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Spin spiral and topological Hall effect in Fe3Ga4
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A new mechanism for the topological Hall effect (THE) was recently proposed for the spiral magnet
YMn6Sn6, which requires transverse conical spiral magnetism, induced by external magnetic field, combined
with thermally excited helical spiral magnons. In principle, this mechanism should be applicable to other
itinerant spiral magnets as well. In this paper, we show that another magnetic compound, Fe3Ga4, in which
THE was observed experimentally before, in one of its phases satisfies this condition, and the proposed theory
of thermal-fluctuation-driven THE is quantitatively consistent with the experiment. This finding suggests that
this mechanism is indeed rather universal, and the effect may have been observed in other compounds before but
overlooked.
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I. INTRODUCTION

For the past few decades, topological effects driven by
magnetic textures have attracted considerable interest [1–5].
In particular, the Hall effect has been widely used as a probe
for topological effects. In the classical Hall effect, discov-
ered more than a century ago, the Lorentz force resulting
from an external magnetic field gives rise to an electric
field perpendicular to the electron current. The theory of this
phenomenon is well known and stipulates that the effect is
linear in the magnetic field, with the ordinary Hall resistivity
ρO = R0H (the proportionality coefficient R0 depends on the
details of the Fermi surface). In systems with broken time-
reversal symmetry (for instance, in ferromagnets), there exists
another contribution to the off-diagonal resistivity, dubbed the
“anomalous Hall effect” (AHE), ρA = RsM. This contribution
is proportional to the magnetization M and gives rise to a Hall
effect even in the absence of an externally applied magnetic
field. While this relation is not always true, for instance, it is
violated in some antiferromagnets [6], it has been routinely
used to identify the AHE in the experiment.

Very recently, an additional mechanism generating off-
diagonal resistivity in magnets with noncoplanar moments
was identified [2,7]. Interestingly, contrary to the AHE, this
mechanism does not require spin-orbit interaction, although it
can benefit from the latter [8]. This mechanism, often called
the topological Hall effect (THE), is based on the Berry phase
an electron acquires when its spin follows a spatially varying
magnetization that is present in such materials. It was shown
that its amplitude is proportional to the so-called scalar spin
chirality (SSC), defined as the triple product of three spins
forming a triangle:

� = S1 · (S2 × S3). (1)

In principle, this mechanism is not supposed to work in
a system with zero SSC and weak spin-orbit coupling (as in
many 3d metals). Yet in several cases sizable deviations from

the standard formula, ρ = ρO + ρA = RoH + RsM, were re-
ported [9–12] and ascribed to THE, even though for all these
systems the magnetic structure is known and does not have
any SSC.

For one of these compounds, namely, YMn6Sn6, a particu-
larly detailed set of experimental data was available [10], and
another mechanism for THE was proposed. Within this sce-
nario, SSC emerges through a fluctuational mechanism akin to
the emerging nematicity in an Fe-based superconductor [13].
The resulting THE amplitude grows roughly linearly with
temperature, with a quadratic dependence on magnetization.
The prerequisites to this fluctuational THE (FTHE) are (a) a
transverse conical spiral magnetic state at least in some range
of temperatures and external fields, (b) itinerant electrons
strongly coupled with this spiral (ideally, formed by the same
electron orbitals), and (c) strong fluctuations.

In this paper, we will study another compound in which
THE has been reported [9], Fe3Ga4, and will show that this
observation is consistent with the same FTHE mechanism. In
the following section we will describe the compound and the
experimental picture; then we will present the results of our
density functional theory (DFT) calculations and discuss the
magnetic phase diagram. After that, we will review the theory
of the FTHE and apply it to Fe3Ga4.

II. EXPERIMENTAL SITUATION

Fe3Ga4 crystallizes in a base-centered monoclinic struc-
ture, with the symmetry group C2/m, and a rather complex
primitive unit cell of 3 f.u. The four crystallographically in-
equivalent Fe sites form seven parallel sheets along the c
direction, as shown in Fig. 1, with interlayer distances of
0.368, 1.334, 1.104, 1.104, 1.334, 0.368, and 0.977 Å. The
lattice parameters are a = 10.0979 Å, b = 7.6670 Å, and
c = 7.8733 Å, with an obtuse angle of β = 106.298◦ [9].
While crystallographically and electronically, as will be dis-
cussed in more detail later, it is rather three-dimensional (3D),
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FIG. 1. Layered structure of Fe atoms in Fe3Ga4 crystal structure
(plotted using the VESTA package [15]). The four different crystal-
lographically inequivalent iron sites are shown in different colors.
There are also four unique Ga sites, which are all shown in gray.

magnetically, it can be viewed as a stack of ferromagnetically
ordered planes with complex, but, presumably, weaker, inter-
planar coupling [14].

The material is known to have two magnetic transitions
[9,14], from a ferromagnetic (FM) to a spin density wave
(SDW) at T1 = 60 K and back to a ferromagnetic state at
T2 ≈ 360 K [in this paper we apply the term SDW to any
phase where spin polarization varies periodically in space;
thus defined, SDW can be either a spin spiral (SS) or an
amplitude spin density wave (ASDW), wherein the magnitude
of the magnetic moment varies continuously, or a combination
of both]. The long-range order is lost at T3 = 420 K. The
nature of the SDW phase will be discussed later; we will just
mention that the neutron data can be fit equally well [14,16]
by an ASDW, where the spins are mostly aligned along a, or
by a spin spiral with the helical orientation, i.e., with the spins
rotating in the ab plane. Either way, the spiral wave vector
appears to be (0,0,0.29) at T = 100 K and gradually reduces
after ≈200 K to (0,0,0.25) at room temperature. The low-T
and high-T phases are identified as ferromagnetic, although
the high-T phase may be a noncollinear canted phase with
non-zero net magnetization. In this paper, however, we will
not be concerned with the natures of those phases, only with
the SDW phase between T1 and T2.

Experimentally, the neutron scattering experiments [14]
indicate that in the low-temperature ferromagnetic phase the
moments are oriented along c, suggesting that c is the mag-
netic easy axis in this temperature range. In the SDW phase
(see Ref. [14], Fig. 3(a), for the data at T = 100 K), in the
low field (<0.3 T) the spin susceptibility is the lowest for
the field direction along a and the highest along c, but the
c and b directions are nearly the same. In this C2/m structure
the c axis forms a slightly obtuse angle of 105.8◦ with a, so
that formally, a small off-diagonal anisotropy is allowed and
the principal magnetic axes may deviate from the crystallo-
graphic axes. This effect is likely small, and in the following
qualitative discussion we neglect the difference between the
magnetic and crystallographic axes. If this SDW is assumed
to be approximately collinear [14,16], the hierarchy of the
spin suceptibilities would imply that a is the easy axis and
b and c are the hard ones, with b being slightly harder. This
assignment is consistent with the first neutron structure, an
amplitudinal wave mostly polarized along a. Note that this

structure implies that the easy axis rotates from c to a in this
temperature range. In higher fields a spin-flip (not spin-flop)
transition into a ferromagnetic state with M � 3μB/f.u. is
observed. For the field direction b it happens at H ≈ 5 T, and
for the fields along a or c at a much higher field, H ≈ 7 T.
In an ideally collinear antiferromagnet (the amplitude SDW
proposed in Ref. [14] is rather close to that) the spin-flip field
is the lowest along the easy axis and the hardest along the
hardest axis (since Zeeman energy in this case needs to over-
come an additional loss of the magnetic anisotropy energy).
Thus, from the spin-flip data at 100 K we have to conclude that
b is the easy axis, and a and c are approximately equally hard,
in obvious contradiction not only to the low-T FM spin ori-
entation but also to the fact that spins in the assumed ASDW
state at the same temperature lie predominantly along a.

On the other hand, if we assume that the magnetic state
at T = 100 K is an ab-helical spin spiral, then c must be the
hardest axis. This assignment is consistent with the fact that
the low-field susceptibility is the highest along c, for a conical
spiral is normally preferred over a planar-distorted one. From
the differences between the in-plane susceptibility it follows
that in this case b is the easier axis of the two.

In Table I we list the anisotropies consistent with the ex-
periment and the two alternative interpretations of the SDW
phase. We can see that regardless of the accepted inter-
pretation, the anisotropy at T = 100 K disagrees with the
low-temperature data. On the other hand, the anisotropies
deduced from the spin-flip field and from the susceptibility
are inconsistent with each other in the ASDW scenario but
are consistent in the SS one. That is to say, contrary to the
assumption in Ref. [14], the latter is more, not less, consistent
with the entire set of experimentally measured anisotropies at
T = 100 K.

At T = 100 K there are no other detectable phase tran-
sitions, implying that at this temperature the SDW state
bypasses a spin-flop and immediately transitions into a forced-
ferromagnetic state via a spin flip. On the other hand,
magnetometry at higher temperatures, �150 K, suggests the
possibility of a spin-flop transition at very low fields H �
0.1 T for H ⊥ c [9]. This fact is consistent with both an ab
helical spiral and an a polarized ASDW. Had magnetometry
data resolved in the ab plane been available, one could dis-
tinguish between the two scenarios because the spin flop is
expected for both a and b in the former case but only for a in
the latter.

The residual resistivity was relatively large, with the room-
temperature ratio ∼2, indicating a large number of defects and
possibly deviations from stoichiometry. The residual specific
heat coefficient C(T )/T |T →0 = 23 mJ/mole K2, correspond-
ing to the density of states (DOS) at the Fermi level N (0) ≈ 10
states/f.u. Only the first phase transition, at T = T1, has a
distinct specific heat signature, and the entropy change is
very small, less than 0.3% of Rln2, indicating that the tran-
sition occurs between two well-ordered states. The authors of
Ref. [9] estimated that entropy change between T2 and T3 as
0.43 J/mole K, which is less than 10% of Rln2, consistent
with a quasi-two-dimensional character of magnetism in this
material.

Transport measurements indicate an extra contribution for
the Hall effect ρxy (i.e., in a magnetic field in the ab plane) for
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an intermediate temperature range, roughly coinciding with
the (T1, T2) interval, compared with the standard combination
of anomalous and ordinary Hall effects,

ρxy(H ) = RoH + RsM. (2)

The coefficients Ro and Rs strongly depend on the phase and,
inside each phase, also depend on temperature, which makes
it difficult to quantify the additional, presumably topological,
contribution, but one can say with confidence that this contri-
bution increases with temperature up to the highest reported
temperature of 350 K.

III. DFT CALCULATIONS

Calculations of the structural, electronic, and magnetic
properties of bulk Fe3Ga4 were performed using the Vienna
Ab initio Simulation Package (VASP) [17–20]. Fe 3s, 3p, 3d ,
and 4s and Ga 3p, 3d , and 4s states were treated as valence.
The plane cutoff was 500 eV. We use Gaussian smearing
with a width of 0.05 eV, with this value ensuring an entropy
contribution to the free energy of less than 1 meV/atom.
The generalized gradient approximation (GGA) was used for
the exchange-correlation functional [21]. The spin-orbit cou-
pling was included in the self-consistent calculations, unless
specified otherwise. The k-point sampling was based on a
�-centered grid for all calculations, and we used an optimized
(10 × 10 × 10) k-point grid, except for the DOS calculations,
where the 12 × 12 × 9 grid was utilized.

In addition, we used the all-electron Full-Potential Lo-
cal Orbitals (FPLO) [22] package, which solves the fully
relativistic Dirac equations [23]. The basis set included
Fe (1s, 2s, 2p, 3s, 3p, 3d) and Ga (3s, 3p, 3d, 4s, 4p, 4d, 5s)
states. The total energy converged to 0.001 meV. In order to
address the possible effect of the on-site electron correlations,
we employed the GGA+U method in the fully localized
limit [24]. As implemented in FPLO, it has full nonspherical
double-counting subtraction (as opposed to most other codes),
whereby the first Slater integral is defined as F0 = U , where U
is the Hubbard repulsion, the Hund’s rule coupling defined the
other integrals via J = (F2 + F4)/14, and the ratio of F4/F2 is
set to 0.625, typical for 3d transition metals [25]. We used
J = 0.9 eV and varied U . The calculated total magnetiza-
tion is 1.85μB/Fe without U and increases with U up to
2.17μB/Fe at U = 3 eV. As pointed out in Ref. [9], even at
U = 0 eV this value is somewhat larger than in the experi-
ment, which is quite common among metallic magnets (for
instance, Fe-based superconductors or itinerant ferromagnets
such as Ni3Al). It is generally accepted that itinerant fluctu-
ations, missing in the mean-field DFT approach, reduce the
ordered moment [26].

Spin spiral and unrestricted noncollinear calculations were
performed using the VASP package. For the former, the gener-
alized Bloch theorem formalism [27] was utilized and verified
against 1 × 1 × 4 unrestricted noncollinear calculations. By
construction, the spiral formalism does not include the spin-
orbit coupling, but relevant energy differences were similar to
those in relativistic supercell calculations.

Figure 2 summarizes the result of these calculations. We
have scanned the irreducible part of the primitive Brillouin
zone using the 5 × 5 × 4 mesh with a step of 0.1G from
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FIG. 2. Top: 3D contour plot of the total energy of a nonrel-
ativistic spiral with a spiral vector q = (x, y, z), where x, y, z are
components in reciprocal lattice coordinates. Bottom: the same for
the vector q = (0, 0, z).

the origin to 0.5G for each crystallographic direction (G are
the corresponding reciprocal lattice vectors), altogether 216
calculations. One can see that the magnon spectrum is stiff
along x and y and soft along z, with a minimum close to
q = (0, 0, 0.27) in reciprocal lattice units. We then calculated
the spiral energies with a finer mesh of 7 × 7 × 7, along
the line q = (0, 0, qz ), with a step of 0.02 in qz (Fig. 2).
The position of the minimum does not change. The value of
q = (0, 0, 0.27) agrees well with the experimental number.

We have also tried to stabilize an amplitude SDW, as sug-
gested in Ref. [14]. It never stabilizes, indicating that the DFT
ground state is resoundingly spiral.

While the FM Fermi surface does not show any visible
nesting feature and the noninteracting susceptibility (either
χzz or χ+−) does not show any well-defined maximum, the
calculated density of states for the FM (q = 0) and the spiral
q = (0, 0, 0.27) states (Fig. 3)shows a small spectral weight
transfer from the region within a few tenths of an eV near the
Fermi level to farther energies, that is, a small, but noticeable,
pseudogap effect. It is worth mentioning that looking at the
nonmagnetic Fermi surface [14] is not very helpful since the
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FIG. 3. Density of states near the Fermi level for the ferromag-
netic [q = (0, 0, 0)] and spiral [q = (0, 0, 0.27)] states. Note small,
but discernible, weight transfer away from the Fermi level.

SDW develops from the FM state and cannot be considered to
be a small perturbation over the nonmagnetic state.

We have also calculated the magnetic anisotropy in the
FM state as a function of the Hubbard correction U (calcu-
lations reported above did not include U ). To this end, we
used the FPLO method, which treats the relativistic effects
more accurately, and the angular dependence of the GGA+U
term is included in a more systematic way. The results are
presented in Fig. 4. The calculated anisotropy is small and ex-
tremely sensitive to the computational setup. For instance, in
the popular spherically symmetrized version of the LDA+U
method [28] the calculations for U = J are equivalent to
no LDA+U correction at all, yet in our (unsymmetrized)
calculations the results (the first two points in Fig. 4) are
distinctly different. The calculation without the U correction
and those with U � 2.5 eV agree with the experiment at
T < 60 K. Those with U � 2 eV agree with the anisotropy
derived for the susceptibility in the ASDW model at T =
100 K. Neither agrees with the anisotropy implied by the SS
model.

TABLE I. Magnetic anisotropies as derived from the experiment
[9,14] assuming the two models for the SDW phase and the results
of the DFT calculations. χ indicates that the hierarchy is derived
from the spin susceptibility data, and Hf lip that from the spin-flip
field values. See the main text for the details.

Temperature Feature Magnetic orientation

T < 60 K (Expt.) χ, FM c < a, c < b
T = 100 K (Expt.) χ, ASDW a � c � b

χ, SS b � a ≈ c
Hf lip b � a ≈ c

T = 0 K (Calc.) GGA c < a < b
GGA+U � 2 eV a < c < b

GGA+U � 2.5 eV c < a < b
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FIG. 4. Magnetoanisotropy energy for the quantization axis
along the crystallographic a, b, and c axes. Calculations were per-
formed in FPLO for Hund’s rule coupling of J = 0.9 eV as a function
of Hubbard U . Zero corresponds to DFT calculations without the
GGA+U correction. The two points for U = 1 eV correspond to
k-point meshes of 8 × 8 × 8 and 12 × 12 × 12.

The main message is that the magnetic anisotropy is a very
sensitive quantity to calculate, and theoretically, it is abnor-
mally temperature dependent. The latter fact is often observed
when a material includes inequivalent magnetic sites with
opposite-sign local anisotropies and/or when a considerable
part of the observed anisotropy comes not from the single site,
but from exchange anisotropy. Neither of these two possibil-
ities can be addressed by computational tools available to us.
It is worth noting that an additional mechanism exists that can
stabilize the helical spiral against either of the two possible cy-
cloidal spirals and may be due to the dipole-dipole interaction
[29]. Indeed, in the long-wavelength limit it contributes for
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FIG. 5. Spiral angle as function of the position of an Fe layer
within the unit cell for the spiral calculations with q = (0, 0, 0.27).
No restrictions are imposed on the magnetic moment directions
within a single unit cell, while the consecutive unit cells are ro-
tated by 0.27 × 360◦. The line shows the ideal sinusoid, α = 0.27 ×
360◦z/c.
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FIG. 6. Suggested decomposition of the Hall resistivity measured by Mendez et al. [9] for two different temperatures.

a cycloidal (but not helical) spiral an additional energy equal
to

∫
πm2dV, where m is the magnetization density and the

integration is over the entire crystal. Using the Fe3Ga4 param-
eters, we get an estimate of 0.06 meV/Fe, comparable with
and slightly larger than the calculated (without U ) electronic
anisotropy energy. This mechanism can, in principle, explain
why the condition (Ea, Eb) < Ec may not be satisfied but the
ab spiral may still be the ground state.

In principle, the next step would be to attempt to derive
a first-principles Heisenberg Hamiltonian. In Fe3Ga4, un-
fortunately, it is virtually impossible because of too many
inequivalent bonds and the fact that many ferrimagnetic con-
figurations simply fail to converge. On the other hand, it
appears that the SDW in Fe3Ga4 can be quite well described
in a continuous model. Indeed, as discussed above, a unit
cell includes nine Fe atoms arranged in seven separate ab Fe
layers stacked along c. Our spin spiral calculations place no
restriction on the mutual orientation of their magnetic mo-
ments. Yet the self-consistent solution can be very accurately
described by a simple sinusoid, where the helix angle is given
by α(z) = 0.27 × 2πz/c (Fig. 5). Only the two Fe3 (see Fig.
1) layers slightly deviate from this formula.

Interestingly, the calculated energy as a function of the
spiral vector is very well described by the function

E = E0 + J1 cos 2πqh + J2 cos 4πqh, (3)
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FIG. 7. Topological Hall effect resistivity extracted as described
in the text compared to Eq. (7).

where h = 1.75, J1 = 3 meV, and J2 = 0.4 meV, as if
the Hamiltonian were composed of two antiferromagnetic
Heisenberg interactions, one acting across a distance of 1.75c
and the other acting across a distance of 3.5c. Of course, in
reality this would be only an effective Hamiltonian, resulting
from concerted action of all sorts of exchange interactions,
but it indicates that the overall magnetic coupling is extremely
long range.

In any event, the calculations unambiguously indicate that
of the two possible ground states compatible with the neutron
scattering data it is the helical spiral that is realized and not an
ASDW.

IV. TOPOLOGICAL HALL EFFECT

Typically, the Hall effect in metals is described as a sum
of two components: the ordinary Hall effect [30], stemming
from the Lorentz force experienced by the charge carriers, and
the anomalous Hall effect [30], resulting from the interplay
between the exchange field and spin-orbit coupling. While
there are notable exceptions (in particular, the anomalous
Hall effect was shown to exist even in some systems with
zero magnetization [6]), it is customary to assume that the
ordinary Hall resistance is proportional to the applied field,
ρO = R0H , and the anomalous one is proportional to the net
magnetization, ρA = RsM. Recently, it was pointed out that in
noncoplanar magnets a third term should be added (see, for
instance, Ref. [7]), called the topological Hall effect, propor-
tional to the so-called scalar spin chirality s, which can be
defined in a discrete representation as a triangular loop over
near-neighbor magnetic moment, s = M1 · (M2 × M3).

In the continuous representation one can define the topo-
logical field,

bi(r) =
∑

jk

ei jkM(r)·
(

∂M(r)

∂ri
× ∂M(r)

∂rk

)
(4)

=
∑

jk

∑
αβγ

ei jkeαβγ Mα

∂Mβ

∂ri

∂Mγ

∂rk
, (5)

where i, j, and k are Cartesian indices in real space and α, β,

and γ in spin space. This field can couple with the external
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magnetic field and generate an additional contribution to the
Hall resistivity in the field parallel to b [7]. As a result, the
Hall resistivity is commonly written as

ρH = R0H + RsM + ρT . (6)

It is well known that a nonzero topological field b can
be generated by a linear combination of three (but not two)
helical spirals [31]. It was recently pointed out [10] that a
combination of two spirals, where one is helical and the other
is transverse conical, can have a nonzero topological field.
Furthermore, Ghimire et al. [10] argued that even if the ground
state is a single helical spiral propagating along a given direc-
tion, say, z, in a suitable magnetic field H||x ⊥ z, this spiral
is liable to flop into a transverse conical spiral, propagating
along z and canted toward x. Furthermore, it was also shown
[10] that spin fluctuations in the form of a helical magnon
propagating along y can be selectively excited, generating
a topological field (and hence the topological Hall effect)
proportional to the temperature and also dependent on the
net magnetization. In Ref. [10] a simple formula was derived
which reads

ρT = κ (1 − M2/M2
s )T H, (7)

where κ is an unknown, material-specific constant and Ms is
the saturation magnetization.

However, direct substitution of Eq. (7) into Eq. (6) is not
possible because the assumption that R0 and Rs do not depend
on magnetic field is, while popular, generally incorrect. Both
coefficients are determined by the electronic structure, which,
in turn, is very sensitive to magnetic order. This problem
was discussed in Ref. [10], where the following protocol was
worked out: First, the Hall resistivities in the nontopological
phases below (in terms of the external field H ) or above the
topological phase (H1 < H < H2) are fit separately to the
first two terms in Eq. (6). In principle, they should then be
continuously connected to each other across the topological
region and subtracted from the total ρH . In Ref. [10], for the
lack of any justifiable recipe, they were simply connected by a
straight line. Now, since the difference, which we will call ρT ,

is, by construction, zero at H1 and H2, they subtracted the lin-
ear base ρ0 = [(H − H1)ρT (H2) + (H2 − H )ρT (H1)]/(H2 −
H1), where ρT (H ) was taken from Eq. (7).

We have followed this protocol, although the experimen-
tal data are not nearly as clean as in YMn6Sn6 (Fe3Ga4

is known to form with considerable disorder); in particular,
proper identification of the first and second spin-flop fields is

difficult. Still, we were able to tentatively assign them to be
(see Fig. 6) at T = 200 K, H1 ≈ 0.125 T, and H2 ≈ 1.375 T
and at T = 300 K, H1 ≈ 0.18 T, and H2 ≈ 1.25 T (at lower
temperatures the topological signal is too weak to analyze
quantitatively). The results of this analysis are shown in Fig. 7.
Note that the amplitude of the topological signal is about 40%
higher at T = 300 K, in good agreement with 300/200 = 1.5,
consistent with the linear dependence on T in Eq. (7).

V. CONCLUSIONS

We have studied, using density functional theory, the
magnetic properties of a potential topological Hall material,
Fe3Ga4 metal. We found that the DFT ground state is a spin
spiral, propagating along the crystallographic c direction with
q = (0, 0, 0.27) reciprocal lattice units. This is in excellent
agreement with the neutron scattering findings for tempera-
tures above ∼100 K. Contrary to the previously published
conjecture, we identified this state as a spiral, not an amplitude
spin density wave. We argue that the actual ground state,
despite b being (slightly) the hard magnetic axis, is an ab
helical spiral, stabilized by dipole-dipole interactions.

We have further identified a spin-flop field at which the
helical spiral flops into a transverse conical spiral, according
to the theory proposed recently by one of us for another
topological Hall spiral magnet, YMn6Sn6. The same theory
works well for Fe3Ga4. Indeed, the theory predicts a topo-
logical Hall effect in only the transverse conical phase, with
a strong (approximately linear) temperature dependence, and
both predictions are corroborated by the experiment. This
second observation of the dynamically fluctuation-induced
topological Hall effect strongly suggests that the proposed
theory is correct and sufficiently universal.
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