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The classical Ising model on the triangular lattice (we will call it I-3 model below), while simple
in the nearest-neighbors (NN) only approximation, becomes increasingly richer and more complex
when further interactions are incorporated. However, the studies so far have not been exhaustive,
nor have any attempts been made to estimate how realistic are the parameter ranges that generate
strong metamagnetism with a large number of magnetization steps. In this study, we identify one
such candidate, ErGag, a material known to have one strong magnetization step, albeit some narrow
steps below and above cannot be confidently excluded. It has been established, and we can confirm
the same computationally, to have an easy axis perpendicular to the triangular Er plane, with a
strong anisotropy and with a large magnetic moment of 9.5 g, making it a perfect implementation
of the classical I-3 model. In the first part of the analysis, we present the I-3 model with up to the
third nearest-neighbors in a range of parameters Jo and Js (J1 in this part is set to 1), and in some
cases adding a rather small J4 in order to reveal new phases otherwise degenerate with some others.
The richest phase diagram is, not surprisingly, observed when all interactions are antiferromagnetic
(AF). Subsequently, a more realistic case, inspired by RKKY and by our calculations for ErGas,
where Ji, Jo > 0 (antiferromagnetic) and Js, J4 < 0 (ferromagnetic), is presented. Finally, we report
our first-principles calculations of Ji_4 in ErGas and compared the phase diagram in the regime
corresponding to the calculated values with the experiment.

I. INTRODUCTION

There has been recent interest in 2-dimensional mag-
netic systems as they are often candidates for nontrivial
magnetic states, such as spin liquids [1-4]. Consider-
able progress has been achieved regarding insulating 2D
Kagome lattices dominated by short-range interactions
[5]. Magnetic anisotropy in such systems is small, and
the continuous degeneracy of magnetic order plays an
important role.

A relatively recent addition to this landscape are rare-
earth-based systems [6] with a strong uniaxial anisotropy,
dominating over a relatively weak exchange. Interesting
physics there comes from the fact that, on one hand,
the Ising model on a Kagome lattice does not show a
phase transition (as opposed to the famous square lat-
tice [7]), and, on the other hand, when embedded in a
good metal background the rare earth ions show a rela-
tively weak, but long-range and potentially sign-changing
exchange interaction (related, of course, to Rudermann-
Kittel-Kasuya-Yosida, RKKY, interaction [8-10]). This
leads to these materials exhibiting a number of metamag-
netic transitions, that is, discrete steps in magnetization
as a function of magnetic field, ranging from two to as
many as nine steps.

In this case, the strong geometric frustration associ-
ated with Kagome lattice is not necessary (albeit may
be helpful). The simple triangular, not really frustrated
in Heisenberg or XY models, where the ground state is
uniquely defined as a 120° spin star, is frustrated in the
sense of an infinitely degenerate discontinuous ground
state, in the classical Ising model [11].

The classical Ising model on the triangular lattice while
simple in the nearest-neighbors (NN) only approxima-
tion, becomes increasingly richer and more complex when
further interactions are added [12-15]. For instance, in
Ref. [12-15] possible ground state orders were identified,
upon including up to the fifth nearest-neighbors. How-
ever, the studies so far have not been exhaustive, nor any
attempt was made to estimate how realistic the param-
eter ranges that generate strong metamagnetism with a
large number of magnetization step.

In this paper, we identify one such candidate, ErGas,
a material known since 1970s [16, 17] and having one
strong magnetization step [16-20], albeit some narrow
steps below and above cannot be confidently excluded. It
is known, and we can confirm the same computationally,
to have an easy axis perpendicular to the triangular Er
plane, with a strong anisotropy [21, 22], with the large
magnetic moment of 9.5 up [16-20], making it a perfect
implementation of the classical I-3 model.

The paper is organized as follows. First, since we be-
lieve that, despite a number of papers on long-range tri-
angular Ising the full phase diagram has not been estab-
lished and its complexity is not appreciated, in the first
part, we study the I-3 model with up to the 3rd near-
est neighbors in a range of parameters Jy and J3 (J; in
this part is set to 1), and in some cases adding a rather
small J4 in order to reveal a new phase otherwise de-
generate with some others. The richest phase diagram
is observed when all interactions are antiferromagnetic
(AF); this case is discussed in Section ITI. Subsequently,
a more realistic case, inspired by RKKY and by our calcu-
lations for ErGag, where Ji, Jo > 0 (antiferromagnetic)



and Jp,Jo < 0 (ferromagnetic), is presented. Next, we
present our first-principles calculations of J;_4 in ErGas
and compared the phase diagram in the regime corre-
sponding to the calculated values (as well as “around”
them, to account for possible inaccuracy in DFT calcu-
lations).

II. GENERAL MODEL

The model magnetic Hamiltonian of up to fourth-
nearest-neighbor (4NN) in the presence of an external
magnetic field is as follows:

H=Y 5SS+ JhS;S;

(ij), (i5),

+ > JsSESE+ > JaSESE—hY S,
(

)3 (i5) 4 i

(1)

where S are the normalized Er moments, (S =
M(Er)/M(Er), |S| = 1, and h = H.,tM(Er) is Zee-
man energy in the external field He,:||z. Since finding a
new ground state is generally not a trivial task, partic-
ularly when more further-neighbors are included, in our
study, we implemented a similar approach to Ref. [23].
We summarized the possible ground state orderings that
have been suggested in the literature [12-15] and then the
phase diagrams were obtained by identifying the config-
uration with the lowest energy for every parameter set
(i.e., h and J;). All the magnetic states discussed in this
study are labeled with a number preceded by the “#”
sign as defined in Fig. 1.

In our first-principles-based analysis, we calculated the
total energies for six different magnetic orderings, #1,
#2, #3, #5, #9 and #12 as shown in Fig. 1. The data
were then fitted to Eq. 1 to extract exchange parameters
JPE.

The total energy for each configuration was calculated
using Vienna ab initio Simulation Package (VASP) [24]
within the projector augmented wave (PAW) method
[25, 26]. The Perdew-Burke-Enzerhof (PBE) [27] gener-
alized gradient approximation was employed to describe
exchange-correlation effects.

The on-site Coulomb interactions are taken into ac-
count using LDA+U [28] to improve the description of
the interactions between the localized f-electrons of Er.
A large U — J = 8 is used. The experimental lattice pa-
rameters a = 4.1861 and ¢ = 4.0187 A taken from Ref.
[17] are used and are fixed for all the calculations.

III. GENENERAL DISCUSSION
Case 1: Ji, J2, J3 and Js >0

In the first part, we consider a more frustrated case
where all the magnetic moments are antiferromagneti-
cally couple to each other (i.e all J; > 0) with the 4NN
only added to lift the observed degeneracy. A detailed
analysis in similar setups with more further-neighbors
has been done in the previous work [14].

Figure. 2(a) shows the phase diagram for J3 = 0 which
corresponds to the 2NN case. There are five major stable
phases in the given parameter space. Two exist without
an external field, h, and three are induced by h. The
ground state at the low field is stripe AF and borders with
#2, #3 or #5, depending on the strength of J;. Along
the boundaries separating #1 and #2, as well as #3 and
#4, there are also subtle traces of multiple degenerate
states, where a few very tiny points corresponding to
phases such as #10 or #17 can be discerned.

To investigate the behavior of the possible multifold
degeneracies, we first include a small finite J3 = 0.02 as
shown in Fig. 2(b). As a result, two very fine straight
lines emerge. One corresponds to #7 which lies between
#1 and #2 phases suggesting a possible triple degen-
eracy. It is worth noting that, at zero field, there is
also a different type of AF ground state #12. The other
line (#10) lies between #3 and #4 suggesting a possi-
ble quadruple degeneracy. Although the presence of J3
partially removes the degeneracies between #3 and #4,
the red dots that correspond to #17 remain degenerate
at the #4 and #10 border. This state corresponds to the
total magnetization M = 7/9 and has been observed and
discussed in Ref. [14] as its formation requires introduc-
ing J4.

Subsequently, if another small next further-neighbor
Js = 0.015 is introduced, the state #7 and #10 disap-
pear (see Fig. 2(c)). The disappearance of the former is
due to the expansion of the #2 phase and the latter is re-
placed with new phases #16 and #17. When J3 increases
further to 0.05, both states (#7 and #10) reappear and
a small region of new phase #19 can also be seen in Fig.
2(d). Interestingly, the long narrow belt-shaped area be-
tween #3 and #4, consists of three parallel thin lines
across nearly the entire range of Js. These thin lines,
resulting from the lifting of degeneracy by weak inter-
actions with further-neighbors, appear in the the M-H
plots as three successive short steps illustrated in Fig.
2(e), which depicts the field-dependent magnetization for
Jo = 0 and three different J5 values. The shape of these
short steps, resulting from the further-neighbor interac-
tions, does not vary with Js except for J, = 0 and persists
throughout nearly the entire range of Jo # 0.

On the other hand, there is also another short step
in the small field region as indicated by the yellow line
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FIG. 1. All the possible magnetic ground states with their corresponding magnetization per spin. Blue and green colors indicate
opposite spins. The ferromagnetic state labeled as #4 is not listed.

(J2 = 0.1) as a consequence of Js lifting the degeneracy
between #1 and #2. These trends suggest some delicate
competition between J3 and J; as each might favor par-
ticular orderings and many of the states are very close in
energy. These short steps are likely to exist in a system
with weak further-neighbors, but could easily get washed
out in an experiment due to defects in the sample. In
the later discussion, we will only consider a small fixed
Jy = 0.015 simply to lift the obvious degeneracy.

As J3 increases to 0.1 as shown in Fig. 3(a) the phases
#7, 10, 12, and 19 continue to expand, and new phases
#6 emerges. In the low field region, the range of sta-
bility of #1 shrinks. For larger Jo (> 0.3), it requires
less field to induce the transition to #5 state and for the
region of small Jo, it is directly replaced by #12 (an al-
ternative AF) and #7. On the other hand, along the
3-4 boundary, the long stripe area (#10) and the lime
green triangular region (#6) strongly favored by Js are
stabilized and expanding, with increasing J3, at the cost
of #3 and #4. The trace of #17 state which still per-
sists at the #4 boundary does not seem to be affected
by a moderate J3. Fig. 3(b) shows the M-H curves for
there different values of Jo with J3/Jy = 0.1/0.015. The
field dependency is rather sensitive to Jy. While all three
curves have rather complicated transition steps, the most
rich transition behavior happens when the magnitude of
Jo is roughly comparable to J3 = 0.1. As discussed ear-
lier, this is the result of the competition between different
neighbors which in turn leads to a rich phase diagram in
the M-H curve that can contain as many as seven transi-

tion steps. The phase diagrams for J3 = 0.3 and 0.5 are
shown in Fig.3(c) and (d) respectively. A few trends as
the consequences of these large J3 can be summarized as
follows. Begin with #1, an AF state that is disfavored by
Js has been completely replaced by a less common new
AF phase #13 for larger Jo and the phase expands as
Js3 increases. This phase has been discussed analytically
in the early study by Tanaka [12]. A similar pattern,
the shrinkage of #7, can also be found that is eventually
replaced by a new phase #8 as J3 continue to increase.

Case 2: Ji, J2 >0 and J3, J1 <0

Inspired by our DFT calculations for the ErGas sys-
tems, reported in the next Section, this second scenario is
considered to mimic longer-range RKKY-type exchange
couplings where the sign oscillates with distance. In-
terestingly, unlike the more frustrated first scenario, the
third NN J;3 < 0 alone does not introduce any new phase
within the parameter range of interest. We then consider
up to the fourth NN where both J; and Jy < 0 (FM).
This setup is also more consistent with our DFT data,
where the model provides an excellent fitting quality.

In this case, we attempt to explore the behavior in the
parameter space around the exchange coupling parame-
ters that are extracted from our first-principles calcula-
tions. The phase diagrams are summarized in Fig. 4,
where the top row (a)-(c) and bottom row (e)-(h) corre-
spond to J3 = —0.1 and —0.3 respectively and for each
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FIG. 2. (a)-(d) show the phase diagrams for different weak
Js and Jy and (e) M-H curve for (Js, Js) = (0.05,0.015) at
several different J> as specified in the legend.

Js, several selected Jy values are considered.

We first isolate the effect of J; by comparing Figs.
4(a), (e) and Fig. 2(a). We found that J3 alone does not
introduce any new phases but shifts the phase bound-
aries in favor, strongly, of the phases #1, #3, and #4.
Due to the ferromagnetic nature of J3, which reduces the
frustration in the system, the multiple degeneracies along
the #3 and #4 boundary no longer persist. In Fig. 4,
both top and bottom rows (i.e. J3 = —0.1 and —0.3)
exhibit similar trends, in the sense that with increasing
J4, new phases are developing in the region characterized
by small J, and low magnetic field, as well as along the
#3 and #4 boundary. This again shows some competi-
tion between J3 and J4 and one would expect rich phase
diagrams when J, and J3 are comparable.

The configurations in the top row (i.e. Fig. 4(a)-(c))
are particularly of interest since a small J3 is more likely
to happen in a real system. When J; = —0.075 is more
or less comparable to Js (see Fig. 4(b)), new phases (#7
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FIG. 3. (a), (c) and (d) show the phase diagrams for different
weak J3 and Js and (b) M-H curve for (Js, Ju) = (0.05,0.015)
at several different values of Jo.

and #12) begin to emerge between #1 and #2, similar to
those shown in Fig. 2(b) but with the boundaries slightly
pushed down due to the effect of a positive J3. This thin
stripe #7, again, indicates the possibility of having an
additional short step in the M-H curve for small Jy (see
Fig. 4(d)). On the other hand, with a slightly larger
Js = —0.15, both #7 and #12 expand and a new phase
appears along #3-#4 border. In this case, one can see as
many as four transitions (five phases) in the M-H curve
as shown in Fig. 4(d). It is worth noting that, while all
three curves begin with zero magnetization in the small
fields, the ordering for Jo > 0.1 is in fact zigzag type AF
phase (#12).

In the bottom row (i.e. Fig. 4(e)-(h)), a larger J3
further stabilizes #1, #3 and #4, and in this case, at
the cost of #2 as shown in Fig. 4(e) and it would require
a larger J; to introduce new phases as shown in Fig.
4(f) and (g). For Jy = —0.35, the zigzag phase which
strongly favored by Jy expands into positive Jo region.
Interestingly, another new phase M = 3/7 also develops,
a phase that does not exist in the previous setting where
all J; > 0.

IV. A CASE STUDY: ERGA2

To gain more insight, we look into a realistic system
ErGag by incorporating first-principles calculations. Fig-
ure 5(a) presents a comparison between the M-H curves
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FIG. 5. The comparison of field-dependent magnetization be-
tween (a) DFT and experimental data taken from Ref. [18],
and (b) DFT and two additional sets of manually tuned pa-
rameters. The exact field strengths are estimated based on
experimental moment M = 9.5 upg.

iNN distance (A) JPFT Jggetl  jeet2
1 4.186 1 1 1
2 7.250 0.041 0.041 0.170
3 8.372 -0.190 -0.100 -0.019
4 11.075 -0.057 -0.057 -0.025

TABLE I. First to fourth NN interactions and their distances
d. JPFT (i = 1 — 4) are obtained by fitting into DFT calcu-
lations. J5°*! and J5°2 are tuned manually around the DFT
parameters to explore the possible hidden steps. All values
are divided by JPFT = 0.285

taken from the prior experimental data recorded at 1.5
K [18] and derived using the parameters, JP¥T, ex-
tracted from the DFT calculations as listed in TABLE 1.
At first glance, these results exhibit outstanding agree-
ment. Both featuring two distinct, well-defined steps of
M = 0.5 and 1 that correspond to phase #3 and #4
respectively that are induced at nearly identical applied
field strengths H; and Ho.

However, upon closer inspection, two questions arise.
Firstly, owing to the strong easy-axis anisotropy on the
Er sites, one would anticipate that transitions occur as
abrupt, vertical jumps once the magnetic field reaches
critical strength. Surprisingly, what we observe are more
gradual transitions. Secondly, the experimental data also
reveal narrow yet distinct hysteresis loops during both
transitions.

Due to the frustrated nature of the system, as es-
tablished in the earlier discussions, there are potentially
other states either degenerate or very close in energy at
the phase boundaries depending. It is reasonable to sus-
pect that these transitions are not necessarily direct, but
instead involving some intermediate states within very
narrow windows of the external magnetic field, giving
rise to the seemingly more graduate transitions and the
formation of hysteresis loops.

Indeed by observing the pattern in Fig. 4(b) and ex-
ploring parameters near our DFT results, we managed to
unveil two additional steps, one corresponds to #7 and
the other to #2 located within a very narrow range of
field around Hi, simply by making a minor adjustment



to J3 from —0.19 to —0.1 as listed in TABLE I and la-
beled J3°tL.

With a slightly larger deviation from the JP¥T pa-
rameter set, we were also able to find another set of pa-
rameters J5°*? that produce additional short intermedi-
ate state between the #3 to #4 transition. Although the
transition fields no longer coincide as perfectly, the qual-
itative trend remains the same (i.e. Hy ~ 3H;). Based
on our analysis, we believe that in a more accurate ex-
periment, it is possible that the two additional steps can
occur.

To understand the possible origin of hysteresis, we dis-
cuss the issue from two different aspects. If the interme-
diate states #7 and #2 exist as we predicted, then the
direct transition from #1 to #7 or #2 to #3 are pro-
hibited, as the transitions require complicated multiple
spin-flips all at once and one needs to grow a domain of
a new phase. This naturally implies hystereses.

On the other hand, geometrically, non-hysteretic tran-
sitions are formally possible between #1 and #3, as well
as between #3 and #4, since these transitions can be
achieved by sequentially flipping the spin one by one.
For these transitions, in order to establish the presence
or absence of hystereses, one needs to check the criti-
cal field necessary to flip one spin, compare to the field
needed to flip all spins in question.

For instance, for #1 to #3 transition, one can simply
estimate the energy cost of flipping one spin in the entire
lattice under the field Hy, which has the analytic energy
expression

E1+1ﬂip —F1=4J,+4J5 —12J3 +8Jy — 2H{ (2)
and for the full transition at H; we have
FEys—FE1=4J,+4Jy +8J4y — 2H;. (3)

Similarly, for the #3 to #4 transition, we have the follow-
ing for the energy cost of flipping one spin in #3 under
H

Hsiqaip — Hs = 12J1 +12J5 — 12J5 + 24.J, — 2H,, (4)
and the energy for the full transition
Hy — Hy =12J; +12Jy 4+ 24J, — 2H,. (5)

Interestingly, the difference between Egs. 2 and 3, as well
as between Eqs. 4 and 5, depend only on J3. Using our
DFT parameter JP¥T | we find that flipping one single
spin in both cases requires a larger field than triggering
the full transitions (i.e. H{ > Hy and H) > Hs), as a
result, both transitions are predicted to be hysteretic.

V. CONCLUSIONS

In conclusion, we have studied the effect of further-
neighbors on metamagnetic transitions in classical Ising

model on the triangular lattice. We determine the phase
diagrams for two scenarios, through a comprehensive ex-
amination of energy comparisons among the most com-
mon possible magnetic states as well as the less intuitive
ones proposed in the literature. The first scenario, where
all the interactions are antiferromagnetic, is expected to
host the richest phase diagrams and we discussed how
the degeneracies are lifted with the presence of further-
neighbors. The second one, motivated by our DFT anal-
ysis for ErGag, is introduced to mimic the Ruderman-
Kittel-Kasuya-Yosida (RKKY) type of interaction where
the sign of interactions vary with distance. Furthermore,
we present a case study on a real-world system ErGas.
By incorporating our first-principles-based exchange pa-
rameters into the I-3 model, we were able to accurately
reproduce the experimentally observed transition steps.
With the help of the analysis for the second scenario, we
also predict the possible additional transition steps that
could explain the discrepancy between the experimental
data and the theory.

We are grateful to P. Nikolic and G. Schwertfeger for
useful discussions.
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