩ state.

m 0 ±1 ±2 ±3

Ω(ϵxcm) -0.5314 -0.4903 -0.4801 -0.4963

∆Ω(ϵxcm) 0 0.0411 0.0513 0.0351

Table II lists Ω(ϵxcm) values and the corresponding val-
ues with respect to the |m = 0⟩ state. Clearly, ϵxcm fa-
vors the |0⟩ state, with the energy order |0⟩ < |±3⟩ <
|±1⟩ < |±2⟩. Numerically, our DFT+U calculations for
the Tb3+ free ion also shows that |2⟩ has the highest ϵxc,
while |0⟩ has the lowest ϵxc, consistent with this finding.
Overall, when combining ϵH and ϵxc, the total ϵLDA

yields a much higher energy for |±3⟩ solutions compared
to other |m⟩ solutions. Specifically, ϵH strongly favors
|±2⟩ much more than |0⟩ and |±3⟩, while ϵxc favors |0⟩.
Consequently, ϵLDA results in a significantly higher en-
ergy for |±3⟩ states than for other states. The SOC en-
ergy, on the other hand, favors states with large positive
ml values in the minority-spin channel. While it may not
be sufficient to overcome the SIE to stabilize the true
ground state of |3⟩, it does lower the energy of the |2⟩
state below that of the |0⟩ and |1⟩ states, resulting in an

erroneous ground state of f1,↓
|ml=2⟩ in calculations.

IV. DFT+U , SIC, AND OPC

Various methods have been developed and employed
to improve the DFT description of 4f electrons, includ-
ing DFT+U, SIC, and OPC methods. Both SIC [30] and
OPC [31] methods can be connected to the more gen-
eral DFT+U method. In this section, we discuss their
applications to MA calculations.
DFT+U approach. To resolve the unphysical pinning

of 4f states near the Fermi level in DFT, DFT+U with a
sizable Hubbard U value is the most employed method to
treat the well-localized 4f orbitals, shifting the occupied
and unoccupied 4f states away from the Fermi level by
± 1

2 (U − JH), respectively.
The DFT+U total energy, which differs from the

plain DFT one by a correlation contribution from the
Hubbard-type model Hamiltonian for the selected or-
bitals, can be written as

ELDA+U [ρ(r),n] = ELDA(ρ) + Ecorr(n), (8)

where the correlation energy is evaluated using the occu-
pation matrix n with the screened Coulomb interactions
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parameterized with U and J values as

Ecorr(n) = EHub(n)− Edc(n). (9)

Here, the Hartree-Fock-like interaction EHub(n) is self-
interaction-free as the SIE of the direct and exchange
terms is exactly canceled out [22]; the double-counting
term Edc(n), which accounts for the interaction already
included in LDA, is not uniquely defined and depends on
the implementation scheme. Typically, it depends only
on the trace of n; therefore, Edc(n) depends only on the
number, but not the orbital character ml, of the occupied
states. It is worth noting that, besides of the aforemen-
tioned splitting between the occupied and unoccupied 4f
states by (U − JH), in the popular fully-localized-limit
(FLL) double-counting scheme, JH also induces the spin
splitting of corresponding 4f levels, depending on the
orbital’s occupancy. Overall, the Ecorr(n) in DFT+U,
which consists of the SIE-free EHub(n) and the orbital-
independent Edc(n), do not explicitly address the orbital
dependence of SIE. Therefore, the SIE inherited from the
original DFT in DFT+U remains largely intact, and con-
ventional DFT+U schemes are not expected to correct
the Tb3+ ground state discussed above.
Alternative DFT+U schemes that aim to minimize the

orbital dependence of SIE have been proposed. An inter-
esting work by Zhou and Ozoliņš modifies only the ex-
change term of the LDA by including only the exchange,
but not Hartree, component of Ecorr(n). The exchange-
only Ecorr(n) now contains orbital-dependent SIE and
can be used to minimize the orbital dependence of SIE by
properly mixing the FLL Edc(n) exchange and LDA ex-
change. This method has been demonstrated to improve
the description of the 4f ground-state and other proper-
ties such as CFP and optical properties [24, 32]. However,
such corrections, with rotational invariant Ecorr(n), does
not explicitly affect the calculated E(θ, ϕ) profile once
the 4f configuration is enforced during the rotation.

Therefore, the main effect of applying the U parame-
ter is to shift the occupied 4f states away from the Fermi
level. This shift is necessary to be consistent with ex-
periments and helps ensure convergence to the desired 4f
orbital occupation that respects all three Hund’s rules,
which may otherwise be disrupted by strong hybridiza-
tion between 4f and ligand orbitals. If a sizable U is cho-
sen and the hybridization between 4f and ligand orbitals
is negligible, the electron correlation induced by DFT+U
does not explicitly affect the anisotropy calculation. This
is because, when the spin-quantization axis rotates, the
U - and JH-dependent correlation energy remains con-
stant as long as the orbital occupancy remains the same
in the local coordinate system. On the other hand, in
the range of U values that lead to strong hybridization
between 4f and ligand orbitals, a much stronger U de-
pendence of MA is expected. This is because the contri-
bution of hybridization, in addition to the crystal electric
field, becomes more significant for MA.

Self-interaction correction. The SIC method, pro-
posed by Perdew and Zunger in 1981 [33], was initially

inspired by the problem of reproducing the correct energy
gap in insulators. They pointed out that in the limit of
one-electron systems, the exchange-correlation potential
should exactly cancel the Hartree potential, which was
not the case for all functionals available at that time.
It was further believed that the fundamental gap is a
ground-state property and thus must be reproduced in
exact DFT. With this in mind, Perdew and Zunger pro-
posed a method that deducts the self-interaction energy
of each orbital from the DFT functional. The resulting
orbital-dependent functional was neither a Kohn-Sham
functional nor uniquely defined for many-electron sys-
tems [33–35]. Nevertheless, it was conceived that this
functional would offer a better approximation to the ex-
act Kohn-Sham functional than existing local flavors.
While the functional was shown to considerably improve
the excitation gap, it was never proven to systematically
improve the total energy. Two years later, it would be
proven [36, 37] that the fundamental gap is not a ground-
state property and need not (and is unlikely) to be repro-
duced in exact DFT. It was argued [38] that, in reality,
this method is not necessarily a superior approximation
to Kohn-Sham DFT, but rather a fortuitously good ap-
proximation to the Dyson equation for one-particle ex-
citations. Indeed, the weighted density functional [39],
which is inherently self-interaction-free in the Perdew-
Zunger sense and yields improved total energy and lin-
ear response [40], produces results that are quite differ-
ent from those of SIC LDA or GGA functionals. Thus,
there is no solid foundation for expecting that such non-
DFT SIC functionals would universally account for the
Hund’s rules in f-electron systems, nor is this method (as
opposed to DFT+U) commonly implemented in modern
DFT codes.

Orbital polarization correction. In analogy to the
Stoner expression for spin polarization − 1

4IM
2
s , Brooks

and coworkers [41] introduced an orbital polarization
term proportional to − 1

2L
2, giving rise to a one-electron

eigenvalue shift (−E3Lml) for the state |ml⟩. Here, the
Racah parameter E3, which can be related to Slater in-
tegrals (F2, F4, and F6), plays a role analogous to the
Stoner I for spin polarization.

While this method does introduce a correction that
tries to maximize the orbital moment and, thus, tech-
nically can enforce Hund’s rules, it has no direct first-
principles justification. Various attempts [31, 42] to de-
rive an OPC have resulted in formulations that, while
potentially useful, differ from the suggested form. To the
best of our knowledge, the more elaborate OPC schemes
beyond the original description of Brooks and coworkers
are neither implemented in standard codes nor univer-
sally tested.

The original OPC prescription is implemented in
Wien2k code and we applied it to TbV6Sn6. It ap-
pears that achieving the Hund’s rule state using the OP
method is quite challenging, if not impossible. In the
minority spin channel, |ml = 2⟩ levels remain the lowest
unless a very high OP parameter is applied to promote
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the occupation of the |ml = 3⟩ state. However, since
the orbital polarization term is spin-independent, such a
large OP parameter also causes large orbital polarization
in the majority-spin channel, resulting in partial occu-
pation in the majority-spin channel. As a result, with
this OPC scheme, we are not able to obtain the correct
4f ground state that satisfies Hund’s rules. Thus, we
conclude that neither the SIC nor the OPC method, at
least by itself, is useful for extensive calculations of MA
in 4f -metal compounds. Therefore, we will pursue the
idea discussed above of calculating MA in an artificially
stabilized, computationally-metastable orbital state that
respects Hund’s rules.

V. 4f ANISOTROPY: BENCHMARKING
TOTAL ENERGY CALCULATION

To systematically benchmark the validity of MA cal-
culations, we further investigate several isostructural sys-
tems, including the two most important permanent mag-
net systems: RCo5 and R2Fe14B. Among them, SmCo5-
and Fe-rich Nd2Fe14B-based magnets are the most suc-
cessful permanent magnets so far. We will show that the
rare-earth MA in these systems can be well described
using DFT+U .

Various methods, including DFT+U , SIC [43], and
DMFT in the form of Hubbard I [16, 17], have been em-
ployed to investigate the rare-earth MA in these systems,
especially for SmCo5 due to its importance and a smaller
RCo5 unit cell. However, despite the wide application of
simplistic DFT+U , the systematic MA study of isostruc-
tural series with heavy-R elements is, to the best of our
knowledge, rare. Moreover, most of the previous calcu-
lations in the literature did not discuss the details of the
converged 4f configuration or were carried out without
enforcing Hund’s rules; the calculated orbital moments
can deviate significantly from SRM due to the orbital-
dependent SIE in DFT+U and the corresponding failure
to reproduce Hund’s rules being ignored. Consequently,
the reported orbital magnetic moment and MA values
are scattered and hard to evaluate, casting doubt on the
validity of DFT+U applications for rare-earth MA.

Therefore, here we want to fill this gap by system-
atically benchmarking MA calculations with the SRM
model using DFT+U . Such benchmarking is also neces-
sary if we want to compare with more sophisticated ap-
proaches such as DMFT or other methods and evaluate
their improvement.

Here, we focus on the rare-earth MA in these systems,
although the transition-metal sublattice MA is also im-
portant and of interest by itself [44]. For example, in
RCo5, the Co sublattice also contributes a large easy-
axis anisotropy, as YCo5 represents one of the largest 3d
MA systems. However, plain DFT underestimates the
MA of Co sublattices and only gives a value between 1

4

and 1
3 of the experimental value in RCo5 [45]. Orbital

polarization [46, 47] or applying an additional Hubbard

U interaction on Co-3d orbitals in DMFT [48] or DFT+U
has been used to improve the agreement between calcu-
lation and experiments.
Computational details. DFT+U calculations were

conducted using Wien2K. The only constraint we en-
forced was Hund’s rules at the local coordinate. We ro-
tated the spin axis while maintaining the correct occu-
pied orbital states and calculated the MA as the variation
of energy with respect to spin axis rotation. A sizable U
is necessary to ensure that the 4f states can converge to
the Hund’s rules state; otherwise, hybridization may not
allow for it. The calculated MA is not very sensitive to
Uf , as long as it is large enough to ensure that the f -
states are well-removed from the Fermi energy, and the
orbital configuration of the occupied f -state respects all
of Hund’s rules as in SRM. Increasing the U parameter
further usually has a smaller effect on energy because the
hybridization is already small, and the charge densities of
4f and ligands do not change significantly with U . Addi-
tionally, we performed MA calculations for corresponding
Gd compounds (or treated 4f as a spherical open-core)
to obtain the non-4f contributions to the total MA [6].

A. RCo5
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FIG. 2. Variation of magnetic energy (in meV/f.u.) calcu-
lated in DFT+U as a function of spin-axis rotation in RCo5
with R = Tb, Dy, Ho, Er, Sm, and Nd. The spin direction
is characterized by the polar angle θ and the azimuthal an-
gle ϕ. The lattice vector c ([0 0 1]) direction is along the ẑ
direction and is denoted by θ = 0°, while the lattice vector a
([1 0 0]) direction is denoted by θ = 90° and ϕ = −30°. The
calculations are performed in DFT+U with U ≈ 0.7 Ry on
the 4f states of all R elements to satisfy Hund’s rules. For all
the depicted compounds, the calculated easy directions are
consistent with experimental observations.

Figure 2 shows the calculated total energies E(θ) in
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RCo5 as functions of spin-quantization direction charac-
terized by the polar angle θ and the azimuthal angle ϕ.
Besides the heavy R elements, we also consider R = Sm
and Nd for comparison with existing experimental data.
In contrast to other RCo5 compounds, GdCo5 with a
spherical Gd-4f charge exhibits a very small easy-axis
MA, contributed mostly by the Co sublattices. The en-
ergy minimum occurs at θ = 0°, [0 0 1], for Er and Sm,
and at θ = 90° for all other compounds. This suggests
that RCo5 has an easy-axis MA for R = Er and Sm,
while an easy-plane MA for R = Tb, Dy, Ho, and Nd.
The calculations for all the compounds accurately repro-
duce their experimental easy directions measured at low
temperatures [49–52], demonstrating the effectiveness of
MA description in SRM through DFT+U .
HoCo5 shares a similar MA profile with NdCo5 but has

an opposite MA profile to ErCo5. This can be understood
as Ho3+ with a 4f3,↓ configuration and Nd3+ with a 4f3,↑

configuration having a similar aspherical charge density
in the single-Slater-determinant description of DFT, if
one ignores the difference between their radial wavefunc-
tions. The nearly perfect opposite MA profiles of HoCo5
and ErCo5 reflect the particle-hole symmetry also found
in HoMn6Sn6 and ErMn6Sn6 [6].

Interestingly, all RCo5 compounds exhibit a sizable in-
plane MA, suggesting a significant higher-order CFP A6

6.
Among all R elements, TbCo5 has the smallest in-plane
MA, while NdCo5 shows the strongest in-plane MA, al-
most equal in amplitude to the out-of-plane MA. The
large in-plane MA in NdCo5 is consistent with previous
experiments [53, 54] and has also been reproduced in a
recent DMFT study [17]. Assuming a fixed CFP A6

6 for
the isostructural RCo5, the magnitude of in-plane MA
correlates well with the element’s multipole moment Q6,
with the largest value found in Nd and the smallest in
Tb. It is worth noting that the in-plane MA in SmCo5
would vanish in a conventional CFP model using the low-
est multiplet |L = 5, S = 5

2 , J = 5
2 ,mJ⟩, as the Stevens

operator O6
6 vanishes for J = 5

2 , unless the J mixing due
to multiplet interaction is considered. The non-zero in-
plane MA reflects a difference between the many-body
treatment and the single-Slater-determinant description
of DFT for the Sm ion.

B. R2Fe14B

R2Fe14B compounds crystallize in a tetragonal crystal
structure with space group P42/mnm (#136). There
are two inequivalent R sites, denoted by Wyckoff sites
4g and 4f . The primitive cell consists of four formula
units. Experimentally, the easy directions of R2Fe14B at
low temperatures are easy-axial for Tb and Dy, conical
for Ho and Nd, and easy-plane for Er and Tm [55].

Figure 3 shows the MA calculated in R2Fe14B with
the spin quantization direction rotating from [001] to
[100] and then to [110] directions of the tetragonal crystal
structure. The calculated easy directions again all agree
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FIG. 3. Variation of magnetic energy (in meV/f.u.) cal-
culated in DFT+U as a function of spin-axis rotation in
R2Fe14B with R = Tb, Dy, Ho, Er, Tm, and Nd. The spin
direction is characterized by the polar angle θ and the az-
imuthal angle ϕ. The lattice vector c ([0 0 1]) direction is
along the ẑ direction and denoted by θ = 0°, while the lattice
vector a ([1 0 0]) direction is denoted by θ = 90° and ϕ = 0°.
The calculations are performed in DFT+U with U ≈ 0.7 Ry
on the 4f states of all R elements to satisfy Hund’s rules. For
all the depicted compounds, the calculated easy directions are
consistent with experimental observations.

with experimental observations. However, for the in-
plane MA, R2Fe14B compounds show somewhat smaller
values than those in RCo5.

Experimentally, it was found that the net magnetiza-
tion in Nd2Fe14B cants away from the c axis toward the
[110] direction by an angle of θ = 30°, measured at 4K.
This is consistent with the calculated energy minimum
occurring at θ = 30° when the spin rotates from [001] to
[100], as shown in Fig. 3 We further confirm that rota-
tion from [001] toward [110] produces a slightly deeper
energy minimum at θ = 30° (not shown), thus repro-
ducing exactly the experimental easy-cone angle. The
contribution from the two inequivalent Nd sites to the
MA is also of great interest. It has been argued that the
4f and 4g sites have negative and positive contributions,
respectively, to the MAE [56]. However, we found that
contributions from both sites show an energy minimum
near θ = 30°.

Remarkably, very strong easy-axis MA is obtained for
R=Tb and Dy. In fact, in practice, a small amount of
these two heavy R elements is often required to enhance
the coercivities of R2Fe14B-based magnets for real appli-
cations. Similar to RCo5, the calculated E(θ) profiles of
Ho2Fe14B and Er2Fe14B MA also show perfect particle-
hole symmetry.
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C. Other isostructural series

RFe12 compounds. Fe-rich RFe12-based compounds
have recently attracted significant interest in the per-
manent magnet community [57]. In general, these com-
pounds typically form as RFe12−xMx, requiring a third
element M = Ti, V, Cr, Mn, Mo, W, Al, or Si to sta-
bilize the structure. Experimental easy-axis information
for RFe11Ti is available for comparison, though there are
some disagreements in experimental reports [55, 58–60].
For example, both easy-plane and easy-cone MA have
been reported for R = Tb, while both easy-axis and
easy-cone MA have been reported for R = Ho at low
temperatures.

To compare with experiments, we calculated the MA
in the hypothetical composition of RFe12, ignoring the
third element for simplicity. We found that the calcu-
lated MAE per R atom of RFe12 is more than five times
smaller than in RCo5 and R2Fe14B. The calculated MA
is easy-plane for R = Tb and Dy, and easy-cone for R
= Ho, which agrees with the experimental findings re-
ported [55, 58]. For R = Er and Tm, however, our cal-
culated easy directions for RFe12 do not exactly match
the experimental results for RFe11Ti. Experiments found
that the MA is easy-cone and easy-axis, respectively, for
R = Er and Tm in RFe11Ti. In contrast, our calculations
show local minima for these experimental easy directions,
but they are slightly higher (about 0.24 and 0.3 meV per
R atom, respectively) than the in-plane direction. The
discrepancy is likely due to the presence of the Ti atom in
the real materials; the chemical effect and induced crys-
tal structure distortion can modify the crystal field of
the R element and MA [61]. More comprehensive exper-
iments and MA calculations with more realistic crystal
structures and compositions are still needed to elucidate
MA in RFe12-based systems.

RMn6Sn12 and RV6Sn6 compounds. Besides these
three permanent magnet systems, we have also previously
investigated the rare-earth MA in RMn6Sn6 and RV6Sn6
compounds [6, 27], which have recently garnered signifi-
cant attention as platforms for topological magnets. For
all of these different isostructural series, the calculated
easy directions are consistent with experiments, as long
as reliable experimental measurements are available for
comparison. Among these two dozen compounds, in ad-
dition to the easy-axis and easy-plane anisotropy, some
of them exhibit non-trivial easy-cone angles, e.g., ∼ 30◦

in Nd2Fe14B and ∼ 45◦ in DyMn6Sn6 and HoMn6Sn6.
Moreover, we found that not only the easy directions
but also the magnitudes of MA are comparable to exist-
ing experiments [26, 27]. Therefore, our benchmarking
of MA in all of these systems validates the usefulness
of applying simplistic DFT+U total energy calculations
to investigate rare-earth MA, provided that Hund’s rules
are enforced.

VI. 4f ANISOTROPY: PERTURBATION
THEORY FOR FAST SCANNING

Perturbation theory (PT) on top of magnetic force the-
ory has been widely used to calculate and spatially re-
solve MA in non-4f systems, providing a microscopic un-
derstanding of MA. Since SOC is much smaller than the
CF in d-electron systems and is treated as a perturba-
tion, one obtains K = 1

2KSO according to second-order
perturbation theory. In other words, the total MA is
half of the anisotropy of the SOC energy, KSO. Unlike
total MA, KSO can be resolved into sites, orbitals, spin
channels, and bandfillings.
In contrast to d-electron systems, in heavy R systems,

CF is much smaller than SOC and should be treated as
a perturbation. When the spin rotates, the 4f charge
is locked to the spin by the dominant SOC and rotates
rigidly with the spin. As a result, the SOC energy ESO

remains the same during the rotation, and the MA, in
principle, can be calculated as K = KCF in first-order
perturbation theory.
The challenge lies in the accurate estimation of CF

energy in open-4f -shell elements using DFT+U meth-
ods, where CF is overestimated by an order of magni-
tude, as the aspherical 4f charge induces a much larger
CF splitting than the ligands. A quick and rough fix
is to use the CF levels of isostructural compounds with
R = Gd, whose half-filled 4f orbitals give a spherical
charge and minimize the CF splitting caused by 4f elec-
trons themselves. Obviously, one should expect that the
ligand-only-induced CF splittings would vary across the
R series, deviating from the values in the Gd counter-
part. However, even with this rough estimation of CF,
we have shown that the perturbation treatment of 4f
MA provides a good description of MA in RMn6Sn6 [6].
To further demonstrate the validity of PT application on
rare-earth anisotropy, we next model the 4f MA in RCo5
and compare it with the 4f -only contributions obtained
from total energy calculations.

Figure 4 shows the 4f MA calculated in PT as
ECF(θ, ϕ) using the GdCo5 CF levels at Γ obtained in
scalar-relativistic DFT+U calculations:

E(θ, ϕ) =
∑

m∈Occ. 4f

⟨Ψθ,ϕ
m |HCF|Ψθ,ϕ

m ⟩. (10)

Here, ECF(θ, ϕ) is obtained by evaluating the original
CF Hamiltonian in the rotated wavefunctions, or, equiv-
alently, the rotated CF Hamiltonian by (−θ,−ϕ) in the
original wavefunctions. Due to the high symmetry of
the RCo5 crystal structure, the HCF is diagonal in the
real-spherical-harmonics basis at Γ. Therefore, the eigen-
values of the seven occupied 4f states at Γ in GdCo5
are sufficient to construct the Hamiltonian HCF in the
complex-harmonics basis, which is the natural basis of
the SOC Hamiltonian. The rotated wavefunctions and
Hamiltonian can be calculated using the Wigner rota-
tion matrix. The calculated MA profiles in PT compare
well with the total energy calculations shown in Fig. 2.
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FIG. 4. Energy as a function of the spin quantization angle,
characterized by the polar angle θ, in RCo5, modeled using
perturbation theory and GdCo5 CF levels. The CF levels
of GdCo5 are calculated in DFT+U without SOC and with
U = 9.8 eV. Here, we disregard the energy difference between
the |ml = ±3⟩ 4f levels, which reflects in-plane MA but not
uniaxial MA.

Our results further demonstrate the validity of the PT
approach in describing rare-earth MA.

Due to its simplicity, such PT calculations can be used
for 1) fast screening of MA and 2) for understanding the
origin of rare-earth MA in a system. For example, large
easy-axis MA is required for many applications, such as
permanent magnets and topological magnets. Total en-
ergy calculations are more demanding, and special care
must be taken to ensure convergence to the desired 4f
configurations at every spin direction. In this context,
before conducting more reliable total energy calculations,
PT calculations can be used for a rapid initial screening of
rare-earth MA to identify potential easy-axis rare-earth
MA in unexplored crystal structures. Furthermore, the
PT approach can be used to decompose MA contribu-
tions into those from different rare-earth sites, such as in
R2Fe14B, and analyze how the MA changes with other
tuning parameters, thereby aiding in the understanding
of the origin of MA in a system.

VII. CONCLUSIONS

In summary, using TbMn6Sn6, we illustrate a general
challenge of calculating rare-earth magnetocrystalline
anisotropy in DFT and related methods, which often
fail to reproduce the correct Hund’s rule ground state
of rare-earth elements due to significant orbital depen-
dence of the self-interaction error for strongly localized
4f orbitals, and the lack of explicit proper orbital polar-
ization treatment. The true ground state may appear as
a metastable state that lies several hundred meV above,
resulting in an incorrect 4f orbital occupation associ-
ated with an incorrect 4f charge density, which in turn
leads to incorrect magnetocrystalline anisotropy. How-
ever, as the self-interaction error and orbital polarization
are, in principle, rotationally invariant, the anisotropy
of the true ground state might be expected to remain
correct if Hund’s rules are enforced by hand.
We have benchmarked this approach on materials with

heavy rare-earth atoms with saturated moments where
Hund’s rules are expected to be satisfied and the single
Slater determinant description is suitable. Notably, in
RCo5, R2Fe14B, and other compounds, the calculated
easy directions (including easy axes, planes, and conical
angles) have all agreed well with low-temperature mea-
surements.
Besides total energy calculations, we also demonstrate

the application of perturbation theory for evaluating
rare-earth anisotropy in RCo5. The good agreement be-
tween the perturbation approach and total energy calcu-
lations shows that it can be a useful tool for fast screening
of new systems. Moreover, in analogy to using the SOC
anisotropy to spatially resolve 3d anisotropy, such per-
turbation treatment of crystal field energy can be used
to resolve anisotropy in systems that contain multiple
nonequivalent rare-earth sites, aiding in the understand-
ing the microscopic origin of rare-earth anisotropy.
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D. Goll, T. Ivanova, S. Nikitin, E. Semenova, and A. Pe-
trenko, Magnetocaloric effect, magnetic domain structure
and spin-reorientation transitions in HoCo5 single crys-
tals, Journal of Magnetism and Magnetic Materials 323,
447 (2011).

[52] P. Larson, I. I. Mazin, and D. A. Papaconstantopoulos,
Effects of doping on the magnetic anisotropy energy in
SmCo5−xFex and YCo5−xFex, Phys. Rev. B 69, 134408
(2004).

[53] A. Ermolenko, Magnetocrystalline anisotropy of rare
earth intermetallics, IEEE Transactions on Magnetics
12, 992 (1976).

[54] A. S. Ermolenko, Exchange interactions and magne-
tocrystalline anisotcopy of rare-earth-cobalt compounds
with CaCu5-type structure, physica status solidi (a) 59,
331 (1980).

[55] A. Szytula and J. Leciejewicz, Handbook of Crystal
Structures and Magnetic Properties of Rare Earth Inter-
metallics (CRC Press, 1994).

[56] D. Haskel, J. C. Lang, Z. Islam, A. Cady, G. Srajer,
M. van Veenendaal, and P. C. Canfield, Atomic origin of
magnetocrystalline anisotropy in Nd2Fe14B, Phys. Rev.
Lett. 95, 217207 (2005).

[57] L. Ke and D. D. Johnson, Intrinsic magnetic properties
in R(Fe1−xCox)11TiZ (R=Y and Ce; Z=H, C, and N),
Phys. Rev. B 94, 024423 (2016).

[58] E. Boltich, B. Ma, L. Zhang, F. Pourarian, S. Ma-
lik, S. Sankar, and W. Wallace, Spin reorientations in
RTiFe11 systems (R = Tb, Dy and Ho), Journal of Mag-
netism and Magnetic Materials 78, 364 (1989).

[59] X. C. Kou, T. S. Zhao, R. Grössinger, H. R. Kirchmayr,
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