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Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi2Sb2O
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Spin-driven nematicity, or the breaking of the point-group symmetry of the lattice without long-range magnetic
order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order
can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing
nearest-neighbor bond order and an absence of static magnetism. Here, we argue that the low-temperature state
of the recently discovered superconductor BaTi2Sb2O is a strong candidate for a more exotic form of spin-driven
nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-
neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of
temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one
that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice
distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported
measurements of the low-temperature phase of BaTi2Sb2O. We then use density functional theory calculations
to extract exchange parameters to confirm that the model is applicable to BaTi2Sb2O.
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I. INTRODUCTION

Spin-driven nematicity is the phenomenon whereby mag-
netic order that also breaks discrete lattice rotational sym-
metries is melted by fluctuations in stages, giving rise to a
partially melted order that preserves the spin-rotation (and
the time-reversal) symmetry but breaks some lattice rotation
symmetries. In analogy to the nematic phase of liquid crystals,
which are partially melted smectic phases, this type of order
has been dubbed electronic nematic order [1]. This idea, ini-
tially conceived theoretically within the framework of the two-
dimensional (2D) Heisenberg model [2], was propelled into the
spotlight in 2008 as several groups independently proposed it
as an explanation of the split orthorhombic-magnetic transition
in the newly discovered Fe-based superconductors (FeBS)
[3,4]. In these systems, the magnetic phase displays a single
stripe configuration, characterized by spin order with ordering
vector Q = (0,π ) or (π,0) and a bond order associated with the
correlations of nearest-neighbor parallel spins [see Fig. 1(a)].
Consequently, in the nematic phase, spin-order is lost but
the rotational symmetry breaking bond order is preserved,
resulting in an orthorhombic paramagnetic phase that extends
above the onset of magnetic order. Experimental signatures
and theoretical implications of such a spin-driven nematicity
have been widely explored in FeBS [5–8], and similar concepts
were applied to other widely investigated systems, such as
charge-driven nematicity in the cuprates [9,10] and tetragonal
symmetry breaking in topological Kondo insulators [11].
Nematic degrees of freedom may also play an important role in
the onset of high-temperature superconductivity, as recent ex-
perimental [12–14] and theoretical works [15] have proposed.

While the general concept of partially melted magnetic
phases is well established both theoretically and experimen-
tally, most work has focused on the single stripe case. How
and whether more complex types of magnetic order can

also partially melt and promote novel nematiclike phases
remain relatively unexplored topics [16]. Interestingly, the
FeBS provides another opportunity to investigate such ideas:
while it is true that most of these materials display single
stripe (SS) magnetic order, the Fe-based chalcogenide FeTe
exhibits a more complicated “double stripe” (DS) magnetic
order [17,18]. As shown in Fig. 1, the DS phase has not
only spin order with ordering vector Q = (π/2,π/2), but also
two types of bond order involving nearest-neighbor (NN)
and next-nearest-neighbor (NNN) parallel spins. A natural
question is whether these bond orders can be stabilized even
in the absence of long-range magnetic order, similarly to
the nematic phase in the SS case, and whether they appear
separately or at the same temperature.

In this paper, we systematically explore the bond orders
that can arise above the onset of long-range DS magnetic
order and argue that it may have been already observed as a
density-wave-type transition accompanied by an orthorhombic
distortion in the Ti-based oxypnictide BaTi2Sb2O and related
compounds [19]. This conclusion results from a combination
of ab initio calculations and low-energy field-theoretical
modeling. In particular, the model is consistent with the low-
temperature orthorhombic (Pmmm) structure of BaTi2Sb2O
with an accompanying intra-unit-cell charge-density wave
[19], which we also observe using density functional theory
(DFT), but only when magnetic ordering is allowed. In con-
trast, distortions induced via the charge-density wave obtained
in nonmagnetic calculations either do not have the requisite
Pmmm symmetry or are significantly higher in energy than
the magnetic solutions. This is in striking similarity with the
FeBS where structural relaxation calculations in the magnetic
single stripe pattern also reproduce the low-temperature lattice
distortion. More importantly, the ground-state magnetic order
is a double stripe (also known as bicollinear) pattern, similar to
the FeTe ground state. We map the calculated ab initio energies

2469-9950/2017/95(17)/174402(16) 174402-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.174402


ZHANG, GLASBRENNER, FLINT, MAZIN, AND FERNANDES PHYSICAL REVIEW B 95, 174402 (2017)

FIG. 1. Multistage melting of the magnetic order in a square
lattice as occurs in (a) single stripe (SS) magnetism and (b)
double stripe (DS) magnetism. The nearest- (next-nearest-) neighbor
ferromagnetic bonds are indicated with blue (yellow) ovals. While
in (a) there is one nematic bond-order degree of freedom associated
with rotational symmetry breaking, in (b) two bond-order degrees
of freedom are associated with rotation, translation, and reflection
symmetry breaking. The new two-site unit cell associated with the
translation symmetry is indicated by the red dashed line.

onto an effective spin model and by extension a corresponding
low-energy field theory, which comprises not only exchange
interactions up to third neighbors, but also four-spin coupling
up to second neighbors. To investigate the onset of bond-
ordered phases within this model, we analyze the low-energy
field theory beyond mean field to account for the role of spatial
fluctuations. We find that, in general, the DS order can melt in
up to three stages, as shown in Fig. 1: as temperature is lowered,
first NNN bond order appears, lowering the C4 rotational
symmetry of the system down to C2 (in BaTi2Sb2O this
lowers the symmetry from P 4/mmm to Pmmm [19]). Upon
further reduction of temperature, there is an onset of NN bond
order, breaking the translation and reflection symmetries of the
lattice. Finally, at a lower temperature, long-range magnetic
order sets in. More generally, our work unveils the existence of
two emergent bond-order degrees of freedom in systems with
DS ground states, which may have fundamental impact on
their thermodynamic properties, including superconductivity,
both in BaTi2Sb2O and also in the iron-chalcogenides.

II. GENERAL PROPERTIES OF THE DOUBLE STRIPE
PHASE AND ITS NEMATIC PHASES

The phenomenon of partial melting of magnetically ordered
states, which is ultimately behind the onset of nematic phases,
is caused by long-wavelength magnetic fluctuations (either
thermal or quantum). Therefore, only approaches that go
beyond mean field can capture this effect. Here, as explained
below in more detail, this will be achieved via a large-N
solution of the free-energy functional for the DS state. Before
we introduce it, we first discuss the different types of bond
order that appear in the DS ordered state, contrasting them
with the standard SS ordered state.

A. Brief review of single stripe magnetism and nematicity

Spin-driven nematicity in SS states is most straightfor-
wardly discussed by means of a Heisenberg spin Hamiltonian.
Following Ref. [2], we consider the following Hamiltonian for
classical spins on the two-dimensional square lattice [2]:

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj − K1

∑
〈ij〉

(Si · Sj )2, (1)

where J1 and J2 > 0 are nearest- and next-nearest-neighbor
exchange couplings, and K1 > 0 is the nearest-neighbor
biquadratic coupling. In the context of the Fe-pnictides,
which are metals with itinerant Fe electrons, such a model
should be interpreted as an effective low-energy model to
describe the interplay between SS magnetism and nematicity.
Indeed, the inappropriateness of a purely localized approach
is manifested by the fact that DFT calculations [20,21] not
only give soft moments, but also a large biquadratic exchange
K1 as compared to J2, consistent with the experiment [22]. In
contrast, the order-by-disorder mechanism of Ref. [2] gives a
rather small K1/J2 ∼ 10−3 [23].

Single stripe magnetism and the related nematicity occurs
for J2 > J1/2, and is most simply understood by taking
J2 � J1, where J2 leads to two decoupled antiferromagnetic
Néel sublattices. J1 cannot couple these two sublattices, as
the exchange fields between sublattices one and two cancel.
However, the biquadratic term K1 requires that the spins be
collinear, leading to two degenerate ground states where the
spins are ferromagnetically correlated along either x̂ or ŷ,
and antiferromagnetically correlated along the perpendicular
direction. These two degenerate ground states can be described
by the wave vectors (0,π ) and (π,0), respectively, and break
both the continuous spin-rotation symmetry and the discrete
C4 lattice rotation symmetry (i.e. the symmetry of a square)
down to C2 (i.e., the symmetry of a rectangle), as shown in
the bottom left of Fig. 1. These broken symmetries can be
captured by three different order parameters: two of them
are vector Néel order parameters, 〈M1〉 and 〈M2〉 defined on
each sublattice, and a bond-order parameter describing the
rotational symmetry breaking,

ϕ = 1

Ns

∑
i

〈Si · Si+x̂ − Si · Si+ŷ〉

= 〈M1 · M2〉, (2)

where Ns is the number of sites. Effectively, the sign of ϕ

describes the orientation of the ferromagnetic bonds, either
along x̂ (ϕ > 0) or along ŷ (ϕ < 0), while the magnitude
of ϕ describes the strength of both the ferromagnetic and
antiferromagnetic bonds.

The Mermin-Wagner theorem precludes any magnetic or-
der at any finite temperature, in a strict two-dimensional lattice,
as it breaks continuous spin-rotation symmetry. Therefore, the
Néel order parameters 〈M1〉 = 〈M2〉 = 0. However, ϕ is a
scalar (Ising) order parameter and breaks only the discrete C4

symmetry, and so it that can, and does, condense at a finite
temperature. While ϕ is called a nematic order parameter
because it describes how the magnetic fluctuations break
C4 symmetry, it can more generally be thought of as a
scalar bond-order parameter that breaks a discrete lattice
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FIG. 2. The four degenerate ground states characterized by different configurations of Ma’s and signs of corresponding order parameters
ϕ, ψx,y , and ψ+. Again, the ferromagnetic bonds are indicated with blue/yellow ovals. The dashed black line shows the mirror plane symmetry
broken by ψ±.

symmetry, which we shall generalize onto the case of DS
magnetism. Here, although the spins themselves are slowly
fluctuating, the correlation of the fluctuations between the two
sublattices provides additional free-energy gain and generates
a long-range order without breaking any continuous symmetry.
In momentum space, one can imagine that there is short-range
order at both Q = (0,π ) and (π,0) above Tϕ , while below
Tϕ the fluctuations increase at one Q vector and decrease at
the other, thus breaking the rotational symmetry [6]. This has
indeed been observed experimentally by neutron scattering in
the iron pnictides [24].

Realistic systems will have some finite interlayer coupling
J⊥ that allows magnetism to develop at a temperature TM

governed by ln (J⊥/J2), at which point long-range magnetic
order will develop at the Q vector already chosen by ϕ.
For sufficiently small J⊥, these two temperature scales can
remain separate [3,4], although they will typically merge for
sufficiently large J⊥ [6,25], as the three dimensionality reduces
the role of magnetic fluctuations. However, the intuition
developed from localized systems may not apply to more
itinerant systems, where other factors may confound magnetic
ordering.

B. Double stripe magnetism and nematicity: Symmetry analysis

Double stripe magnetism consists of a plaquette of four
spins (three up, one down), repeated with a staggered, (π,π )
pattern, as shown in Fig. 1(b), bottom panel, leading to a
four-site magnetic unit cell [see Fig. 8(a)]. This ordering results
in double-width ferromagnetic stripes along the diagonal,
alternating antiferromagnetically, hence, the name double
stripe (DS). The DS pattern can be thought of as two copies of
single stripe orders in “even” and “odd” sublattices, rotated by
45◦ and then coupled together by another biquadratic coupling.
In this case, the effective low-energy Hamiltonian that displays

this ground state in the classical regime is

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj + J3

∑
〈〈〈ij〉〉〉

Si · Sj

−K1

∑
〈ij〉

(Si · Sj )2 − K2

∑
〈〈ij〉〉

(Si · Sj )2

+R1

∑
plaquette

[(Si · Sj )(Sk · Sl) + (Si · Sl)(Sk · Sj )]

−R2

∑
plaquette

[(Si · Sk)(Sj · Sl)], (3)

where 〈. . .〉, 〈〈. . .〉〉, and 〈〈〈. . .〉〉〉 denote the first, the second,
and the third nearest neighbors, respectively. The

∑
plaquette

is defined such that ijkl are the indices circulating a square
plaquette. Note that the ring-exchange terms are often included
with an approximation R ≡ R1 = R2 (which we also used in
our DFT fits in Sec. III B), but for itinerant systems the two
coefficients can, in principle, be different.

While this model contains only spin degrees of freedom, it
should be understood as a mapping of the full itinerant model,
with all of its charge, orbital, and spin degrees of freedom,
onto these spin interactions. It applies equally well to itinerant
and localized systems, however, the longer-ranged interactions
required to stabilize double stripe magnetism are much more
likely in an itinerant system like BaTi2Sb2O.

One can understand the physics captured by this model
by first considering the limit where J3 > 0 is the dominant
interaction. If J3 plays the pivotal role in the spin dynamics, it is
natural to partition the system into four antiferromagnetic Néel
sublattices, so that J3 is the nearest-neighbor coupling for each
of them, as shown in Fig. 2. Then, the J2-J3 model describes
two copies of SS magnetism. The biquadratic terms K1 > 0
and K2 > 0 force all four sublattices to be collinear. However,
the DS and plaquette (Fig. 3) orders are exactly degenerate
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FIG. 3. Signs of ϕeven/odd in a double stripe order (left) and
plaquette order (right).

unless the ring-exchange terms are included [26,27].
Ab initio calculations (see Sec. III) indicate that the DS pattern
is the ground state, and also that the fourth-order terms are
sufficiently strong to severely penalize noncollinear states. To
simplify our analysis while still accounting for these details, we
will drop both the ring-exchange terms and only keep solutions
corresponding with the symmetry of the DS ground state. We
also drop J1, which generates undesirable spiral solutions that
we know are not present in our DFT calculations. Thus, we
retain only the terms relevant to DS order, which are J2, J3,
K1, and K2.

Aside from the continuous spin-rotational symmetry, DS
order also breaks a number of discrete symmetries. One can
more clearly see those discrete symmetries by highlighting the
location of the ferromagnetic bonds, as we have done in Fig. 2,
for the four degenerate ground states. They are as follows: the
translational symmetry, since the unit cell is quadrupled in
size; the C4 rotational symmetry, which is broken along the
diagonals of the squares (B2g symmetry) instead of along the
sides of the square (B1g symmetry), as it was the case for
the SS order; and the reflection symmetry (σd ) across one of
the diagonals (x = ±y lines). Unlike the “broken” translation
symmetry of the single stripe antiferromagnet, which can be
restored by a time-reversal operation (or a 180◦ rotation), here
the layout of the NN ferromagnetic/antiferromagnetic bonds
breaks translation symmetry and doubles the unit cell, which
is doubled again when long-range magnetic order condenses,
as shown in Fig. 1. In momentum space, this corresponds to
2Q ordering, with pairs of Q = (±π/2,±π/2) that are chosen
to break the rotational symmetry appropriately. Note that in
the case of the Ti-based oxypnictides discussed in the next
section, some of those symmetries are already broken in the
nonmagnetic phase due to crystallography.

To formally describe these discrete symmetries in terms of
the spins, we consider the four Néel order parameters 〈Ma〉
related to each of the four sublattices a = 1,2,3,4 defined in
Fig. 2. We first define the two next-nearest-neighbor bond
orders, which couple to K2:

ϕodd = 〈M1 · M3〉, (4)

ϕeven = 〈M2 · M4〉. (5)

These order parameters characterize the emergence of diag-
onal bond order in the absence of long-range magnetic order,

where ϕeven/odd > 0 indicates which bonds within the four-spin
plaquette are ferromagnetic. Figure 3 shows that when ϕeven/odd

are opposite in sign, we can obtain the DS magnetic order,
where each four-spin plaquette has an odd number of up and
down spins. In contrast, when ϕeven/odd have the same sign,
we get the plaquette order discussed above. Note that, while
we have drawn all spins as collinear, at this point the two
sets of sublattices are decoupled and can rotate freely without
affecting the bond order. By symmetry, ϕeven/odd must condense
at the same temperature, and indeed, it does not make sense to
condense anything but a linear combination, ϕeven ± ϕodd, as
each of ϕeven/odd individually does not break a well-defined
symmetry. Considering the bonds alone, ϕ ≡ ϕeven − ϕodd

breaks the C4 rotational symmetry, but not translation symme-
try, while ζ ≡ ϕeven + ϕodd doubles the unit cell, but maintains
C4 symmetry, as shown in Fig. 3. ϕ, of course, is consistent
with DS order, while ζ is consistent with plaquette order, and
these would be distinguished by the ring-exchange terms.

We have two reasons to believe that the DS order, and thus
ϕ, is favored in the real materials. First, DFT calculations
for both FeTe [21] and the Ti-based oxypnictides considered
in Sec. III show that the corresponding DS magnetic state
is clearly lower in energy, which is consistent with the
experimentally observed lattice distortions in the magnetic
and/or putative nematic state; this energy difference can be
mapped on to the ring-exchange terms. Second, ϕ and ζ

couple to different elastic modes and ϕ may be additionally
stabilized through magnetoelastic coupling [28]. While there
is some experimental evidence that both plaquette and double
stripe fluctuations are present at high temperatures in FeTe
[29], these two terms break different symmetries, and so will
not couple until eight-spin terms are considered. In addition,
our DFT calculations suggest that the plaquette fluctuations
will freeze-out first and have no discernible effect on the
remaining terms in the model. In the following, we will neglect
ζ and consider only the bond orders related to DS order.

Aside from next-nearest-neighbor bond order, the DS order
also has nearest-neighbor bond orders, as shown in Fig. 2,
which are driven by K1. It is useful to define the generic bond-
order parameter ψab = 〈Ma · Mb〉 on any pair of NN sublat-
tices, i.e., ψ12, ψ14, ψ23, and ψ34. However, there are only two
combinations of these that are compatible with a nonzero ϕ:

ψ± = (ψ12 − ψ34) ± (ψ14 − ψ23)

= ψx ± ψy. (6)

Each of these represents a pattern of alternating ferromag-
netic and antiferromagnetic bonds along the x and y axes,
resulting in a (π,π ) ordering pattern that doubles the unit cell.
ψx/y can be thought of as dimerization along the x axis or
y axis, respectively. Indeed, ψ± couple to a staggered strain
associated with that dimerization of the lattice [30]. This sym-
metry breaking is also consistent with the intra-unit-cell charge
density wave observed in BaTi2Sb2O [19,31], which we will
discuss further in Sec. III. In addition to translational symme-
try, this bond order breaks the diagonal reflection symmetry σd

across the line x = ±y, for ψ±, respectively. Finally, it breaks
the same C4 rotation symmetry as ϕ. In particular, because
ψ± has ordering vector Q = (π,π ), while ϕ is a Q = 0 order,
they can only couple via a linear-quadratic combination, i.e.,
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ϕ(ψ2
+ − ψ2

−) = ϕψxψy . Therefore, as soon as ψ± develops, ϕ

must also turn on, but the converse is not true.
Thus, aside from the standard degeneracy related to spin

rotations, the DS ground state has an additional fourfold
degeneracy related to the scalar order parameters ϕ and ψ±.
These order parameters are not independent, as discussed
above and shown in Fig. 2: ϕ < 0 is only compatible with
ψ+ 	= 0, whereas ϕ > 0 is only compatible with ψ− 	= 0.
Therefore, the symmetry analysis of the DS state shows that
when the magnetic ground state is the DS state, where ϕ 	= 0
and ζ = 0, we can have two partially melted magnetic phases:
one in which only ϕ 	= 0, which breaks rotational symmetry
only, and another one in which both ϕ 	= 0 and ψ± 	= 0, which
breaks rotational symmetry, diagonal reflection symmetry,
and translational symmetry. In the next section, we use a
field-theory approach to discuss the order and character of
these different transitions.

C. Double stripe magnetism and nematicity:
Quantitative analysis

The bond-order parameters ϕ and ψ± discussed above
can describe partially melted DS phases, as long as they
remain finite even in the absence of spin order, 〈Ma〉 = 0.
To characterize these phases, one needs to include magnetic
fluctuations and therefore go beyond mean-field approaches.
Within the specific spin Hamiltonian (3), this can be achieved
numerically by Monte Carlo simulations [23,32] or analyti-
cally by 1/S expansions [2,33]. Here, we employ a different
approach, similarly to Ref. [6], that relies on a low-energy
Ginzburg-Landau free-energy expansion of Eq. (3) in terms of
the four real-space Néel order parameters Ma (a = 1,2,3,4).
As discussed above, this picture is valid in the limit where
the third-neighbor magnetic coupling J3 is by far the largest,
and has been previously discussed for the double stripe state
[16,28]. The most general form of the free-energy expansion,
with biquadratic exchanges taken into account, is

F [Mi] =
4∑

a,b=1

∫
q

Ma,qχ
−1
ab (q)Mb,−q

−
4∑

a,b,c,d=1

∫
r
λab,cd (Ma · Mb)(Mc · Md ). (7)

The Hamiltonian (3) generates numerous λ terms, plus, if we
allow for soft moments, as in a more itinerant model, terms
with a = b and/or c = d are also allowed. However, most of
these are irrelevant for the ϕ and ψ order parameters, so we will
keep only the two combinations related to the DS order, and
neglect the others. For the same reason, we will also retain one
high-symmetry term accounting for softness of the magnetic
moment. Then,

F [Mi] =
4∑

a,b=1

∫
q

Ma,qχ
−1
ab (q)Mb,−q + u

2

(
4∑

a=1

M2
a

)2

− g1

2
(M1 · M3 − M2 · M4)2

− g3

2
[(M1 · M2 − M3 · M4)2

+ (M1 · M4 − M2 · M3)2]. (8)

The physical meaning of each term can be understood
from the Hamiltonian (3). The exchange couplings J2 and
J3 describe the cost of spatial fluctuations of the order
parameters, and appear in the nonuniform susceptibility
χ−1

ab (q). As discussed in Appendix A, in our derivation we
expand χ−1

ab (q) around the ordering vector Q ={π/2,π/2},
where χ−1

ab (Q) = r0δab, and r0 ∝ T − T0, with T0 denoting
the mean-field magnetic transition temperature. The quadratic
term in (q − Q) terms i then uniquely defined by J2 and
J3. The u term captures the cost of non-symmetry-breaking
longitudinal fluctuations. Together with the first term, it defines
the amplitude of the local moments in the fully disordered case,
as well as the softness of these moments. The four spin terms
between next-nearest neighbors (K2, R2) lead to the g1 term,
which captures ϕ, while those between nearest neighbors (K1,
R1) lead to the g3 terms, which in turn capture ψ± order.

In the mean-field approximation, the system develops DS
order at T0, simultaneous with ϕ and ψ± bond orders in a
second-order phase transition. To go beyond mean field, we
include the effect of the long-wavelength fluctuations, working
in two dimensions, where magnetic order does not occur at any
finite temperature due to the Mermin-Wagner theorem. Here,
the fluctuations suppress the magnetic order to T = 0. We
then decouple the four quartic terms of Eq. (8) using Hubbard-
Stratonovich transformations, which introduce four new scalar
fields

ϕ = g1(〈M1 · M3〉 − 〈M2 · M4〉), (9)

ψx = g3(〈M1 · M2〉 − 〈M3 · M4〉), (10)

ψy = g3(〈M1 · M4〉 − 〈M2 · M3〉), (11)

η = u

4∑
i=1

〈
M2

i

〉
. (12)

The scalar fields ϕ and ψx/y are equivalent to the bond-
order parameters introduced in the previous subsection, and
therefore break the rotational symmetry (ϕ) and transla-
tional/reflectional symmetries (ψx/y , or ψ±), and are not
subject to the Mermin-Wagner theorem. On the other hand,
η is the mean value of the Gaussian magnetic fluctuations,
and simply renormalizes the magnetic transition temperature
from its mean-field value T0 to the value TM defined via
r = r0 + η ∝ T − TM . Thus, η is not an order parameter, as it
is nonzero at any temperature.

To proceed, we consider the two-dimensional case, where
magnetic order does not occur at any finite temperature, i.e.,
η > −r0. In particular, we consider the large-N solution of the
free energy in Eq. (8), which is obtained by extending the num-
ber of components of the Ma fields from 3 to N and taking the
limit N → ∞. This yields a system of coupled self-consistent
equations for ϕ, ψx , ψy , and η (see detailed calculation in
Appendix A). An important result of this calculation is that
the first three scalar order parameters are not independent, but
coupled in the free-energy expansion according to the trilinear
term ϕψxψy. Furthermore, the combinations ψ± = ψx ± ψy

decouple from the self-consistent equations, indicating that
ψx and ψy order simultaneously. Consequently, nonzero ψx/y
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FIG. 4. Two examples of how ϕ and ψ+ orders develop, with
the proxy for the transition temperature r̄0 plotted versus u/g1 for
two values of the relative strength of the biquadratic terms g3/g1.
The upper, red line indicates the development of rotational symmetry
breaking (ϕ), while the lower, blue line indicates the dimerization
(ψ+), which breaks the diagonal mirror reflection symmetry. Solid
lines indicate second-order transitions, while dashed lines indicate
first-order transitions, with the double-dashed line indicating simul-
taneous first-order transitions. The regions of different classes of
behavior are indicated in Fig. 5.

necessarily gives rise to a nonzero ϕ, as discussed in the
previous subsection, whereas the converse is not true.

Therefore, we define two different bond-order transition
temperatures: Tϕ , which signals the onset of NNN bond order
ϕ 	= 0 (with ψ± = 0 and Ma = 0), and Tψ, which signals the
onset of NN bond order ψ± 	= 0 (with ϕ 	= 0 and Ma = 0).
Note that whether ψ+ or ψ− become nonzero depend on the
sign of ϕ: while ϕ > 0 gives ψ− 	= 0, ϕ < 0 gives ψ+ 	= 0
(see also Fig. 2).

In Figs. 4(a) and 4(b), we show two different classes of
phase diagrams. The critical r̄0 ≡ r0 + 8u ln � (as defined in
Appendix A), acts a proxy for temperature, and is plotted
versus u/g1 for two representative relative strengths of the
biquadratic couplings g3/g1. The NNN bond order always
onsets at the highest temperature, either alone (Tϕ > Tψ ), in
which case the transition can be either first or second order
depending on u/g1; or simultaneously with ψ± (Tϕ = Tψ ), in
which case the double transition must be first order. In the case

1 2 10 50 100
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0.3

0.5

u/g1

g 3
/g
1

I
II

IIIIV

V

FIG. 5. Classes of phase transition behavior as the relative
strength of the biquadratic terms g3/g1 and u/g1 are varied. I:
simultaneous first-order transitions of ϕ and ψ+; II: second-order
transition to ϕ followed by a first-order transition to ψ+; III: distinct
second-order phase transitions of ϕ and ψ+; IV: distinct first-order
transitions of ϕ and ψ+; V: first-order transition to ϕ followed by a
second-order transition to ψ+.

Tϕ > Tψ , note that Tψ may be first or second order, depending
on the parameter regime.

We can also understand these orders in momentum space,
where the magnetic fluctuation spectrum at high temperatures
is isotropic, with broad peaks at all four Q = (±π/2,±π/2)
vectors. As the system cools down below Tϕ , two combinations
of the Q = (±π/2,±π/2) vectors develop stronger fluctuation
amplitudes than the other two combinations, breaking the
rotational symmetry. Upon further cooling to below Tψ , the
two sets of fluctuations become phase correlated.

As we have two control parameters u/g1 and g3/g1, we
can explore a two-dimensional phase space, as indicated in
Fig. 5. There are five different regimes of behavior. I: ϕ

and ψ+ turn on simultaneously at a first-order transition.
II: ϕ turns on continuously, with a second-order transition,
followed by a first-order transition of ψ+. III: two distinct
second-order phase transitions of ϕ and ψ+. IV: two distinct
first-order transitions of ϕ and ψ+. V: a first-order transition to
ϕ followed by a second-order transition to ψ+. Note that these
results are strongly dependent on the two dimensionality: any
finite inter-layer coupling will generate a finite-temperature
magnetic phase transition. For relatively weak couplings,
the phase diagrams can be quite complicated [34], although
as the couplings approach the three-dimensional limit, all
three transitions will become first order and simultaneous,
and there are no preemptive nematic transitions, as in the
single stripe case [3–7,25,35–40]. The splitting between the
magnetic and nematic orders is identical to the single stripe
case for g3 = 0 [6,34], and shrinks slightly as g3 increases.
We should note, however, that many phenomena beyond
dimensionality can suppress the magnetic order, for example,
magnetic frustration in FeSe [26], and so the splitting in the
iron-based superconductors themselves is not necessarily a
bound on the expected splitting in BaTi2Sb2O.
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III. TITANIUM-BASED OXYPNICTIDES

In the previous section, we outlined the general theory of
two-stage spin-driven nematicity, which made no assumptions
about the chemical composition of the system. We now
consider a real-world example using ab initio DFT calculations
that show that our model may be realized in the Ti-based
oxypnictide BaTi2Sb2O. We begin by reviewing what is known
experimentally about this family of materials followed by
a brief discussion of previous DFT results. We detail our
computational methods and present our calculations, which
we discuss in the context of the model. The model and
DFT results provide a consistent framework for interpreting
what is known from experiment and indicates that magnetic
fluctuations drive phenomena such as the nematic phase and
the recently observed charge-density wave.

A. Experimental status

The family of Ti-based oxypnictides contains two groups of
compounds, BaTi2Pn2O (Pn = As, Sb, Bi) and Na2Ti2Pn2O
(Pn = As, Sb). These materials share common features, such
as having layered tetragonal crystal structures similar to the
Fe-based superconductors and with most compounds also
exhibiting a density-wave transition (the transition is sup-
pressed in BaTi2Bi2O [41,42]). The density-wave transition
occurs at TDW = 50 K for BaTi2Sb2O [43,44], TDW = 200 K
for BaTi2As2O [45], and TDW = 330 and 120 K for the
respective Na2Ti2Pn2O (Pn = As, Sb) materials [46–48].
A subset of these compounds are superconductors, with
BaTi2Sb2O being the prototypical example [43,44] with a
critical superconducting temperature of Tc = 1.2 K [43].
Suppressing the density wave by substituting K for Ba
increases Tc up to Tc = 6.1 K [49], meaning that, as in
the Fe-based superconductors, there is a correlation between
superconductivity and the suppression of the density-wave
transition. However, the critical superconducting temperatures
are much smaller, so there is interest in understanding the
differences between the Ti-based and Fe-based pnictides.

There is an active debate regarding the microscopic details
and origin of the density-wave (DW) transition in the Ti-based
oxypnictides that hinges on two primary questions: (1) Is it
a charge-density wave or a spin-density wave, and (2) what
is the wave vector of the DW? A set of NMR and μSR
measurements, while not being able to resolve whether or
not the DW has a charge or magnetic origin [50–52], placed
symmetry constraints on the DW, finding that it broke the
fourfold rotational symmetry at the Sb sites without enlarging
the unit cell, making an incommensurate DW unlikely.
Neutron powder diffraction measurements [19] tightened these
constraints by detecting a lattice distortion that accompanies
the DW, changing the space group from P 4/mmm to Pmmm

due to a breaking of the fourfold rotational symmetry, but
followup electron diffraction measurements did not detect a
change in the number of Ti atoms per unit cell. The authors
of Ref. [19] identified this as a nematic phase similar to what
is observed in the Fe-based superconductors and proposed an
“intra-unit-cell” charge-density wave to explain their results.
This contrasts with Ref. [31], where the authors claim to
have detected a charge-density wave (CDW) with wave vector

Q = (π,π ) using angle-resolved photoemission spectroscopy
and scanning tunneling microscopy measurements. This would
mean that the DW breaks both rotational and translational
symmetry and increases the unit cell size to four Ti sites,
which is incompatible with the Pmmm symmetry reported in
Ref. [19]. In addition, while a long-range spin-density wave
has yet to be detected in BaTi2Sb2O, none of these experiments
have ruled out the potential existence of magnetic fluctuations
around and below the DW transition temperature, and indeed
NMR measurements of the spin-lattice relaxation rate strongly
suggest the presence of magnetic fluctuations above TDW in
BaTi2Sb2O [50].

B. Density functional theory calculations

While experimental measurements of BaTi2Sb2O have
yet to detect magnetism, DFT calculations [53–55] show a
preference for magnetism in BaTi2Sb2O and predict the ground
state to be the double stripe pattern. Including electronic
correlations with the DFT + U correction further stabilizes the
tendency towards magnetism [55]. In contrast, nonmagnetic
calculations predict a phonon instability at Q = (π,π ) in the
high-temperature structure [56,57]. Similar to experiment, the
DFT calculations appear to point in multiple and exclusive
directions, which complicates analysis of the DW transition
and leaves open the possibility that the superconductivity
in BaTi2Sb2O could be either conventional (electron-phonon
coupling) or unconventional (spin-fluctuation mediated).

Many of these conflicts observed in both theory and
experiment can be equitably resolved in our model, provided
it is applicable to BaTi2Sb2O. To establish this, we calculate
exchange parameters using DFT calculations, which confirms
that BaTi2Sb2O is in the double stripe regime described in
Sec. II C. We also revisit the nonmagnetic phonon instability
and compare it with structural relaxations performed on the
double stripe magnetic state, where we observe that the double
stripe magnetic pattern calculations yields a charge imbalance
on two inequivalent Ti sites along with an orthorhombic dis-
tortion, which is consistent with our model and also the results
of Ref. [19]. We conclude that this provides strong evidence
that the DW transition corresponds to a spin-fluctuation-driven
nematic intra-unit-cell CDW that breaks fourfold rotational
symmetry.

1. Computational methods

Additional details of our DFT calculations can be found in
Appendix B. In most calculations, we used the all-electron
code ELK [58], with testing selected calculations against
the WIEN2Kcode [59]. For the exchange-correlation potential
we used both the local spin-density approximation (LSDA)
[60] and the generalized gradient approximation (GGA) [61]
when computing collinear magnetic energies. To account
for correlations on Ti, we used the DFT + U method in
the fully localized limit [62], using two values of U , 2.5
and 3.5 eV, and J = 0.5 eV. Due to computational expense
only the LSDA + U functional with U = 3.5 eV was used in
noncollinear calculations.

We used the experimental crystal structure in all of our
calculations [44]. The space-group symmetry is P 4/mmm

and the lattice parameters were set to a = 4.1196 Å and
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FIG. 6. Schematic illustrating the different magnetic patterns
considered in our collinear calculations. The inequivalent Ti sites
are labeled as M1 and M2 in panel (d), and indicate NNN FM
bonds bridging oxygen or vacancy sites, respectively. The relative
sizes of the circles representing the Ti sites show the variation in
local moment amplitudes (based on LSDA + U calculations with
U = 3.5 eV) across the magnetic patterns. (a) Ferromagnetic (FM),
(b) checkerboard (CB), (c) parallel stripes, (d) double stripes (DS),
(e) oxygen-centered plaquettes, (f) vacancy-centered plaquettes.

c = 8.0951 Å. The Wyckoff positions for the atoms, given
in fractional coordinates, are Ba [1d] (0, 0, 0), Ti [2f] (0, 0.5,
0.5), Sb [2g] (0.5, 0.5, 0.2514), and O [1c] (0, 0, 0.5). The raw
results of these calculations are presented in Appendix B 2.

The computed DFT energies were fit to the Hamiltonian in
Eq. (3), which includes the lowest-order ring-exchange terms.
We included this term to capture the energy difference between
the plaquette and double stripe configurations. Note that we
assumed R1 = R2 ≡ R for our fits.

The crystallography of the Ti-based oxypnictides compli-
cates the comparison between these materials and the model
described above both by breaking symmetries and modifying
exchange interactions. With regards to the exchange interac-
tions, the positions of the O atoms in the two-dimensional
Ti2O plane (see for example the schematics in Fig. 6) call
for two types of NNN Ti-Ti bonds: those that are bridged by
an O and those that are not. The consequences of this are
twofold: J2 and K2 are split into two unequal terms and in
the DS magnetic pattern two Ti sites become inequivalent [see
Fig. 6(d)]. Because of the moment softness, the local moment
amplitude of one site can be smaller by a factor of 2 when
compared with the other (in the most extreme case the smaller
moment collapses to zero, see Appendix B 2). In principle, this
allows for two inequivalent DS patterns that differ depending
on whether the FM bonds bridging O involve either large-
or small-moment Ti sites. The moment softness also leads to
different local moment amplitudes across magnetic patterns,
which is illustrated in Fig. 6 by varying the relative size of
the circles, which represent Ti sites, in the plots. While these
complications are important for real Ti-based oxypnictides and
are a likely source of the crystallographic complexity of the
low-temperature phases, for simplicity we make the following
assumptions when fitting to Eq. (3): we assume that the spins
S always have the same magnitude and normalize the values
of J ’s and K’s to S = 1. For the purpose of mapping our
calculations to the model described in Sec. II C, we take the

average of the crystallographically inequivalent J2’s, K2’s, and
R’s (see Appendixes B 1 and B 2).

For the nonmagnetic and long-range antiferromagnetic
configurations we also performed structural relaxations using
the projector augmented wave potentials in the pseudopotential
code VASP [63,64]. One should keep in mind that, as we
know from Fe-based superconductors, the role of the long
magnetic order is to break the symmetry and create disbalance
in orbital populations, which, in turn, couples to the lattice
and generate a small lattice distortion. Many calculations for
Fe pnictides and selenides show that the crystal structure in
the symmetry-broken nematic states is very well described
by the corresponding long-range-ordered magnetic states, and
we expect the same to be true here. In all our relaxations we
fixed the volume to the experimental value and allowed the
c/a ratio and ionic positions to relax. For the nonmagnetic
instability, we considered the vanilla GGA [61] functional
as well as the LSDA + U and GGA + U functionals with
a rotationally invariant U − J = 3.0 eV [65], and for the
double stripe relaxation we considered both LSDA + U and
GGA + U with U − J = 3.0 eV.

2. Results and discussion

We checked both the LSDA and GGA functionals with
Hubbard U values of 3.5 and 2.5 eV. GGA has more of
a propensity towards magnetism, such that the GGA+U =
3.5 eV calculations generated too large magnetic moments,
thus we did not use this combination. We calculated the
following magnetic patterns: ferromagnetic (FM), checker-
board (CB), double stripe (DS), oxygen- and vacancy-centered
plaquettes, parallel stripes, and single stripes.1 Note that the DS
states can be converged, when U is included, to two different
states differing by the local moment amplitude on the “weak”
Ti site, which can either stay finite or collapse to zero [66]
(the relative amplitude is always smaller than the “strong”
site). What is important is that the symmetry breaking remains
the same in both cases, regardless of whether the “weak”
site collapses. We also calculated the energy of ferromagnetic
planes with antiferromagnetic stacking to get an estimate of the
interplanar coupling. The energy calculations are summarized
in Appendix B 2.

The fitted values of the exchange parameters that we
obtained using LSDA + U with U = 3.5 eV are
J1 = 0.89 meV, J2 = −2.83 meV, J3 = 2.79 meV, R =
−0.26 meV, K1 = −0.37 meV, and K2 = 2.06. The full table
of fitted parameters using different functionals and values of
U is available in Appendix B. While we note that there is
noticeable variation of the absolute and even relative values
of the exchange parameters across different functional and
U combinations, there are important qualitative observations
we can make that hold in all cases: (1) the interaction is

1Other patterns are possible on the two-dimensional square lattice,
although many of them were not stable in all or some functionals.
The staggered dimers and trimers patterns, which are competitive in
bulk FeSe, are not stable. In addition, ferrimagnetic patterns involving
eight Ti sites with unequal numbers of up and down spins were also
not stable.
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long range, with |J2| > |J1| and J3 > (J1 − |J2|)/2 (the
latter condition defines the double stripes as the mean-field
ground state for sufficiently large K); this is an important
prerequisite for the double-stage bond orders described
above. (2) J2 is ferromagnetic in contrast to the Fe-based
pnictides; however, this sign difference is irrelevant to
the model derived in the previous section. (3) There is a
sizable biquadratic coupling, K2 > J3/2 > |J2|/2 > J1/2,
K1 + 2R > J3/2 > |J2|/2 > J1/2, in which both K1 and K2

enforce collinearity. This ensures that spiral configurations
play a minimal role and justifies setting J1 to 0 in Sec. II C.
In addition, the distinction between K1 and R is subtle yet
important, for if the latter is omitted from the fitting, K1

turns positive, while including R yields a K1 that is slightly
negative (in the Fe-based pnictides, including R does not
change the sign of K1). In both cases, the strong NN quartic
spin interactions enforce collinear spin patterns.

The calculated exchange parameters for LDA + U support
the conclusion that BaTi2Sb2O is a real-world example of the
model discussed in Sec. II C, corresponding to a case where
J3 � J1,J2 and (K1 + 2R), K2 are positive and of the same
order as the Heisenberg parameters. With this established, we
now turn to discussing how the model and DFT results describe
the nature of the density-wave transition.

As previously discussed, due to the crystallography of
BaTi2Sb2O the DFT calculation for the double stripe state
has two inequivalent local Ti moments. The DFT calculations
also show a charge imbalance between the inequivalent sites2

with there being ∼0.02 more electrons at site M2 (site with
vacancy-bridging FM NNN interactions) compared to M1

(site with oxygen-bridging FM NNN interactions), forming
a pattern consistent with the intra-unit-cell charge-density
wave reported in Ref. [19] and in contrast to the Q = (π,π )
charge-density wave argued for in Ref. [31], which would lead
to four inequivalent Ti sites per unit cell. Furthermore, our
spin-driven model is consistent with having an intra-unit-cell
charge-density wave in the absence of long-range magnetic
order. The argument is as follows: the presence of the oxygen
sites breaks the translational symmetry of the hypothetical 1
Ti tetragonal cell, such that there are 2 Ti in the primitive unit
cell even for T > Tϕ . These Ti sites are differentiated by the
direction of their oxygen coordination, along either x̂ ± ŷ, and
are related by rotational symmetry. However, when T < Tϕ ,
the NNN bonds order, breaking this symmetry; for example,
see Fig. 7. The resulting FM bonds between Ti(1)–Ti(1) and
Ti(2)–Ti(2) are inequivalent, with one bridging an oxygen and
one bridging a vacancy. DFT calculations indicate that this
inequivalency shows up as an intra-unit-cell charge-density
wave. In addition, our model predicts that an initial unit cell
with two inequivalent Ti sites will have nematic order and a
charge-density wave condense at the same time, in complete
agreement with experiment. Note that the mirror symmetry
associated with ψ± remains unbroken until the NN bonds
develop at Tψ , even in the 2 Ti unit cell.

2The calculated charge in the muffin-tin spheres (sphere radius of
2.1 Bohr radii) at the two inequivalent Ti sites is the relevant quantity
used here.

FIG. 7. In BaTi2Sb2O, there are two Ti sites [Ti(1), hollow circles
and Ti(2), solid black circles] per unit cell, that are differentiated by
the orientation of their oxygen coordination (red circles). The 2 Ti unit
cell is shown by the blue, dashed lines. At high temperatures, these
are equivalent and must carry the same charge, due to the rotation
symmetry. However, below Tϕ , the ferromagnetic bonds break
rotation symmetry, and one Ti sublattice will have ferromagnetic
bonds that cross oxygen sites, while the other will not, allowing a
charge disproportionation to develop, such that Tϕ = TCDW.

Further support for the spin-driven case comes from
our structural relaxation calculations (see Appendix B 3 for
additional details). Similar to the Fe-based pnictides, structural
relaxations of the DS pattern give rise to an orthorhombic dis-
tortion with Pmmm symmetry (consistent with Ref. [19]). The
intra-unit-cell charge imbalance on the inequivalent Ti sites is
also preserved after the optimization. In contrast, nonmagnetic
calculations in the high-temperature P 4/mmm structure yield
a charge imbalance that resembles the double stripe pattern.
As shown in previous studies [56,57], this nonmagnetic charge
density wave is unstable and promotes one of two lattice
distortions: (i) a slight rotation of the Ti plaquettes centered
around the oxygen sites as reported in Refs. [56,57], which
breaks rotation and translation symmetries (but not the ψx/y

reflection symmetry) without an orthorhombic splitting of the
in-plane a and b lattice parameters, or (ii) an orthorhombic
distortion similar to what relaxing in the double stripe magnetic
pattern yields, which does break rotational symmetry and splits
the in-plane a and b lattice parameters. We stabilized both dis-
tortions in our structural relaxations, with the former distortion
being lower in energy than the latter when using “vanilla” GGA
or LSDA + U with U − J = 3.0 eV. These relaxations also
remove the charge imbalance on inequivalent Ti sites, implying
that the distortions suppress the charge-density wave.

It is important to emphasize that these nonmagnetic distor-
tions are inconsistent with experiment: the Ti plaquette rotation
does not break all the necessary symmetries, the energy of the
orthorhombic distortion is higher than the plaquette rotation
and within a tenth of a meV of the undistorted structure, and
in both cases the distortion removes the charge imbalance on
inequivalent Ti sites. Both nonmagnetic distortions are also
significantly higher in energy than the magnetic double stripe
configuration and its accompanying orthorhombic distortion
for the LSDA + U functional. It is only within our spin-driven
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model that one obtains an orthorhombic lattice distortion with
the correct symmetry, a charge imbalance on inequivalent Ti
sites that persists after structural relaxation, and still not require
that long-range magnetic order condense. The consistency of
our model in explaining all observed phenomena also points to
BaTi2Sb2O having a spin-fluctuation-mediated superconduct-
ing state.

IV. CONCLUDING REMARKS

We have presented an extension to the spin-driven nematic
theory that describes fluctuations of double stripe magnetic or-
der, which can break symmetries via a three-stage process. The
first is the formation of second-nearest-neighbor ferromagnetic
bonds along one of the square diagonals, which breaks C4

rotational symmetry, and the second is the formation of first-
nearest-neighbor ferromagnetic bonds in a staggered zigzag
pattern that breaks translational (doubling the unit cell) and
reflection symmetries. Despite breaking different symmetries,
these transitions are both bond-order transitions. In principle,
in a quasi-three-dimensional system they should be followed
by an antiferromagnetic transition, but, depending on the pa-
rameters and factors beyond the model, the magnetic transition
may sink to an undetectable temperature. This happens, for
instance, for SS nematicity in FeSe [26]. While this seems
to also be the case for BaTi2Sb2O, where magnetic order has
not been observed experimentally, despite some evidence for
magnetic fluctuations [50], in the DS compound FeTe the two
bond-order transitions and the magnetic transition seem to be
simultaneous and first order. Going back to BaTi2Sb2O, where
the magnetic transition is likely absent, the two bond-order
transitions can, in general, occur at either the same or different
temperatures, depending on the relative amplitudes of the first-
and second-nearest-neighbor biquadratic exchange parameters
and other factors, or the second transition may also sink
to too-low temperatures. We speculate that the former may
be the case in BaTi2Sb2O and the resulting merged phase
transition is of very weak first-order character. This would
place BaTi2Sb2O in region I of the theoretical phase diagram
of Fig. 5. Our DFT calculations confirmed that BaTi2Sb2O is
within the regimes possible in this model and that all details of
existing experiments can be accounted for in the spin-driven
picture. The importance of spin fluctuations in explaining these
phenomena suggests that the superconducting state may be
unconventional and driven by spin fluctuations.

Direct confirmation of our theory should be possible with
additional measurements. We predict that BaTi2Sb2O exhibits
correlated magnetic fluctuations without long-range order
below the density-wave transition temperature, similar to what
is observed in paramagnetic nematic phases of specific iron-
pnictide superconductors, for example, BaFe2As2. Techniques
such as muon spin rotation, which have not found any evidence
for magnetism in the titanium-based oxypnictides, are slow
probes on the time scale of magnetic fluctuations. Fast-probe
techniques such as inelastic magnetic neutron scattering
[67], photoemission spectroscopy [68], and x-ray emission
spectroscopy [69] measurements are necessary to detect these
fluctuations, as they have in the iron-based superconduc-
tors. A successful detection would provide direct evidence
concerning the validity of our model. Moreover, magnetic

order should be realized somewhere in the general phase
diagram, presumably along some unexplored or underexplored
direction in phase space. While no magnetic order has yet been
found, these materials are relatively unstudied; for reference,
it took significantly more effort to find the magnetism in
FeSe under pressure [70,71]. There are several alternative
theories for the nematic intra-unit-cell density-wave transition
in BaTi2Sb2O. The first proposal requires only charge degrees
of freedom and longer-range Coulomb interactions [19]; this
could be straightforwardly distinguished from our theory by
establishing the presence of strong magnetic fluctuations. The
second proposal is the development of a nematic orbital order
driven by spin fluctuations and is based on a Hubbard model
approach [72]; this could be resolved by searching for orbital
order using ARPES measurements.

In addition, our model may also apply to other members
of the titanium oxypnictide family, such as explaining the two
phase transitions at T = 320 K (density wave) [48] and 150 K
(breaking of rotational symmetry) [73] in Na2Ti2As2O. Addi-
tional (magnetic) DFT calculations and experiments searching
for magnetic fluctuations in Na2Ti2As2O are therefore needed.
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APPENDIX A: DERIVATION OF EQUATIONS OF STATE
IN EFFECTIVE FIELD THEORY

In this appendix, we show briefly how to get the equations
of state. After introducing the Hubbard-Stratonovich fields in
Eqs. (9)–(12), the free energy in Eq. (8) becomes

Feff[Mi ,ψx/y,ϕ,η]

=
4∑

i,j=1

∫
q

Mi,qχ
−1
ij (q)Mj,−q − ϕ(M1 · M3 − M2 · M4)

−ψx(M1 · M2 − M3 · M4) − ψy(M1 · M4 − M2 · M3)

+ η

(
4∑

i=1

M2
i

)
+ ϕ2

2g1
+ ψ2

x

2g3
+ ψ2

y

2g3
− η2

2u
. (A1)

Upon integrating out the Mi , we obtain

Feff[ψx,y,ϕ,η]

= T

2

∫
q

log detG−1
q + ϕ2

2g1
+ ψ2

x + ψ2
y

2g3
− η2

2u
(A2)
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with G−1
q given by

[
(r + J3δq

2)I − ψx

2 σ1 − iψy

2 σ2 − (
J2δqxδqy + ϕ

2

)
σ3

iψy

2 σ2 − (
J2δqxδqy + ϕ

2

)
σ3 (r + J3δq

2)I + ψx/2σ1

]
,

(A3)

where r ≡ r0 + η.
The determinant of the inverse Green’s function is

detG−1 = 1

16
(2J̃2 + 2J̃3 + 2r + ϕ − ψx − ψy)

× (2J̃2 − 2J̃3 − 2r + ϕ + ψx − ψy)

× (2J̃2 − 2J̃3 − 2r + ϕ − ψx + ψy)

× (2J̃2 + 2J̃3 + 2r + ϕ + ψx + ψy)

= (J̃2 − J̃3 − λ)2(J̃2 + J̃3 + λ)2

+ 2J̃2(J̃2 − J̃3 − λ)(J̃2 + J̃3 + λ)ϕ

+ 1

2

(
3J̃ 2

2 − (J̃3 + λ)2
)
ϕ2 + J̃2

2
ϕ3 + ϕ4

16

− 1

2

(
J̃ 2

2 + (J̃3 + λ)2
)(

ψ2
x + ψ2

y

)
+ 2J̃2(J̃3 + λ)ψxψy + 1

16

(
ψ2

x − ψ2
y

)2

+ (J̃3 + λ)ϕψxψy + J̃2

2
ϕ
(
ψ2

x + ψ2
y

)
− 1

8
ϕ2(ψ2

x + ψ2
y

)
, (A4)

where we have introduced J̃3 = J3δq
2 and J̃2 = J2δqxδqy for

simplicity. In the Landau theory, we can expand the log detG−1

by assuming that everything involving ϕ, ψx , and ψy is small in
comparison to the first term. By doing so, we get a new Landau
theory in terms of ϕ and ψx/y . Once we do this expansion, we
see that

∑
q J̃ 2n+1

2 type terms vanish. So, the linear and cubic
ϕ terms vanish, as the ϕ(ψ2

x + ψ2
y ) and ψxψy term. However,

the ϕψxψy term is really there, as we expected. Since ψxψy

acts like an external field for φ, so either ϕ turns on first, or
ψx,ψy and ϕ all turn on at the same time.

The next step is to minimize the effective action with respect
to η, ϕ, ψx , and ψy by taking the derivative of Seff[ψx,ψy,ϕ,η]
over ψx , ψy , ϕ, and η, respectively, and force it to be zero. It
is convenient to rewrite the action as

Seff[ψx,ψy,ϕ,η]

= ϕ2

2g1
+ ψ2

x

2g3
+ ψ2

y

2g3
− η2

2u

+ T

2

∑
q

log(J3q
2 + J2qxqy + r + ϕ − ψx − ψy)

+ T

2

∑
q

log(J3q
2 − J2qxqy + r − ϕ − ψx + ψy)

+ T

2

∑
q

log(J3q
2 − J2qxqy + r − ϕ + ψx − ψy)

+ T

2

∑
q

log(J3q
2 + J2qxqy + r + ϕ + ψx + ψy),

(A5)

where we renormalize (ϕ,ψx,ψy) → 2(ϕ,ψx,ψy) and gi →
4gi for convenience. The saddle-point equations ∂Seff [xi ]

∂xi
= 0

(xi = η,ϕ,ψx and ψy) become

η = T u

2

∑
q

[I1(q) + I2(q) + I3(q) + I4(q)],

ϕ = T g1

2

∑
q

[−I1(q) + I2(q) + I3(q) − I4(q)],

ψx = T g3

2

∑
q

[I1(q) + I2(q) − I3(q) − I4(q)],

ψy = T g3

2

∑
q

[I1(q) − I2(q) + I3(q) − I4(q)], (A6)

where Il(q)(l = 1,2,3,4) represents

I1(q) = 1

Jq2 + r + ϕ − ψx − ψy

,

I2(q) = 1

Jq2 + r − ϕ − ψx + ψy

,

I3(q) = 1

Jq2 + r − ϕ + ψx − ψy

,

I4(q) = 1

Jq2 + r + ϕ + ψx + ψy

. (A7)

In this, we have rotated our momentum axes to define

the effective kinetic term Jq2 =
√

J 2
3 − J 2

2
4 (δq2

x + δq2
y ) and

renormalized (ϕ,ψx,ψy) → 2(ϕ,ψx,ψy) and gi → 4gi for
convenience.

In the spirit of Landau theory, we next approximate T

by T0 everywhere except in r0, which we assume to be
relatively small. We can then proceed to solve these equations
in two dimensions by evaluating the momentum integrals
Il(q) directly. These integrals diverge in the ultraviolet, so
we must introduce a cutoff �. We can then absorb this into
r̄0 = r0 + 8u ln �. As the equations for ψx and ψy differ
only by signs, we can decouple their equations by defining
ψ± = ψx ± ψy , which have identical equations. The trilinear
term ϕψxψy becomes ϕ(ψ2

+ − ψ2
−). As only ψ+ or ψ− will

develop, depending on the sign of ϕ, we consider only ψ+
(ϕ < 0) and obtain the three saddle-point equations

r̄0 − r

u
= ln(r + ϕ − ψ+) + ln(r + ϕ + ψ+) + 2 ln(r − ϕ),

ϕ

g1
= ln(r + ϕ − ψ+) + ln(r + ϕ + ψ+) − 2 ln(r − ϕ),

ψ+
2g3

= − ln(r + ϕ − ψ+) + ln(r + ϕ + ψ+), (A8)

where we have rescaled T0
2J 2 (u,g1,g3) → (u,g1,g3) and

1
J

(ϕ,ψ+,r) → (ϕ,ψ+,r) and absorbed a prefactor 1/(4π ) into
the temperature T0.
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(a) (b)

FIG. 8. Schematics illustrating the four interpenetrating Néel sublattices (shown as different color vectors) that form the double stripe
magnetic configuration and the two different 0◦ � θ � 180◦ noncollinear rotations used in our DFT calculations to obtain the biquadratic terms
K1 and K2. Red lines indicate the dimensions of the lateral supercell in each calculation. (a) Rotation analogous to a fluctuation of the ψ± order
parameter (see Fig. 2). (b) Rotation analogous to a fluctuation of the ϕ order parameter (see Fig. 2), which rotates between the Q = (π/2,π/2)
and (−π/2,π/2) configurations.

APPENDIX B: DFT CALCULATIONS

In this appendix, we give additional details about how we
performed the DFT calculations and also provide the raw
results of our calculations along with additional discussion.

1. Computational methods: Additional details

A method similar to that used in Ref. [21] was employed
to extract the biquadratic interaction term. The configurations
depicted in Figs. 8(a) and 8(b) indicate how we varied θ to
calculate E(θ ) for the two different setups. These involve
rotations of the four Néel sublattices discussed in Sec. II B,
and in our calculations two of the sublattices are fixed and the
other two are rotated to interpolate between degenerate double
stripe configurations. Applying Eq. (3) to these configurations
results in the following two expressions that we use for fitting:

E1(θ ) − E1(0) = 2(K1 + 2R) sin2 θ, (B1)

E2(θ ) − E2(0) = (K1 + 2K2) sin2 θ. (B2)

E1(θ ) corresponds to Fig. 8(a) and E2(θ ) to Fig. 8(b). Note
that the ring exchange enters as a term in Eq. (B1),3 which we
take from our collinear fits.

3The effect of the (square) ring exchange on the biquadratic
interaction in the Fe-based superconductors has, to our knowledge,
not been previously investigated. In Ref. [21], rotations between
the degenerate q = (0,π ) and (π,0) patterns are modeled as E ∼
K1 sin2(θ ). If the ring exchange is included, the model becomes
E ∼ (K1 − 2R) sin2(θ ). If R > 0, which for example is the case in
FeTe, then not including ring exchange in single stripe rotations leads
to an underestimation of K1. The opposite is true for the double stripe
fluctuations, where not including it leads to an overestimation of K1.

We used the following parameters in the calculations
obtained using ELK. For the k mesh, we used a 14 × 14 × 8
k mesh for the ferromagnetic and checkerboard unit cells,
a 12 × 8 × 8 k mesh for the double stripe cell [also used
for noncollinear rotation in Fig. 8(a)], a 12 × 8 × 6 k mesh
for the parallel stripes unit cell, a 14 × 14 × 4 k mesh for
the antiferromagnetic layers unit cell, and a 8 × 8 × 8 k

mesh for the plaquette unit cell [also used for noncollinear
rotation in Fig. 8(b)]. The number of empty states was set to
6 states/atom/spin. In addition, because of how ELK evaluates
the exchange-correlation potential, convergence of the θ = 0◦
and 180◦ configurations in Fig. 8(b) (which are supposed to
be degenerate) required setting the angular momentum cutoff
for the augmented plane wave (APW) functions (parameter
lmaxapw) and the muffin-tin density and potential (parameter
lmaxvr) to 10, and also reducing the fracinr parameter to
0.001.4

For our fittings to Eq. (3), as mentioned in the main text, the
oxygen sites in BaTi2As2O lead to an anisotropy in the Ti-Ti
NNN couplings, which in principle splits the second-neighbor
Heisenberg exchange parameter (J2 → J2O,J2v), biquadratic
exchange parameter (K2 → K2O,K2v), and ring-exchange
parameter [(R → RO,Rv)]. For consistency, we define a set
of averaged exchange parameters to use when fitting: 2J2 =
J2v + J2O for NNN Heisenberg exchange, 2K2 = K2O + K2v

4K. Dewhurst, the developer for ELK, explained in a personal
communication that the reason the symmetry between θ = 0◦ and
180◦ configurations is slightly broken is because the exchange-
correlation potential (and density in the case of Elk) is evaluated
on a grid in real space, i.e., not spherical harmonics. There is no
way to evenly distribute N points on the sphere while maintaining
the symmetry. To limit this effect, the number of real-space points
has to be large, which can be achieved by scaling up the parameters
lmaxapw and lmaxvr and scaling down fracinr.
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TABLE I. A summary of the magnetic energies for the collinear magnetic patterns depicted in Fig. 6 using LSDA and GGA functionals
and Hubbard U ’s of 2.5 and 3.5 eV. The reported energies are referenced against the nonmagnetic (NM) state. For the DS patterns, the M1 sites
are those with NNN FM bonds bridging oxygen and M2 are NNN FM bonds bridging vacancies. The “O-FM” and “v-FM” versions of DS are
special cases when half the sites are nonmagnetic, with the magnetic sites either bridging across an oxygen site or a vacancy, respectively. The
plaquette patterns are labeled similarly, depending on whether they center around oxygen or vacancy sites.

LSDA+U GGA+U

U = 2.5 eV U = 3.5 eV U = 2.5 eV

E–E(NM) M1 M2 E–E(NM) M1 M2 E–E(NM) M1 M2

Config (meV/Ti) (μB ) (meV/Ti) (μB ) (meV/Ti) (μB )

FM 0.02993 0.2165 0.2165 −9.668 0.3761 0.3761 −21.761 0.4511 0.4511
CB −0.2748 0.01661 0.01661 −13.241 0.1102 0.1102 −28.414 0.1648 0.1648
DS −5.959 0.2631 0.3426 −20.950 0.3021 0.5537 −31.527 0.3452 0.5939
DS (O-FM only) −3.674 0.3220 0.0000 −12.158 0.4783 0.0000 −16.642 0.5383 0.0000
DS (v-FM only) −4.188 0.0000 0.4103 −18.291 0.0000 0.6167 −24.915 0.0000 0.6667
Parallel −0.9796 0.1752 0.1752 −10.468 0.3891 0.3891 −22.384 0.4363 0.4363
Plaquette (O-centered) −4.572 0.2503 0.2503 −16.022 0.3653 0.3653 −26.580 0.4015 0.4015
Plaquette (v-centered) −4.269 0.3044 0.3044 −17.856 0.4535 0.4535 −29.084 0.4989 0.4989
AFM layers −0.6150 0.09566 0.09566 −9.154 0.3890 0.3890 −22.803 0.4866 0.4866

for NNN biquadratic exchange, and 2R = RO + Rv for NNN
ring exchange.

For our VASP structural relaxations, we used a plane-wave
energy cutoff of 600 eV. We also used the same k meshes
for the different supercell geometries as was used in the ELK

calculations.

2. Total-energy calculations and fitted exchange parameters

Table I contains the full summary of our total-energy cal-
culations and the Ti local moment amplitudes of the different
magnetic patterns. We find that our results are consistent with
the trends reported in Ref. [55], where increasing U lowers the
energy of each configuration and increases the amplitude of
the local moments. The local moments themselves are soft and

can vary by more than a factor of 2 between magnetic patterns.
Our calculations also capture the energy difference that arises
due to the anisotropy in the J2 parameter, which depends
on whether the NNN ferromagnetic bonds bridge either an
oxygen site or a vacancy. Overall, NNN ferromagnetic bonds
are energetically preferred.

The results of our noncollinear energy calculations are
shown in Fig. 9, which we fit to Eqs. (B1) and (B2) to
obtain the biquadratic parameters. In Fig. 9(a), the M2 Ti
moments collapse when 60◦ � θ � 120◦; for simplicity we
fit to Eq. (B1) using only the energy calculations obtained for
θ outside this range. As a side note, the rotations in Fig. 8
are analogous to the fluctuations discussed in Secs. II B and
II C, with Fig. 8(a) being similar to fluctuations between the
(+ + −+) and (− + ++) states in Fig. 2 that are frozen out

FIG. 9. Noncollinear energies as a function of the rotation angle θ . The dashed lines are the fits to the model. The insets in each panel show
the inequivalent Ti local moments as a function of θ . The red circles refer to NNN FM O-bridging Ti sites and the blue triangles to NNN FM
vacancy-bridging Ti sites when θ = 0◦. (a) Noncollinear energies for the rotations analogous to fluctuations of the ψ± order parameter [see
Fig. 8(a)]. (b) Noncollinear energies for the rotations analogous to fluctuations of the ϕ order parameter [see Fig. 8(b)].
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TABLE II. The calculated exchange parameters for BaTi2Sb2O.

U J1 J2 J3 J⊥ R K1 K2

Functional (eV) (meV)

LDA + U 2.5 0.076 −1.04 1.59 0.32 0.38
LDA + U 3.5 0.89 −2.83 2.79 −0.26 1.00 −0.37 2.06
GGA + U 2.5 1.66 −2.41 1.89 0.52 0.92

when T < Tψ , and Fig. 8(b) being similar to fluctuations
between the (+ + −+) and (+ + +−) states in Fig. 2 that
are frozen out when T < Tϕ .

The fitted exchange parameters are summarized in Table II.
For completeness, we included the interplanar coupling J⊥
that was neglected in the model treatment. The signs of
the Heisenberg and ring-exchange parameters are consistent
across functionals and values of U with the exception of J⊥,
which is slightly ferromagnetic in LSDA + U = 3.5 eV, but
antiferromagnetic otherwise.

3. Structural relaxation data

The structural relaxations we computed using VASP are
summarized in Table III. For all functionals, we first performed
a baseline relaxation calculation where we enforced the
high-temperature structure with P 4/mmm symmetry. We then
considered up to three kinds of distortions. The nonmagnetic
distortions are the “rotation” distortion, which refers to
rotations of Ti plaquettes about the oxygen sites by an angle
θTi, and the “orthorhombic” distortion, which is a spitting of
the a and b lattice parameters quantified with the parameter
ζ = 2 × a−b

a+b
× 100%. The “double stripe” distortion, on the

other hand, is obtained by performing a structural relaxation
for the magnetic double stripe pattern. We then compared the
energies, the calculated charges on the two inequivalent Ti
sites, and the distortion parameters θTi and ζ .

We found that for the vanilla DFT calculations with the
GGA functional, the plaquette rotation distortion is lowest in
energy, with E(rotation)–E(none) = −5.8 meV/Ti compared
with E(orthorhombic)–E(none) = 0.03/Ti meV. The undis-
torted structures feature a charge imbalance on the inequivalent
Ti sites, while the distorted sites do not. The rotated plaquettes
structure also has a minor orthorhombic distortion of 0.03%,
which is negligible.

TABLE IV. The magnetic energies for the collinear magnetic
patterns that are stable in BaTi2As2O for LSDA + U with U = 3.5 eV
and J = 0.5 eV. Energies are referenced against the nonmagnetic
(NM) state. The inequivalent magnetic moments M1 and M2 in the
double stripe and site-selective patterns are the same as those labeled
in Fig. 6.

E–E(NM) M1 M2

Config (meV/Ti) (μB )

FM −0.8245 0.3116 0.3116
DS (O-FM only) −4.562 0.3226 0.0000
DS (v-FM only) −9.787 0.0000 0.4673
Parallel −3.354 0.1987 0.1987
Plaquette (O-centered) −4.843 0.2359 0.2359
Plaquette (v-centered) −9.246 0.3260 0.3260
AFM layers −3.257 0.3242 0.3242

For the LSDA + U (U − J = 3.0 eV) calculations, the
double stripe distortion is clearly the lowest in energy, with
E(ds)–E(none) = −18.4 meV/Ti compared with E(rotation)–
E(none) = −0.88 meV/Ti and E(orthorhombic)–E(none) =
−0.079 meV/Ti. The nonmagnetic distortions do not provide
much of an energy gain, particularly when compared with
the relaxed magnetic state. As in the case of vanilla GGA,
the nonmagnetic distortions remove the charge imbalance
between M1 and M2 found in the high-temperature structure.
In contrast, the charge imbalance still persists after relaxing
the double stripe pattern.

In terms of symmetry breaking, only the relaxed magnetic
calculations break rotational, reflection, and translational sym-
metry, induce a orthorhombic lattice distortion, and preserve
a charge imbalance between the inequivalent Ti sites. The
nonmagnetic distortions may or may not break the right
symmetries compared with experiment, and after relaxation
the charge imbalance disappears.

4. BaTi2As2O

We performed a set of DFT calculations for BaTi2As2O in
order to compare with the main BaTi2Sb2O results, and found
that an extremely polarized version of double stripe order was
stabilized, with the moment on the Ti(1) site vanishing (see
Table IV). These calculations used the LSDA + U functional

TABLE III. A summary of the results of structural relaxations of BaTi2Sb2O for different exchange-correlation functionals and kinds of
distortions. The DFT + U calculations used the rotationally invariant approach with a single parameter U − J [65]. The Q(Ti1) and Q(Ti2)
columns report the calculated charge on the inequivalent Ti sites, the θTi column reports how many degrees the oxygen-centered Ti plaquettes
are rotated in each distortion (if at all), and the final column calculates η = 2 × a−b

a+b
× 100%, which quantifies the degree of the orthorhombic

distortion.

U − J Energy Q(Ti1) Q(Ti2) θTi η

Functional (eV) Distortion (eV/Ti) (elec.) (deg.) %

GGA 0.0 None −19.59 10.2 10.2 0.0 0.0
GGA 0.0 Rotation −19.59 10.2 10.2 3.5 0.028
GGA 0.0 Orthorhombic −19.59 10.2 10.2 0.0 0.40
LSDA + U 3.0 None −19.48 10.1 10.2 0.0 0.0
LSDA + U 3.0 Rotation −19.48 10.2 10.2 2.19 0.08
LSDA + U 3.0 Orthorhombic −19.48 10.1 10.2 0.0 0.51
LSDA + U 3.0 Double stripe −19.49 10.2 10.1 0.0 1.4
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FIG. 10. Noncollinear energies for rotations connecting the two
double stripe patterns where one of the local Ti moments has
collapsed. θ = 0◦ corresponds to moments with oxygen-bridging FM
NNN interactions and θ = 180◦ to moments with vacancy-bridging
FM NNN interactions. The dashed line is the fit to the model. The
inset shows the Ti local moment as a function of θ .

with U = 3.5 eV and J = 0.5 eV. We used the experimental
crystal structure for these calculations [45], which has space-
group symmetry P 4/mmm, lattice parameters a = 4.04561 Å
and c = 7.27228 Å, and the following Wyckoff positions in

fractional coordinates: Ba [1d] (0.5, 0.5, 0.5), Ti [2f] (0.5, 0,
0), As [2g] (0, 0, 0.7560), and O [1c] (0.5, 0.5, 0). We used the
same k meshes and parameters as were used for BaTi2Sb2O.

The results of the collinear calculations are summarized
in Table IV. BaTi2As2O is less supportive of magnetism com-
pared to BaTi2Sb2O, as the full double stripe and checkerboard
patterns cannot be stabilized and the stable patterns yield less
of an energy gain compared to their BaTi2Sb2O counterparts.
Because of this, there are not enough stable collinear magnetic
patterns that we can use to fit to Eq. (3). Trying to include the
patterns with nonmagnetic sites further complicates the model,
as we would need to add Stoner-type onsite terms to capture
variations in the local moments.

Even though we cannot resolve all the exchange parameters
through a fit, we can at least estimate the NNN biquadratic
parameter. We do this by performing noncollinear calculations
with rotations that interpolate between the two kinds of double
stripe patterns where half the sites are nonmagnetic. The results
of these calculations are presented in Fig. 10. Applying Eq. (3),
we obtain the following expression:

E(θ ) − E(0) = 2K2 sin2 θ + 2(J2v − J2O) sin2

(
θ

2

)
. (B3)

In Eq. (B3), the anisotropic splitting of J2 enters as a difference
instead of a sum, so we cannot use the average value J2 here.
However, we also note that the energy difference between
the two plaquette configurations is E(Plaqv) − E(PlaqO) =
2(J2v − J2O), which can be substituted in Eq. (B3) to allow us
to resolve K2. We obtain K2 = 0.418 meV from this fit, but
without J2v , J2O , and J3 available for comparison, it is unclear
what regime of the model in Sec. II C BaTi2As2O is in.
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