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How to Define and Calculate the Degree of Spin Polarization in Ferromagnets
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Different ways to define and calculate the degree of spin polarization in a ferromagnet are
discussed, particularly with respect to spin-polarized tunneling and Andreev reflection at the boundary
between superconductor and ferromagnet. As an example, the degree of spin polarization for different
experiments in Fe and Ni is calculated in the framework of the local spin density approximation and
used to illustrate the differences between various definitions of spin polarization.

PACS numbers: 75.30.–m, 73.40.Gk, 75.90.+w
Although solid state physicists use the notion of a
degree of spin polarization (DSP) of a ferromagnet
(FM) rather often, it is not well defined. While the
total magnetization is uniquely defined as the difference
between the number of spin up and spin down electrons, it
tells us little about how much different spins do contribute
to transport properties. In view of the growing number
of experiments probing spin polarization [1], it becomes
increasingly more important to be able to calculate the
DSP in the framework of the conventional band theory
(and eventually beyond it). Importantly, the DSP can be
defined in several different ways. In order to compare
the calculations with the experimental data it is crucial to
make sure that a proper definition of the DSP is used.
In particular, spin-polarized tunneling in various forms
[1], including Andreev reflection [2], provides valuable
information about the spin dependence of the electronic
structure, but this information may be obscure and not
very useful unless the measurements are backed by the
calculation appropriate for the experiment in question.

Let us consider an extreme example, the so-called half-
metallic magnets. Such systems do not have any electrons
at the Fermi level in one of the two spin channels; they
have 100% spin polarization according to any sensible
definition. On the other hand, for a regular magnetic
metal, which has Fermi surfaces in both spin channels,
it is not obvious a priori how to define the degree of spin
polarization.

The most natural, and probably the most popular
definition is P � �N" 2 N#���N" 1 N#�, where N"�#� is the
density of electronic states (DOS) at the Fermi level,
defined as (h̄ � 1)
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and E�y�kai is the energy (velocity) of an electron in the
band a with spin i (" or #) and the wave vector k. A
typical experiment that can probe PN is spin-polarized
photoemission. This definition of the DSP may be called
“N”-definition, PN , and its usefulness is limited by the
fact that the transport phenomena usually are not defined
by the DOS alone. This is particularly true for materials
which have both heavy d-electrons and light s-electrons
at the Fermi level (e.g., Ni). While the DOS is mostly
defined by the former, the electric transport is primarily
due to the fast s electrons (cf. a semiempirical recipe of
defining DSP via partial s-DOS in transition metals [3]).

Classical Bloch-Boltzmann transport theory [4] lets us
separate the currents of the spin-up electrons and the
spin-down electrons, and to define DSP via the current
densities J"�#� as �J" 2 J#���J" 1 J#�, J"�#� ~ �Ny2�"�#�t"�#�.
Assuming the same relaxation time t for both spins, this
definition leads to the “Ny2” DSP (here and below we set
EF � 0),

PNy2 � ��Ny2�" 2 �Ny2�#����Ny2�" 1 �Ny2�#� , (2)

where �Ny2�"�#� is defined as
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This quantity is sometimes denoted as
° n

m

¢
eff and is

proportional to the contribution of the corresponding
electrons to the plasma frequency (see, e.g., Ref. [4]). If
spin-dependent or spin-flip scattering is present, the total
current in each spin channel depends on the characteristics
of both spin subsystems, and the expression for the DSP
becomes very complicated.

Unfortunately, it is hardly possible to measure J" and J#
separately. A typical experiment involves spin-polarized
tunneling between a FM and another material. In particu-
lar, one can measure tunneling currents separately for both
spin polarizations for a ferromagnet�superconductor con-
tact. The question arises whether the DSP measured in
such a way is PN or PNy2 . To answer this, we start from
the simplest case, a ballistic contact with no barrier, and
neglect mismatch of the Fermi velocities at the contact.
We repeat the original Sharvin [5] derivation, but allow
for arbitrary Fermi surface geometry. Following Sharvin,
we assume that an electron going through the contact ex-
periences the acceleration by the electric field so that its
energy increases by eU. If the field changes the electron’s
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quasimomentum from h̄k to h̄k0, we find that the phase
space for this process is defined at T � 0 by the factor

u�Ek0�u�2Ek� � u�Ek 1 eU�u�2Ek� � eUd�Ek� .
(4)

The fraction of electrons with a given k that can reach
the contact in a unit time is yxA (the contact plane is
perpendicular to x and A is the area of the contact). The
total current is
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where Sx is the area of the projection of the Fermi surface
onto the interface plane. For a Fermi sphere this reduces
to the Sharvin result. Correspondingly, we arrive at the
third, ballistic definition of spin polarization, PNy .

The next simplest model is that of a specular
(d-function) barrier with a ferromagnet�superconductor
Fermi velocity mismatch. Here we need to take into
account, in addition to the �yx�y� factor, a finite barrier
transparency. It depends on the Fermi velocities [6],
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where ys�f� is the Fermi velocity in the superconductor
(ferromagnet), and W is the strength of the barrier,
V �x� � Wd�x� (for a one-band isotropic material W is
related to the parameter Z of Ref. [7] as Z � W�yF).
Tunneling current is thus proportional toZ
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In the large W limit this reduces to �Ny2� and the mea-
sured DSP is PNy2 . However, in the high transparency
limit one cannot give a simple answer.

It was recently suggested [8] that Andreev reflection
at the interface between a FM and a superconductor
(SC) can be used for direct probing of DSP. The
idea is simple: the Andreev reflection can be visualized
as two currents of electrons with the opposite spins
flowing inside the normal metal towards its interface
with a SC. At the interface (more precisely, within the
coherence length from the interface) the two currents
recombine creating the current of Cooper pairs. In
a paramagnet (or antiferromagnet with time reversal
symmetry) both currents are the same, so one observes
in the superconducting state the 100% increase in the net
current over the normal state. de Jong and Beenakker
[8] suggested that in a FM the total Andreev current
is defined by that spin channel where the normal-state
current is smaller, because the excess electrons in the
other channel will not find partners to form pairs with.
This was quantified in Ref. [8] via the number of spin-up
1428
and spin-down conductance channels, which they denoted
as N"�#�, thus arriving at an expression for the ratio of the
current in the superconducting and the normal state as

Is�In � 4 min�N", N#���N" 1 N#� . (8)

The number of conductance channels cannot be directly
evaluated. Besides, this expression can mislead the reader
into a belief that the DSP measured through Andreev
reflection is PN (i.e., defined by the DOS).

Andreev reflection at a FM�SC contact has been re-
cently attracting substantial theoretical interest [9]. This
interest so far concentrated on such aspects as the sym-
metry of the order parameter, Fermi velocity mismatch,
and generalization of the so-called BTK formula [7] onto
spin-polarized case [2,9]. In terms of electronic struc-
ture, however, all the work was limited to the parabolic
bands and/or spherical Fermi surface model. While re-
vealing important fundamental physics, such an approach
is of limited practical importance, because in real materi-
als this approximation is unacceptable. In this Letter we,
on the other hand, focus on the band structure effects in
spin polarization, and in this context we need a better defi-
nition for the “number of conductance channels.”

Comparing Eq. (8) with Eqs. (5) and (7), we observe
that the DSP for Andreev reflection should be defined as
either PNy2 , for a large barrier and/or diffusive current, or
PNy , for low resistance ballistic contacts. This is, how-
ever, only the first approximation, while full expressions
should include Fermi surface averages of more compli-
cated functions of yF . For one particular case, a fully
ballistic (Sharvin) Andreev reflection, an explicit for-
mula, reflecting the physics suggested by de Jong and
Beenakker, can be derived, which is both suitable for band
structure calculations and also quite illustrative.

de Jong and Beenakker treated incoming electrons and
reflected holes as two separate currents. In purely ballistic
regime, however, one has to take into account energy
and momentum conservation (parallel to interface) for
each reflected hole, so that PNy , with its independent
averaging over each spin channel, does not necessarily
correctly describe observable polarization. This may be

FIG. 1. Majority (left) and minority (right) spin band structure
of Fe. The linewidth is proportional to the partial s character
in each state �EF � 0�.
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quantified as follows: Consider an incoming electron
with a momentum k � �kk, kx�, which is reflected as a
hole with the momentum q � �qk, qx� in the other spin
subband; qk � kk, Ek" � Eq#. This fixes for each k
a countable number of wave vectors q satisfying this
condition. For simplicity we will assume now that there
is only one such q and will denote it q̃. This adds an
additional constraint to Eq. (5), so that instead we have,
omitting summation over the band indices a,

I �
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where we introduced a 2D vector a, transformed the d

function of q into a d function of Eq, and introduced
u � ≠Eq�≠q. We can further rewrite Eq. (9) as
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where F�a� � �2p�23
R

yx.0 d�kk 2 a�yxd�Ek� is half
(because yx . 0) the number of crossings of the line
kk � a with the Fermi surface for a given spin. Using
again projections of the Fermi surface for either spin onto
the interface plane, one can define S as the overlap area of
the spin-up and spin-down projections. This current can
be expressed in terms of a spin polarization as in Eq. (8),
thus giving yet another, “ballistic Andreev” definition of
spin polarization, similar to, but not the same as, the “Ny”
definition, Pb.A. fi PNy (they are equal only if the Fermi
surface projection for one spin is entirely contained in that
for the other spin).

So we observe that an experiment would probe different
DSP’s depending on the length scale of the problem, which
is defined by the size of the contact and the length at
which the voltage drops, and how it compares with the
mean free path. The transparency of the barrier can also
influence the measured DSP. In the pure ballistic limit
the DSP is related to the average Fermi velocity, while
in the purely diffusive regime it is defined by the average
squared Fermi velocity [10]. One may ask why DOS is so
often used as a measure of spin polarization, even though
such definition is irrelevant for transport properties. The
answer is that the most common way to perform tunneling
or similar experiments is to follow the details of the contact
conductance as a function of voltage. Probably the most
spectacular and fruitful application of this technique is
the tunneling spectroscopy of superconductors. In such
a case the characteristic scale for the voltage change is the
superconducting gap. The normal state electronic structure
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FIG. 2. The same as Fig. 1, for Ni.

does not change over such a small energy range, so the only
important factor is the variation of the superconducting
DOS with energy. The normal state DOS and velocity can
be assumed constant and factored out. Of course, it is not
the case when two different sheets of the Fermi surface, as
in Ref. [6], or two different spin channels, are compared
(cf. Figs. 1–3).

Importantly, PNy2 , PNy , and PN are entirely different
in real materials (Figs. 4 and 5). The reason is (and
the “s-DOS recipe” works for the same reason) that in
transition metals one can often distinguish the pieces of
the Fermi surface that are predominantly d in character
and the pieces that are mostly s. The former have
low velocity and are responsible for most of the DOS
[Eq. (1)]. The latter have high velocity and provide the
main contribution to Eq. (3). The larger the anisotropy
of the Fermi velocity (angular anisotropy, in principle,
works in the same way as interband one), the larger is
the difference between PNy2 , PNy , and PN .

To illustrate this we present here linear muffin-tin or-
bitals local spin density approximations (LSDA) calcula-
tions of the corresponding quantities in Fe and Ni. It is
instructive to start from the band structure itself (Figs. 1–
3). The “fat” bands in these figures correspond to the
states with substantial sp character. One immediately
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FIG. 4. Degree of spin polarization for Fe, calculated as PN ,
PNy , and PNy2 .

notices a qualitative difference between Fe and Ni: In
the former all bands in both spin channels are heavily
hybridized at the Fermi level, and one cannot convinc-
ingly classify bands as “predominantly sp” and “predomi-
nantly d.” In the latter the d band is so deep that one can
single out an sp-like pocket in the spin-up channel (in
Fig. 2, the band crossing Fermi level between G-H), and
d-like pockets (in Fig. 2, near H). The Fermi surface in
the spin-down channel is entirely sp-like. This is similar
to paramagnetic Pd [11], which is the only 4d metal where
transport properties can be described by the s 2 d scat-
tering model.

In general a large PN may be due to any of the two
reasons: either the areas of the up- and down-Fermi
surfaces are different, while velocities may be similar, or
the areas are not too different, but the Fermi velocity for
one spin channel is much smaller than for the other. In
the former case the additional factors of yF or y

2
F may

change the DSP somewhat, but qualitative changes, or,
in an extreme case, the sign change, are unlikely. If,
however, “light” and “heavy” electrons are present, PN

is dominated by the heavy pockets, and PNy2 by the light
ones, so the two DSP’s are likely to be very different and
possibly have opposite signs.

The first situation is realized in Fe. One indeed can
see that N�E� and �Ny

2
F� �E� behave similarly (Fig. 3).

Correspondingly, the difference between different DSP’s
is only moderate (Fig. 4). On the other hand, in Ni the
DSP essentially drops to zero when the factor y

2
F is in-

cluded. Interestingly, most experimental results [1] indi-
cate that the DSP observed in tunneling is positive and
not too small (.20); in other words, the effect described
above appears to be even stronger in reality than in band
structure calculations. This is also to be expected: LSDA
has a tendency to underlocalize d electrons. For instance,
in Cu the fully occupied d band appears in the calcula-
tions about 0.4 eV higher than in experiments, and is also
too wide. Similarly, LDA underlocalization of the d elec-
trons in Ni leads to an overestimation of the d bandwidth
1430
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FIG. 5. The same as Fig. 4, for Ni. Note the kinks in PN
at E 2 EF 	 60.35 eV, which correspond to the top of the d
bands in the two spin channels (cf. Fig. 3).

and of the exchange splitting (by approximately a factor of
2). As a result, the separation of carriers into sp-like and
d-like in Ni should be even more pronounced compared to
LSDA calculations, and thus the effect of Fermi velocity
on DSP even stronger. This leads, in turn, to the DSP sign
reversal, observed in tunneling experiments. In the calcu-
lation, a similar situation occurs at E 2 EF * 0.1 eV.
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