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E�ect of magnetic frustration on nematicity and
superconductivity in iron chalcogenides
J. K. Glasbrenner1*, I. I. Mazin2, Harald O. Jeschke3, P. J. Hirschfeld4, R. M. Fernandes5

and Roser Valentí3

Over the past few years iron chalcogenides have been intensively studied as part of the wider family of iron-based
superconductors, with many intriguing results reported so far on intercalated and monolayer FeSe. Nevertheless, bulk
FeSe itself remains an unusual case when compared with pnictogen-based iron superconductors, and may hold clues to
understanding the more exotic derivatives of the FeSe system. The FeSe phase diagram is distinct from the pnictides: the
orthorhombic distortion, which is likely to be of a ‘spin-nematic’ nature in numerous pnictides, is not accompanied bymagnetic
order in FeSe, and the superconducting transition temperature Tc rises significantly with pressure before decreasing. Here
we show that the magnetic interactions in FeSe, as opposed to most pnictides, demonstrate an unusual and unanticipated
frustration, which suppresses magnetic (but not nematic) order, triggers ferro-orbital order in the nematic phase and can
naturally explain the non-monotonic pressure dependence of the superconducting critical temperature Tc(P).

A lthough full consensus regarding the mechanism of high-
temperature superconductivity in Fe-based superconductors
(FeBS) remains elusive, nearly all researchers agree that it

is unconventional and that it has a magnetic origin1,2. However,
there is a divergence of opinion on the nature of the electrons
responsible for magnetism. There is an itinerant approach based
on calculating the spin susceptibility with moderate Coulomb
(Hubbard) andHund’s interactions3–9 as well as a localized approach
where itinerant electrons responsible for conduction and the Fermi
surface interact with local spins10,11. Finally, there is an increasingly
popular description where the electrons have a dual character
and provide the local moments, the interaction between them,
and the electronic conductivity12–15. Within this picture, FeBS can
still be reasonably mapped onto a short-range model of pairwise
interactions between the local moments.

Following the discovery of the FeBS, there weremultiple attempts
to map the magnetic interactions onto the Heisenberg model.
The J1–J2 model on the square lattice16 with nearest-neighbour
(J1) and next-nearest-neighbour (J2) exchange couplings was a
natural starting point that required markedly different couplings
for ferro- and antiferromagnetic neighbours, J1a� J1b, to reproduce
the observed spin waves17,18 and ab initio calculations19; it also
failed to describe the double-stripe configuration (see Fig. 1 for
pattern definition) in FeTe (refs 20,21). The model was extended
to include third-neighbour exchange J3 (ref. 22) to reproduce the
FeTe magnetic ground state. However, only the Ising model has this
configuration as a solution, and in the Heisenberg model it is not a
ground state for any set of parameters23,24. Therefore adding J3 does
not solve the problem. Furthermore, J1a� J1b implies an unphysical
temperature dependence of the exchange constants, because, as T
approaches TN , J1a→ J1b by symmetry.

There were attempts to overcome these problems by adding the
nearest-neighbour biquadratic exchange interaction K (Si · Sj)

2 to
the J1–J2 (refs 19,25) or J1–J2–J3 (ref. 26) Heisenberg model. The

three-neighbour Heisenberg model with biquadratic term (denoted
J1–J2–J3–K model from now on) eliminates the need for the J1a,1b
anisotropy of the nearest-neighbour exchange and, for sufficiently
large K and J3, has a ground state consistent with that of FeTe. The
biquadratic coupling in this model is also essential to explain the
splitting between the antiferromagnetic and orthorhombic phase
transitions in the Fe pnictides27,28.

Whereas the magnetism in Fe pnictides is qualitatively explained
by the J1–J2–J3–K model, the Fe chalcogenides remain problematic.
Specifically, there are two important unresolved controversies
regarding bulk FeSe. First, it shows a structural transition at
Ts∼90K but, contrary to the Fe pnictides, no magnetic order
is observed below Ts. Instead, an extended nematic region is
detected29,30 and the system becomes superconducting at Tc∼ 8K.
Second, the superconducting Tc first increases with pressure and
then decreases, forming a dome31. This is in apparent contradiction
with the expectation of a decreasing Tc with pressure when
magnetism is absent.

In the present work we propose a solution to this mystery and
generalize the results to the family of Fe chalcogenides FeSe/Te.
We show, using ab initio density functional theory calculations and
effectivemodel considerations, that both controversies are related to
unusual magnetic frustration, absent in most pnictides. Further, we
propose a phenomenological model that reflects our density func-
tional theory findings and their relation to nematic order in FeSe.

We also show that J1–J2–J3–K is the minimal spin model that
includes the relevant complexity of the low-energy magnetism in
Fe chalcogenides. Although a complete description of magnetic
excitations in FeBS in terms of a local spin model seems impossible
owing to considerable itinerancy (as manifested already by the
relatively large values of J3 and K ), the local energy physics can be
reasonably well visualized with the help of the J1–J2–J3–K model.
Herewe provide, for the first time, the fullmean-field phase diagram
for this model, which illustrates our ab initio findings.
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Figure 1 | Collinear magnetic structures used for fitting the J1–J2–J3–K
model. Single stripe (a), double stripe (b) chequerboard (Néel) (c),
staggered dimer (d) and staggered trimer (e) state.

Exchange model and phase diagram
We define the J1–J2–J3–K model on the square lattice as

H =
∑
nn

[J1m̂i ·m̂j−K (m̂i ·m̂j)
2
]

+

∑
2nn

J2m̂i ·m̂j+
∑
3nn

J3m̂i ·m̂j (1)

The first sum is taken over all nearest neighbour {i, j} pairs of Fe
spins, the second sum over all next nearest neighbours, and so on. m̂
is the unit vector in the spin direction, |m̂i|≡1. For K =0(∞), this
model reduces to the already solved Heisenberg24 (Ising32) models
on the square lattice.

To begin, we review the phase diagrams for the standard J1–J2–J3
Ising and Heisenberg models. In Fig. 2a we show the mean-field
T = 0 Ising phase diagram, which includes the staggered-dimer
and double-stripe ground states. Although this phase diagram can
explain the ab initio magnetic states of FeSe and FeTe, note that
the Ising model is inapplicable to low-anisotropy materials such as
the pnictides and chalcogenides, and the Heisenberg model is more
appropriate19,25,26. Themean-field phase diagram for the Heisenberg
model at T=0 is shown in Fig. 2b (quantum corrections introduce
minor changes24). The double-stripe phase has measure zero [it is
a degenerate case of q= (Q,Q)]. This means that no Heisenberg
model can explain the formation of a collinear double-stripe state.

The reviewof the Ising andHeisenberg phase diagrams elucidates
the two theoretical problems that have been underemphasized in
previous analyses of the magnetic interactions of the Fe-based su-
perconductors, especially in the chalcogenides: first, the Heisenberg
model does not account for all relevant magnetically ordered states
and, by implication, does not properly describe spin fluctuations;
and second, the single- and double-stripe magnetic states are not
the only important ground state candidates for the chalcogenides—
there is a third one, the staggered dimers, which is highly competi-
tive, but has been routinely ignored. To address these problems the
biquadratic term, K , needs to be quantitatively taken into account.

We solved the full J1–J2–J3–K model (equation (1)) for general
K in the mean-field limit and found six possible ground states
(see Supplementary Information and Discussion). Hu et al.26 at-
tempted previously to solve this model, but missed the staggered-
dimer phase33 which, we argue, is the key to understanding FeSe.
A representative example phase diagram with K/J1=0.1 is shown

in Fig. 2c. For a small, but non-zero K and J3 the staggered-dimer
phase becomes stable in a narrow (|J2− J1/2|< 2

√
2KJ3) interval

near the critical value J1=2J2, and at sufficiently large J3 (J3> J 21 /8K )
the collinear double-stripe structure is stabilized. As K grows, these
collinear regions also grow, and at K > J1/2 the phase diagram be-
comes identical to the Ising phase diagram in Fig. 2a. The complexity
of the derived phase diagram calls for a full first-principles analysis
of the relevant magnetic phases in FeBS, which we provide below.

First-principles calculations
We performed density functional theory (DFT) calculations to
obtain parameters for equation (1) and place FeSe and FeTe into the
context of the J1–J2–J3–K phase diagram. There is a caveat though:
owing to the itinerant character of magnetism in FeBS, mapping
onto localmomentmodels such as equation (1) has limited accuracy.
A fundamental assumption of the standardHeisenbergmodel is that
the magnetic moments are rigid, and this is an excellent assumption
for systems with highly localized electrons, such as the high-
Tc cuprates, but relatively poor for itinerant electrons. Magnetic
interactions in metals tend to have long-range tails, non-pairwise
interactions, and the moments may depend on the magnetic
ordering pattern. A clear example of the failure of the Heisenberg-
biquadratic models is that the double stripe (Fig. 1b) and plaquette
(see Supplementary Fig. 1p) configurations are degenerate in any
such model, but in DFT the double stripe is 8meV/Fe lower in
energy than the plaquette configuration34 for FeTe. Besides, we find
that although we can describe most low-energy states in Fe(Se,Te)
with reasonable accuracy, it is impossible to fit all energies presented
in Figs 3 and 4 (and also Supplementary Fig. 2) even qualitatively,
preserving the right hierarchy of states.

Despite these limitations, the J1–J2–J3–K model is the simplest
framework that accounts for all the magnetic ground states that
DFT and experiment find in different FeBS, and arguably is
also the most complex one that still allows an analytic solution.
As we are interested in spin fluctuation-driven effects such
as superconductivity and spin-nematicity, which are low-energy
phenomena, we establish a set of criteria for our fits, with the
main goal to select a consistent set of magnetic states and obtain
parameters that reproduce the low-energy hierarchy obtained
withinDFT. The criteria are detailed in theMethods, and the chosen
magnetic structures are shown in Fig. 1a–e.

We performed calculations for FeSe at three representative
pressures of 0, 4 and 9GPa, and for FeTe at ambient pressure
(see Methods for details). In all cases we used experimental lattice
and internal parameters in tetragonal structures, as discussed in
Methods. We fitted to the five magnetic configurations reported in
Fig. 3 and extracted the J1, J2 and J3 parameters. The biquadratic
term was extracted from noncollinear calculations as in ref. 34. The
resulting J1–J2–J3–K model parameters are reported in Table 1. Note
that the standard errors reported in Table 1 reflect the fit inaccuracy,
and not themuch smaller errors of the underlyingDFT calculations.

First of all, we confirmed that the staggered-dimer configura-
tion32,35 is 13meV/Fe lower in energy than the single-stripe con-
figuration and is the true DFT ground state for FeSe (ref. 33;
see Fig. 3). The same phase is also the lowest in energy in FeTe,
as long as one does not take into account the magnetoelastic
coupling. The calculated energy difference between the double-
stripe and staggered-dimer configurations in tetragonal FeTe is
tiny, ∼1–2meV/Fe. However, on full structural relaxation into a
monoclinic structure the double-stripe pattern gains more magne-
toelastic energy than the staggered-dimer state (which relaxes into
an orthorhombic structure) and ends up lower by a few meV, with
the crystallographic distortion in agreement with experiment20,21.

Another important result is that although the main contenders
for the ground state of FeTe are the double-stripe (qds= (π/2,π/2))
and the staggered-dimer (qdi = (π, π/2)) structures, with the
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Figure 2 | Classical mean-field phase diagrams. a, The J1–J2–J3 Ising model. b, The J1–J2–J3 Heisenberg model. c, The J1–J2–J3–K model with K/J1=0.1.
d, The J1–J2–J3–K model with K/J1=0.20, where the cross corresponds to FeSe at 9 GPa of pressure. e, The J1–J2–J3–K model with K/J1=0.25, where the
cross corresponds to FeSe at 0 GPa of pressure. f, The J1–J2–J3–K model with K/J1=0.39, where the cross corresponds to FeTe at 0 GPa of pressure. The
lengths of the cross’ bars in d–f indicate the uncertainty of the fit to the J1–J2–J3–K model.

staggered trimers (qtri= (π,π/3)) a close third, in FeSe the double-
stripe structure is not competitive at all. In FeSe the lowest energy
states are the staggered dimers, trimers, tetramers and single stripes,
with the respective ordering vectors qdi= (π,π/2), qtri= (π,π/3),
qtetra= (π,π/4) and qss= (π, 0). From this, one can conclude that
although in experiment the long-range order of FeSe is destroyed
by spin fluctuations, the most relevant ones are those with the
corresponding wavevectors listed above, and, by extension, with any
q=(π,Q) such that 0≤Q≤π/2.

Importantly, when FeSe is structurally optimized in any of
the low-energy magnetic structures, it admits an orthorhom-
bic structure quantitatively consistent with the experiment,
(a−b)/(a+b)∼0.2%, whereas optimization without magnetism
never breaks the tetragonal symmetry. Furthermore, on applying
pressure, the hierarchy of states changes and the single-stripe state
becomes the lowest in energy, as can be seen in Fig. 3, thus making
fluctuations at qss=(π, 0) the leading mode.

Discussion
As mentioned, there are two outstanding experimental paradoxes
regarding FeSe. The first paradox concerns the splitting of the
orthorhombic and magnetic transition observed in Fe pnictides,
which is taken to an extreme in FeSe: the structural transition occurs
at Ts∼ 90K, but no magnetic order follows. Yet, exactly as in the
pnictides, DFT calculations reproduce the distorted structure when
the calculated ground state magnetic structure is used, but show
no tendency towards orbital ordering or a structural distortion if
magnetization is kept zero.

The second paradox deals with the behaviour of the critical
superconducting temperature with pressure Tc(P). Typically,

Table 1 | Heisenberg and biquadratic exchange parameters for
FeSe/Te.

Material J1 J2 J3 K

(meV)
FeSe (0 GPa) 123.1±6.5 73.0±3.3 18.3± 1.8 30.6±0.4
FeSe (4 GPa) 86.9±2.4 51.9± 1.2 9.7±0.6 15.7±0.2
FeSe (9 GPa) 51.1±0.7 35.4±0.3 4.9±0.2 10.4±0.1
FeTe 50.7±3.6 42.8± 1.8 24.4± 1.0 19.7±0.2

The parameters for FeSe are reported at three di�erent pressures, 0 GPa, 4 GPa and 9 GPa. FeTe
is reported at 0 GPa. The reported standard errors indicate the inaccuracy of the fit to the
J1–J2–J3–K model. Note that the exchange constants reported here are formally defined as Jm2 ,
and therefore include the magnetic moment amplitude.

pressure has a tendency to suppress magnetism, so—in the
context of a magnetic pairing mechanism—pressure is beneficial
to superconductivity when magnetic order is present, but it is
destructive if it is not. For the nonmagnetic FeSe, the expectation
then is that Tc should decrease monotonically with pressure.
Instead, Tc first increases and then decreases with pressure, forming
a characteristic dome shape31. In the following we discuss how the
J1–J2–J3–K model resolves these paradoxes.

First we analyse the J1–J2–J3–K model parameters given in
Table 1 and plotted in Fig. 2. The crosses in Figs 2d,e and f,
show the placement of FeSe at 9GPa, FeSe at 0GPa and FeTe at
0GPa, respectively, in the J1–J2–J3–K phase diagram. Interestingly,
for both FeSe and FeTe the calculated ground state at ambient
pressure is near a phase boundary: between the staggered-dimer
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Figure 3 | Energies of collinear magnetic configurations. The total
calculated DFT energies of the collinear magnetic configurations used in
the fits of the J1–J2–J3–K model.

phase and the single-stripe phase for FeSe (the collinear q= (π,Q),
0<Q<π/2 states are all degenerate at this boundary) and between
the staggered-dimer phase and double-stripe phase for FeTe. The
latter seems to be very close to an Ising model because of the large
K and not because of a large magnetic anisotropy.

Generally speaking, one can anticipate that, in the absence of
long-range order, spin fluctuations with wavevectors corresponding
to the lowest energy states will occur: thus, in FeTe one expects
fluctuations with q= (π/2, π/2), (π, π/2) and (π, π/3). None of
those would support s± superconductivity, as only fluctuations with
q∼ (π, 0) can pair electrons in the standard s± superconducting
state. They all break tetragonal symmetry, but in different ways, as
described below, and cannot all support the same nematic state. In
FeSe, by contrast, one expects fluctuations with q= (π,Q), where
Q= 0, π/4, π/3 and π/2 (although we cannot check this, it is
likely that all fluctuationswithq=(π,Q), where−π/2.Q.π/2 are
supported; see Fig. 4a). This is very different frommost Fe pnictides,
where the single-stripe state is much lower in energy than all other
patterns, and therefore the qss fluctuations dominate (see the inset of
Fig. 4a). We note that NaFeAs seems to be an exception and also has
a near-degeneracy of these phases. The closeness of the degeneracy
is, however, an artefact of using the experimental tetragonal
structure of NaFeAs for the calculations. Indeed, accounting for
relaxation of the lattice parameters and pnictogen heights stabilizes
the single-stripe phase as the ground state (see Supplementary
Methods). Interestingly, in NaFeAs both the structural/nematic
and magnetic transitions occur, but the splitting is anomalous,
as the nematic transition occurs at a temperature Tnem 40%
higher than the magnetic transition Tmag (refs 36,37), unlike other
undoped pnictides (this magnitude is similar to experimental FeSe
at P=2GPa). We can therefore establish a correlation between the
presence of quasi-degenerateq=(π,Q)phases and themagnitude of
the relative splitting between the nematic and magnetic transition
temperatures ((Tnem−Tmag)/Tnem). Note that the above results rely
on the experimental fact that Fe in FeBS has a large local moment
(very close to the DFT results)38, and cannot be obtained by linear
response calculations based on a paramagnetic phase39.

An important consequence of our findings is that the different
spin fluctuations in FeSe (but not FeTe) all break the x ↔ y

symmetry in the same way and do not compete in terms of
nematicity (this holds for all q= (π,Q), −π/2.Q.π/2), leading
to an enhancement of the long-range nematic order. At the same
time, the competing q= (π,Q) wavevectors are not compatible to
magnetic ordering, and therefore naturally lead to the macroscopic
suppression of long-range magnetic order observed in FeSe. This is
in contrast to the case of FeTe, which orders in a double-stripe-like
pattern. The double-stripe fluctuations with qds= (π/2,π/2) break
a different symmetry, x+y↔x−y , than the (π,π/2) and (π,π/3)
patterns, and thus they compete nematically, so there is no nematic
phase present in FeTe. In conclusion, FeSe represents a rare case
where several types of spin fluctuations are simultaneously excited,
which prevents them from condensing at any one wavevector, but
does not prevent the formation of the nematic orthorhombic order.
Alternative models, relying on an itinerant scenario40 or the role of
quantum spin fluctuations41, have also been recently suggested.

We can demonstrate quantitatively how this physics develops by
using a phenomenological model that accounts for the described
frustration. The key input from the DFT calculations is the
fact that magnetic fluctuations with momenta transverse to
the stripe ordering vector, qss = (π, 0), are significantly softer
than those with longitudinal momenta (see Fig. 4a). We thus
model the low-energy magnetic excitations by the susceptibility
χ−1(qss+q)=χ−1(qss)+q2x+λq2y , where χ(qss) ∝ 1/(T − Tmag,0)

diverges at the mean-field magnetic transition temperature Tmag,0.
λ is the parameter characterizing this magnetic softness, which
is significantly smaller in FeSe than in most Fe pnictides (see
inset of Fig. 4a). Indeed, recent neutron experiments on FeSe
(ref. 42) reveal χ(q) of the above form, with λ≈0.05 for FeSe and
λ≈ 0.5 for Co-doped BaFe2As2 (ref. 43). By going beyond mean
field and consistently accounting for magnetic fluctuations (see
Methods), we find that whereas the bare (that is, in the absence
of nematic order) magnetic transition temperature is suppressed
by the magnetic softness according to Tmag − Tmag,0 ∝−λ

−(3−d)/2,
the nematic transition is enhanced Tnem−Tmag∝λ

−1/(4−d) (d is
the system’s dimensionality). Therefore, as anticipated, the unique
magnetic softness of FeSe suppresses long-range magnetic order at
the same time as it boosts long-range nematic order.

This nematic order, just as the underlying incipient magnetic
order, is accompanied by considerable orbital ordering. We find
(see Fig. 4c) that all investigated q=(π,Q) states induce population
imbalance between the Fe(dxz ) and Fe(dyz ) orbitals on each Fe site of
the order of (nxz−nyz)/(nxz+nyz)≈8%. As these states correspond
to rather different wavevectors, and thus a different folding of the
magnetic Brillouin zone, but trigger basically the same orbital order-
ing, we conclude that the latter is not sensitive to the magnetic long-
range order, but only to the nematic order. The orbital ordering can
be probed experimentally, and was observed in the nematic phase
at T .Ts by the Knight shift anisotropy29, whereas a divergence in
1/TT1, as expected, was observed only at much lower temperatures,
on approaching the long-range magnetic order at T∼0.

We have also calculated the density of states at the Fermi
level N (0) (Fig. 4b), and found it to be rather similar in all
nematic-compatible states, and strongly decreased compared to the
paramagnetic or Néel states. We thus observe that the immediate
cause of the reduction of N (0) is the orbital ordering (which
is about the same in all nematic-compatible states), which itself
has a magnetic origin. One can naturally conjecture that the
superposition of spin fluctuations with q= (π,Q), when averaged
over all Qs, has an effect similar to zone folding with q= (π, 0),
and, like in the stripe magnetic structure, leads to a sharp reduction
in the Fermi surface and thereby N (0), which is consistent with
photoemission and quantum oscillation experiments44,45.

Let us now address the effect of pressure. In general, pressure re-
duces magnetic interactions in FeSe. However, the staggered-dimer
state is suppressed with pressure faster than the single-stripe state
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Figure 4 | Energies, density of states at εF and orbital order of FeSe at 0GPa pressure. a, The energies of collinear magnetic configurations of FeSe at
ambient pressure plotted as a function of q. Inset: The energies of FeSe, NaFeAs, BaFe2As2 and LaFeAsO (see legend) along the q=(π,Q) line, where
0≤Q≤π/2. b, N(εF) for the lowest energy magnetic configurations compared to the nonmagnetic states indicates very small Fermi surfaces in fluctuating
magnetic states. c, Ferro-orbital order in Fe 3dxz/dyz orbitals measured for several magnetic states.

(Fig. 3), so that instead of multiple competing types of fluctuation
we obtain a situation similar to the pnictides, where fluctuations
with q= (π, 0) dominate. Recent resistivity measurements on FeSe
under pressure46,47 identified an antiferromagnetic phase at a pres-
sure &1–2GPa. Our calculations predict such a phase for pressures
above 4GPa, therefore showing the right behaviour, albeit with an
underestimation of the critical pressure.

Note that in the s± model the fluctuations with q = (π, 0)
are responsible for superconductivity. At ambient pressure, the
staggered-dimer/trimer fluctuations are dominant, but cannot lead
to pairing, because the very small FeSe Fermi pockets are not
connected by q=(π,Q), whereQ∼π/2. As discussed in ref. 48, such
low-energy fluctuations with ‘wrong’ momenta are pairbreaking
because they act essentially as impurities (note that the situation
in FeSe is qualitatively different from previous discussions in which
fluctuations in different channels compete, but can in principle each
lead to pairing).

Under pressure the pairbreaking staggered-dimer and -trimer
spin fluctuations are seen to decrease in amplitude much more
rapidly than the pairing stripe spin fluctuations at q= (π, 0). This
removal of pairbreaking effects is responsible for the initial increase
in Tc. The further increase of pressure decreases the amplitude of
both the pairbreaking q=(π,Q) and pairing q=(π, 0) fluctuations,
leading to the dome-like behaviour of Tc versus pressure. Evenmore
importantly, the nematic order, which is strongest atP=0, gradually
weakens with pressure, as the q= (π,Q) (Q∼π/2) fluctuations are
suppressed. As discussed above, the nematic ordering (originating
from magnetic fluctuations and accompanied by orbital ordering)
strongly reduces N (0) and therefore Tc (competition between
nematicity and superconductivity has been observed experimentally
in BaFe2−xCoxAs2 (ref. 49)), so the suppression of nematicity with
pressure is another factor ensuring the initial rise of Tc.

Conclusions
We have presented a detailed analysis, based on first-principles cal-
culations, of magnetic interactions in the FeSe/Te family. We show
that in FeSe the magnetic interactions are much more frustrated

than in most FeBS, including FeTe. Using a phenomenological
model to account for this frustration we showed that the simultane-
ous excitation of spin fluctuations with the wavevectors suggested
by the calculations prevents long-range magnetic ordering in FeSe,
but does allow the usual spin-driven nematic order. The spin-driven
nematic order is also accompanied by a ferro-orbital order, which
makes the Fermi surface and density of states deviate from the
nonmagnetic DFT calculations. With pressure FeSe becomes more
akin to the typical Fe pnictides, where the (π, 0) fluctuations domi-
nate, consistent with recent observations of antiferromagnetism at
higher pressure46,47. From the point of view of superconductivity,
FeSe at P = 0 seems to be underdoped, despite the absence of
a long-range antiferromagnetism, where the competition between
superconductivity and another order suppresses Tc, consistent with
the experimentally observed characteristic dome structure with Tc
peaked at P=9GPa.We also observed that at P=0 the leading fluc-
tuations are non-pairing in the s± channel, but pairing fluctuations
become the leading fluctuations with pressure, also consistent with
the initial increase of Tc with pressure.

To be able to analyse the emerging situation on a model level,
we mapped the low-energy energetics onto a three-neighbour
Heisenberg + biquadratic exchange Hamiltonian, which we have
solved analytically at T = 0 in the mean-field approximation. It
seems that the biquadratic interaction is essential to stabilize the
observed double-stripe phase in FeTe; without the extra term,
this phase can never be the ground state at any choice of
parameters. The same is true for the staggered-dimer phase found
to be the DFT ground state in FeSe. A nontrivial combination
of the biquadratic and third-neighbour exchanges, in addition to
the usually considered first- and second-neighbour Heisenberg
interactions, ensures the anomalously large splitting of the nematic
and antiferromagnetic transitions and the suppression of magnetic
ordering in FeSe. We believe that this new perspective on the
unusual magnetic physics of Fe chalcogenides will be crucial
to an explanation of their remarkable properties, including
perhaps high-temperature superconductivity in the monolayer
FeSe system.
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Methods
DFT calculations and fitting procedure.We employed density functional theory
and made use of three separate, full potential (all electron) codes, ELK (ref. 50),
WIEN2K (ref. 51) and FPLO (ref. 52) to calculate the energies. The generalized
gradient approximation was used for the exchange–correlation functional53. We
checked for convergence with respect to k-points and, for ELK, the number of
empty states. We calculated the energies of multiple collinear configurations using
all three codes for comparison purposes, whereas noncollinear calculations were
handled exclusively by the ELK code.

We used the tetragonal P4/nmm space group (origin choice 2) for the crystal
structure of FeSe and FeTe in all our calculations. The Fe and chalcogenide (Se/Te)
ions occupy the 2a and 2c Wyckoff positions, respectively. The lattice parameters
for the different materials (and for FeSe, under different pressures, which were
taken from ref. 54) are summarized in Supplementary Table I. We note that at low
temperatures FeSe is strictly an orthorhombic structure, but this distortion is small,
and omitting it leads to a small magnetoelastic error when compared with the
exchange parameter energy scales. Furthermore, we are interested in the physics
that emerges from spin fluctuations that originate in the tetragonal phase.
Therefore, for FeSe, we defined a volume-conserving effective parameter a∗=

√
ab,

where a and b are the orthorhombic parameters taken from experiment.
The structures in Supplementary Fig. 1 summarize all of the different

configurations that we considered. For structures that do not have a commonly
used label, such as Supplementary Fig. 1h, we named them using a generic scheme,
where black circles are up (u) and×s are down (d). To construct the generic name,
we start with the bottom row, read the pattern from left to right, then move up a
row and repeat (hyphens are used to distinguish between rows in the pattern).

Supplementary Fig. 2 gives the energies we calculated using these codes. Note
that we did not calculate the energy of every configuration using all three codes,
but there are several points of comparison. For all configurations for which we can
make a comparison, there is excellent agreement across codes. Across the different
codes there is no ambiguity as to the energy hierarchy of the low-lying energy states.
In addition, the energy range for the different configurations is fairly large for both
FeSe and FeTe, on the scale of 100–300meV for FeSe and 50–100meV for FeTe.

We fit to the Hamiltonian in equation (1) using the ordinary least squares
method. The coefficients for the collinear Heisenberg model obtained by
summing over neighbours are reported in Supplementary Table II. For the
noncollinear calculations used to obtain the biquadratic parameter K , the model
reduces to1E(θ)=E(θ)−E(0)=2K sin2(θ); see ref. 34 for the definition of θ .
The noncollinear energies and the corresponding fits are shown in
Supplementary Fig. 3.

It was not possible to achieve a fit that accurately reproduced all energies for all
possible collinear configurations. This is a consequence of the itinerant nature of
the magnetism, which in general cannot be mapped onto a pairwise interaction
model. We also note that the lower symmetry magnetic structures, such as those
with generic names like ‘uudd-dudd-dduu-dddu,’ suffered moment collapse in FeSe
under pressure. To control these difficulties, we defined a set of four criteria for our
fitting procedure. The criteria were collinear ground states of the J1–J2–J3–K model
should be included; low-energy structures that do not suffer from moment collapse
under pressure (for FeSe) should be included; local moments of included structures
should be similar; and we exclude configurations that yield fits that do not
reproduce the density functional theory energy hierarchy of the lowest energy
configurations. The last criterion is necessary because we cannot produce an
accurate fit for all configurations, so we decide which features of the density
functional theory set of energies are important from the point of view of
fluctuations and frustration, which are the lowest energy ones. Given these criteria,
we perform the fitting procedure using the energies summarized in Fig. 3.

Finally, it is worth noting that for itinerant magnets the exchange model could
be potentially improved using an approach similar to Moriya55, and allowing the
moment amplitudes to vary, and by also including Stoner-like on-site terms. We
tried including terms such as this to see how it affected the quality of our fits. We
found that including these terms does not change the fitting results in any
qualitative way when using the configurations in Fig. 3. Furthermore, it did not
allow us to extend the fit to also reproduce the high-energy configurations from
Supplementary Fig. 1. It is possible, however, that these modifications would be
important for fluctuations above the Néel temperature.

Phenomenological model for the nematic and magnetic transitions.Here we
give the details of the phenomenological model used to calculate the magnetic and
nematic transition temperatures Tmag and Tnem. We start with the low-energy
Ginzburg–Landau action for the magnetic degrees of freedom27:

Seff[Mi]=

∫
q

∑
i

χ−1i,q Mi,q ·Mi,−q+
u
2

∫
x
(M 2

1 +M
2
2 )

2
−

g
2

∫
x
(M 2

1 −M
2
2 )

2

Here,Mi are the magnetic order parameters corresponding to the stripe
ordering vectorsQ1=(π, 0) andQ2=(0,π) (see Supplementary Discussion for the
reasoning for the use of these particular momenta), u>0, g>0 are

Ginzburg–Landau coefficients, and
∫
q=T

∑
n

∫
ddq/(2π)d ,

∫
x=
∫ β
0 dτ

∫
ddx . As

explained in the main text, the susceptibilities are given by χ−11,Q1+q= r0+q
2
x+λq2y

and χ−12,Q2+q= r0+λq
2
x+q2y , with r0=a(T−Tmag,0), where a>0 and Tmag,0 is the

mean-field magnetic transition temperature. This expression was derived from a
microscopic toy model in ref. 27; here, we use the input from the DFT calculations
to phenomenologically modify the magnetic susceptibility to include the fact that
magnetic fluctuations are softer along the direction transverse to the ordering
vector. Within our model, this is accomplished by the parameter λ>0. Our goal
here is to focus solely on the effect of λ on the nematic and magnetic transition
temperatures, to mimic the difference between FeSe (λ�1) and the other Fe
pnictides (λ∼1). We here ignore quantum fluctuations and focus on the
classical behaviour.

To obtain separate magnetic and nematic transitions, we need to go beyond
mean field and take into account the effects of fluctuations. We do that
self-consistently by introducing two Hubbard–Stratonovich fields ψ and ϕ, whose
mean values are proportional to the Gaussian fluctuations, 〈ψ〉∝〈M 2

1 +M 2
2 〉, and

to the nematic order parameter, 〈ϕ〉∝〈M 2
1 −M 2

2 〉. Within the saddle-point
approximation, we obtain the self-consistent equations27:

ψ=
u
2

∫
q

(
χ̃1,q+ χ̃2,q

)

ϕ=
g
2

∫
q

(
χ̃1,q− χ̃2,q

)
(2)

where χ̃−1i,q =χ
−1
i,q +ψ∓ϕ are the renormalized magnetic susceptibilities. We first

study the suppression of the mean-field magnetic transition temperature in the
absence of nematic order. Setting ϕ=0, we find that the renormalized magnetic
transition takes place when r0,mag≡a(Tmag−Tmag,0)=−ψ :

r0,mag=−ū
∫ Λ

0

∫ Λ

0

qd−21 dq1dq2
q21+λq22

(3)

Here, (ū/u)=(2Sd−1Tmag,0/(2π)d ), whereΛ is the upper momentum cutoff of the
theory and Sd−1 is the area of the unit hypersphere in (d−1) dimensions. Because
magnetic transitions cannot happen in d=2, we extended the model to an
arbitrary dimensionality 2<d≤3. The case d=3 corresponds to a completely
isotropic system; for an anisotropic layered system, such as the FeBS, one can
effectively consider a fractional dimension 2<d<3, as shown for instance in
ref. 27, to mimic the effect of the inter-layer coupling.

Let us first consider the extreme case of λ=0. As shown in equation (3), in this
case the system effectively ‘loses’ one dimension and the lower critical dimension,
where Mermin–Wagner theorem applies, increases from d=2 to d=3. This simple
observation shows the strong effect that λ�1 has on the magnetic transition. For a
finite λ, a straightforward calculation gives:

Tmag−Tmag,0=−

(
ūΛd−2

a

)
λ−(3−d)/2f (λ)

with the ‘scaling function’ (2<d<3):

f (λ) =
λ−d/2

2(d−2)

[
−
πλd/2

cos
(
πd
2

) +2λarctan√λ
−

2λ3/2

3−d
F21

(
1,
3−d
2

,
5−d
2

,−λ
)]

where F21 is the hypergeometric function. For d=3, we obtain:

f (λ)=
arctan

√
λ

√
λ
+

1
2
log
(
1+

1
λ

)
Therefore, f (λ→0) remains finite and non-zero for 2<d<3, implying that

Tmag−Tmag,0∝−λ
−(3−d)/2. As a result, the magnetic transition temperature (in the

absence of nematic order) is strongly suppressed by λ�1. Note that, in the extreme
case d=3, f (λ→0) is singular and Tmag−Tmag,0∝− log(1/λ). This shows that,
indeed, d=3 is the lower critical dimension of the problem with λ=0.

We can also study the effect of λ on the nematic transition temperature. Because
this is an Ising-like degree of freedom, it is not subject to the effects discussed
above and related to the Mermin–Wagner theorem (for 2<d<3). In this case, the
dependence on λ is parametrical, and non-singular in this regime. Therefore, here
we consider the case λ>0 (that is, moderate softness) and 2<d<3. Defining
r= r0+ψ and r̃0= r0− r0,mag≡a(T−Tmag), we obtain from equation (2):

r= r̃0,nem−
ũ
√
λ

[
(r+ϕ) d−2

2 +(r−ϕ) d−2
2

]
ϕ=

g̃
√
λ

[
(r+ϕ) d−2

2 −(r−ϕ) d−2
2

]
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where

ũ
u
=

g̃
g
=

Tmag,0Sdπ
4(2π)d sin

(
(d−2)π

2

)
Linearizing in ϕ and solving for r̃0,nem≡a(Tnem−Tmag) gives:

Tnem−Tmag=
1
a

[
1+

2u
(d−2)g

][
(d−2)g̃
√
λ

] 2
4−d

Therefore, we obtain an enhancement of the nematic transition temperature,
Tnem∝λ

−1/(4−d). Note that the limit λ→0 cannot be properly attained by this
expression. In fact, λ=0 effectively reduces the dimensionality of the system by
one, which for 2<d<3 should still give a finite-temperature Ising transition. Yet,
the expression above clearly shows that smaller values of λ do not suppress Tnem.
Instead, Tnem is enhanced by the softness of the magnetic fluctuations. Finally, note
that Tmag refers to the magnetic transition temperature in the absence of nematic

order. Once nematic order sets in, it tends to renormalize the magnetic transition
temperature to higher values27.
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Effect of lattice relaxation and pnic-
tide/chalcogenide heights on energy hierarchy of
q = (π, Q) phases

In the main text, we presented the energies of the q =
(π, 0), (π, π/2), (π, π/3), and (π, π/4) states for different
pnictides as well as FeSe in the inset of Fig. 4a. These cal-
culations were performed using the tetragonal experimental
lattice parameters and As/Se heights for the considered ma-
terials (LaFeAsO, BaFe2As2, NaFeAs, and FeSe), and we
found that NaFeAs, with these parameters, is nearly degen-
erate for q = (π, Q), where 0 < Q < π/2, which would
suggest that NaFeAs should also have no magnetic order-
ing similar to FeSe. Yet, in experiment the ground state is
the q = (π, 0) phase. We saw that, in the case of FeTe,
allowing for lattice relaxations drove the system away from
the staggered dimers phase into the double stripe phase, so
a similar mechanism could be at play here.

We checked this by performing a volume-conserving full
optimization of NaFeAs for single stripe, staggered dimers,
and staggered trimers, allowing the lattice vectors and ionic
heights to relax. In all instances the obtained orthorhom-
bic distortion was ∼ 0.5%, which is an order of magnitude
larger than experiment, where it is ∼ 0.03%. The degree of
orthorhombicity also varied from pattern to pattern, obtain-
ing 0.44% for single stripe, 0.52% for staggered dimers, and
0.63% for staggered trimers. There was variation in the c
parameter as well, with 6.94 Å, 7.05 Å, and 7.03 Å for sin-
gle stripe, dimers, and trimers, respectively. The energies of
the patterns were 0, 5.3 meV/Fe, and 1.9 meV/Fe for single
stripe, dimers, and trimers, respectively, with single stripe
taken as the zero. So we see that allowing for relaxation sta-
bilizes the single stripes. In principle, since we are deep in
the nematic state, magnetoelastic coupling should be taken
into account, and this contributes to the stabilization of
the single stripe in NaFeAs. However, just as in the main
text, our results here are qualitative, as the orthorhombic
distortion is much larger than seen in experiment.

In our NaFeAs calculations, the variation in the c param-
eter and, by extension, the ionic heights affected the energy
hierarchy of the q = (π, Q) states. Manually increasing the
c parameter for NaFeAs raised the energy of the single stripe
phase relative to the dimers phase. On the other hand, hav-
ing an orthorhombic cell versus a tetragonal cell had little
effect, assuming that volume is conserved. We found that,
if we took our orthorhombic cells and made them tetragonal

(in the same way as was done with FeSe at 4 and 9 GPa
in the main text), the energy changed by only ∼ 0.1 − 0.2
meV/Fe.

In general we also found that the degeneracy of the
q = (π, Q) phases correlates with the pnictide/chalcogenide
height. In Suppl. Table IV, we summarized the distance be-
tween Fe and As planes for a representative material in the
111, 1111, and 122 structures, and the distance between
Fe and Se planes in FeSe and FeTe. Comparing the heights
with the energies in the inset of Fig. 4a in the main text, we
see that for small heights, such as LaFeAsO and BaFe2As2,
that the single stripe is much lower in energy than other
values of Q. On the opposite end we have FeTe with a very
large height, in which case the double stripe phase is lowest
in energy. The heights for FeSe and NaFeAs are an inter-
mediate range, and for these materials the near-degeneracy
occurs.

Phase boundaries of J1-J2-J3-K model
In the main text we summarized the details of the J1-J2-

J3-K model. Here we give additional details of the analytic
solution. First, let us ignore the K term and refresh what
is known about the J1 −J2 −J3 Ising and Heisenberg mod-
els. The Ising model has four phases, the Néel checkerboard
(cb) phase in Suppl. Fig. 1a, the double stripe (ds) phase in
Suppl. Fig. 1d, the single stripe (ss) phase in Suppl. Fig. 1e,
and the staggered dimers (di) phase in Suppl. Fig. 1f. The
Heisenberg model also has four phases, but neither the ds
or di phase are ground states in the phase diagram. Instead,
the four phases are the aforementioned cb and ss phases,
and in addition two spiral phases with spins rotating away
from the origin as α = nxqx +nyqy, the first with wavevec-
tor q1 = (π, Q) and the second with q2 = (Q, Q) (see,
e.g., Ref.1). Note that at q1(Q → 0) = (π, 0), which is
the ss phase, and at q1(Q → π) = q2(Q → π) = (π, π),
which is the cb phase. In both phases Q depends on the
exchange parameters: Q = cos−1 [(2J2 − J1) /4J3] for q1
and Q = π−cos−1 [J1/ (2J2 + 4J3)] for q2. Finally, the an-
alytic expressions for the phase boundaries are summarized
in Suppl. Table III.

Adding in the biquadratic term −K (m̂i · m̂j)2 restores
the ds and di configurations to the phase diagram. The
allowed wavevectors in the spin spiral phases also become
dependent on K: Q = cos−1 [(2J2 − J1) / (4J3 − 2K)] for
q1 and Q = π − cos−1 [J1/ (2J2 + 4J3 − 2K)] for q2. The
analytic expressions for the phase boundaries also change
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and many become K-dependent as summarized in the last
column of Suppl. Table III. As K grows so do the areas of
stability of the ds and di phases. Once K > J1/2, the phase
diagram becomes indistinguishable from the Ising model.

FeSe0.5Te0.5
A notable omission to our results is the case of

FeSe0.50Te0.50. Unlike the other materials, the structure of
FeSe0.50Te0.50 is not well-defined. A common approach is
to use lattice parameters from experiment and then choose
the chalcogenide to be either pure Se or pure Te, assuming
that the change in the lattice parameters drives the relevant
physics, such as inducing superconductivity. A check of this
reveals that this is not entirely the case; there is a signif-
icant energy splitting of the checkerboard, double stripe,
and zig-zag configurations when Se/Te are swapped, and
the energy splits are not in the same direction. Using Te
lowers the checkerboard energy, while it increases the dou-
ble stripe energy, for example. Furthermore, careful exper-
imental analysis reveals that FeSe0.50Te0.50 is a disordered
structure with different heights for Se and Te2. Taking this
into account requires an expensive and non-trivial averag-
ing procedure. While a description of FeSe0.50Te0.50 would

be useful, we put the question aside for now due to the
complexity of the structure.

Comment on the basis of the phenomenological
model

When reviewing the construction of the phenomenolog-
ical model, one may ask why the model used q = (π, 0)
as the reference momentum as opposed to q = (π, ±π/2),
which is the DFT ground state of FeSe at ambient pres-
sure. The reason for building the model this way is because
the relevant degeneracy region ranges from q = (π, −Q) to
q = (π, Q), where Q is somewhat larger than π/4 but is
much smaller than π. The simplest analytic version of this
is a flat-bottom curve centered at q = (π, 0). It is true that
more accurate models are possible, such as a shallow double-
well curve with the wells positioned near q = (π, ±π/2) that
would better replicate the DFT calculations. However, us-
ing such a model would add significant complexity to the
theoretical treatment. Since the model itself is phenomo-
logical and our aim was to understand qualitative effects,
we decided it was best to stick with the simpler version.
The important point is that only with a nearly continuous
degeneracy is the magnetic transition truly suppressed.

1 Pimpinelli, A. & Rastelli, E. Absence of long-range order in
three-dimensional spherical models. Phys. Rev. B 42, 984
(1990).

2 Louca, D. et al. Local atomic structure of superconducting
FeSe1−xTex. Phys. Rev. B 81, 134524 (2010).
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Material a (Å) c (Å) zSe zTe

FeSe 3.76976 5.52122 0.2688
FeTe 3.81362 6.25381 0.2829

FeSe (4 GPa) 3.6717 5.1943 0.2740
FeSe (9 GPa) 3.6049 5.0304 0.2839

TABLE I: Crystal parameters for FeSe and FeTe. The structure parameters and Wyckoff positions for FeSe/Te, with
FeSe reported at three different pressures.

Configuration J1 J2 J3 Const.
Checkerboard -2 2 2 1
Single Stripes 0 -2 2 1
Double Stripes 0 0 -2 1

Dimers -1 0 0 1
Trimers -2/3 -2/3 2/3 1

TABLE II: The J1, J2, and J3 coefficients. The coefficients obtained by summing over neighbors of the magnetic structures
used for fitting to the J1-J2-J3-K model.

Phase boundary Ising Heisenberg J1-J2-J3-K
cb/di 2J3 + 2J2 − J1 2J3 + 2J2 − J1
cb/ss
ss/di 2J3 − 2J2 + J1 4J3 − 2J2 + J1 − 2K
di/ds 2J3 − J1 2J3 − J1

cb/q = (π, Q) 4J3 + 2J2 − J1 4J3 + 2J2 − J1 − 2K
ss/q = (π, Q) 4J3 − 2J2 + J1 4J3 − 2J2 + J1 − 2K
cb/q = (Q, Q) 4J3 + 2J2 − J1 4J3 + 2J2 − J1 − 2K

q = (π, Q)/q = (Q, Q) 2J3 − J2 2J3 − J2 − K

di/q = (π, Q) 4K (2J3 − K) − (2J2 − J1)2

di/q = (Q, Q) (J1 − J2 − 4J3 + 3K)2 − J1 (J1 + J2 + K) + 2J2
1

ds/q = (π, Q) 8J3 (2J3 − J1) − (2J2 − J2)2 − (2K − J1)2 + J2
1

ds/q = (Q, Q) 8J3K + 4J2K − 4K2 − J2
1

TABLE III: Analytical solutions for phase boundaries of the Ising, Heisenberg, and J1-J2-J3-K models.

Material Fe-As/Se Distance (Å)
LaFeAsO 1.32
BaFe2As2 1.36
NaFeAs 1.43

FeSe (0 GPa) 1.48
FeSe (4 GPa) 1.42
FeSe (9 GPa) 1.42

FeTe 1.77

TABLE IV: Distance between Fe and As/Se planes for se-
lected pnictides and chalcogenides.
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FIG. 1: Collinear magnetic structures a, Checkerboard (cb). b, Ferromagnetic (fm). c, Parallel Stripes (parastr). d,
Double Stripe (ds). e, Single Stripe (ss). f, Staggered Dimers (di). g, Zig-zag Stripes (zigzag). h, uudd-dudd-dduu-dddu. i,
duuu-uuuu-uudu-uuuu. j, duuu-uduu-uudu-uuud. k, uuuu-udud-uuuu-udud. l, dduu-uuuu-uudd-uuuu. m, duuu-udud-uudu-
udud. n, uduu-udud-uuud-udud. o, dduu-udud-uudd-udud. p, plaquette (plaq). q, Staggered Trimers (tri). r, Staggered
Tetramers (tet).

5

FIG. 2: Comparison of DFT energies The DFT energies were calculated using elk, wien2k, and fplo. a, FeSe. b, FeTe.
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FIG. 3: Energies of noncollinear structures for FeSe and FeTe as a function of the rotation angle. The dashed
lines are the model fits. a, FeSe at 0 GPa pressure. b, FeSe at 4 GPa pressure. c, FeSe at 9 GPa pressure. d, FeTe.
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