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A recently discovered magnetic semiconductor Ba1−xKx(Zn1−yMny)2As2, with its decoupled spin and charge
doping, provides a unique opportunity to elucidate the microscopic origin of the magnetic interaction and
ordering in dilute magnetic semiconductors (DMSs). We show that (i) the conventional density functional
theory accurately describes this material, and (ii) the magnetic interaction emerges from the competition of the
short-range superexchange and a longer-range interaction mediated by the itinerant As holes, coupled to Mn
via the Schrieffer-Wolff p-d interaction representing an effective Hund’s rule coupling J eff

H . The key difference
between the classical double exchange and the actual interaction in DMSs is that an effective J eff

H , as opposed to
the standard Hund’s coupling JH , depends on the Mn d-band position with respect to the Fermi level, and thus
allows tuning of the magnetic interactions. The physically transparent description of this material may also be
applicable in more complicated DMS systems.
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Introduction. The carrier-mediated magnetism in dilute
magnetic semiconductors (DMSs) [1–5] offers a versatile
control of the exchange interaction by tuning the Curie
temperature TC through changes in the carrier density, for
example by an applied electric field, photoexcitations, or even
heating [5–8]. However, despite four decades of intensive
work, challenges remain and materials complexity often
hinders theoretical understanding. The origin of magnetic
ordering [1–3,5] and paths to higher TC remain strongly
debated [3,9,10].

Doping with Mn is the usual method for synthesizing DMS.
In the II-VI DMSs Mn2+ is isovalent with the group II ions
and provides only spin doping; the lack of carriers makes
robust ferromagnetism elusive. In the most common III-V
DMSs (the best studied example is GaAs:Mn) this leads to
both spin and carrier doping, but a low solubility limit for
Mn complicates growth and can lead to nanoscale clustering
of Mn ions. This dual role of Mn complicates theoretical
understanding, including whether double exchange [11] is a
relevant mechanism in these systems. The argument against
double exchange is that it requires either different charge
states [12] on Mn and/or the presence of an impurity band [4],
which is a misconception that we will address later in this
Rapid Communication. The coupled spin and charge doping
also creates difficulties in establishing the connection between
host properties and figures of merit [13]. For example, a
prediction of TC > 300 K in GaN:Mn [14] has stimulated
many efforts that turned out to be fruitless [15,16]. Finally, both
substitutional and interstitial Mn are thermodynamically stable
and form during synthesis, which additionally complicates
theoretical treatment.

The recent discovery of the I-II-V and related II-II-V DMS
compounds [17–19] provides a way to overcome these difficul-
ties. In contrast to the II-VI and III-V compounds, in the II-II-V
ones hole and spin doping are controlled separately by substitu-
tion with the group II and transition metal ions, respectively. In
(Ba0.7K0.3)(Zn0.85Mn0.15)2As2, a TC ∼ 220 K [20] is already
higher than ∼ 190 K [3] attained in GaAs:Mn. Unlike GaAs,

both p- and n-doped II-II-V’s can be ferromagnetic [19,21],
and a coercive field ∼ 104 Oe in (Ba,K)(Zn,Mn)2As2 at
2 K [19] is two orders of magnitude larger than in GaAs:Mn.
Apart from potential applications [5], the II-II-V DMSs are
well suited for theoretical study because (1) the Mn2+ is
isovalent with Zn, (2) charge is doped into the Ba sublayer,
spatially and electronically disconnected from the active
(Zn,Mn)2As2 layers, and (3) interstitial locations for Mn ions
are energetically precluded.

A key feature that a theory of II-II-V DMS must capture is
the curious result that while the high-T susceptibility indicates
a high spin state with 5μB/Mn, the low-T ferromagnetic
magnetization corresponds to moments of � 2 μB that depend
on both Mn and K concentration. Reference [19] conjectured
that this may be due to the formation of nearest-neighbor
Mn2 singlets. We will show below that a simple, random
statistical distribution of singlets, as initially suggested, cannot
explain the Mn and K concentration dependency of the mag-
netization, while a distribution in thermodynamic equilibrium
at temperatures consistent with experimental synthesis can.
This finding paves the way towards synthesizing II-II-V DMS
materials with larger magnetizations, important, for example,
in spintronics [5].

In this Rapid Communication, we present density func-
tional theory (DFT) calculations of the energetics of various
Mn pairs in the Zn sublattice. We then extract exchange pa-
rameters and find that ordering changes from antiferomagnetic
(AFM) with no hole doping to ferromagnetic (FM) with hole
doping, with the exception of nearest-neighbor (NN) pairs,
which remain AFM and are energetically preferred. We then
show using thermodynamic arguments that singlet formation
is responsible for the reduced magnetization in Ref. [19]. We
also address the different terminologies used for the effective
magnetic interaction between the Mn d and As p states,
such as double exchange [11], the Zener p-d model [22],
and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[23–25]. This controversy over the exchange mechanism can
be resolved here because this recently discovered class of
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FIG. 1. A cartoon of the interaction between localized spins
mediated by the itinerant carriers depicting a spin-resolved schematic
of the broad As band εitin hybridizing with the narrow Mn bands d↑
and d↓, forming the bands ε±

↑,↓. The effective magnetic coupling Jeff
H

scales with (EF − ε↑)−1. Inset: A schematic of the BaZn2As2 DOS
before (gray lines) and after (black lines) Mn doping. The narrow Mn
states interact with the As states, broadening the DOS and reducing
the indirect band gap.

DMS systems allows one to treat spin and charge doping
independently and the system does not have an impurity band
at the Fermi level nor mixed charge states for Mn. In our view,
contrary to the argument that double exchange is irrelevant and
the Zener p-d model is fundamentally different, the situation
is instead that these all describe the same indirect exchange
interaction [26] and therefore the same basic physics.

Calculations. We employed two DFT implementations: a
pseudopotential method (VASP [27,28]) and an all-electron
method (ELK) [29]. Selected results have been verified against
an alternative package, WIEN2K [30]. A generalized gradient
approximation [31] was used for total energy calculations and
the modified Becke-Johnson functional [32,33] (known to give
correct band gaps for semiconductors) was used for analyzing
the electronic structure. For pure BaZn2As2 we obtain an
indirect gap of 0.25 eV between the � and Z points, and a
direct gap of 0.71 eV at the � point, in agreement with previous
calculations [34] (see the Supplemental Material [35]).

We first analyze the effect of Mn doping
[Ba(Zn1−yMny)2As2,y > 0]. The inset in Fig. 1 qualitatively
illustrates the spin-resolved density of states (DOS) (see the
Supplemental Material [35] for explicit DOS calculations).
There are five Mn bands in each spin, confirming the Mn2+

state. The calculated Mn moment is ∼4.7μB in ELK and
∼4.9μB in VASP [36]. The valence band is predominantly
As p states, and the conductance band Ba states. The As
states hybridize with Mn (Fig. 1), as parametrized by hopping
tpd [37]. As a result, the top of the As spin-majority band (↑
band) is pushed up and the bottom down at a rate of ∼2.8y eV,
so for y = 0.25, there is a shift of 0.7 eV. In contrast, the
bottom of the conductance (Ba) spin-minority band (↓ band)

is pushed down because of the hybridization with unoccupied
Mn states. This provides the magnetic coupling between the
local spin and itinerant carriers [38]. Another manifestation
of the same effect, verifiable experimentally, is that with Mn
doping the indirect gap between the top of the valence ↑
band and the bottom of the conduction ↓ band is reduced and
eventually closes when the doping is large enough (see the
inset of Fig. 1).

Upon hole doping [Ba1−xKx(Zn1−yMny)2As2,x > 0], the
calculated Mn moments are reduced (by 40% at x = 0.4) and
As atoms acquire opposite moments (Ba and Zn remain unpo-
larized). Both effects are caused by the Mn-As hybridization,
while K doping makes the effect visible. Indeed, because of
the upshift of the top of the As band, there are more holes in
its ↑ states, creating negative polarization on As. Furthermore,
because of proximity to the Mn ↑ states, the hybridization of
As holes with them is stronger than with the ↓ states, so holes
carry more Mn ↑-band character and hole doping reduces the
Mn moments.

Next we constructed different supercells, placing Mn pairs
into different substitutional positions. Unlike GaAs:Mn, where
Mn easily occupies interstitials, complicating the theoretical
analysis, in BaZn2As2 this is essentially impossible. The
calculated free-energy penalty for interstitial versus substi-
tutional Mn doping is huge, Fint − Fsub > 2.4 eV/Mn, for
all admissible values of the Zn chemical potential (see the
Supplemental Material [35]).

We now assume a Heisenberg model for the Mn-Mn
interactions at the sites i,j ,

H =
∑

i<j

J ij
x Ŝi · Ŝj , (1)

where the Ŝi,j are the unit vectors in the spin directions.
We can map the calculated energies for different magnetic
configurations onto Eq. (1) and extract the spatial dependence
of the exchange J

ij
x .

Figure 2(a) summarizes J
ij
x for both intraplanar and

interplanar Mn pairs up to seven neighbors for x = 0, 0.2,
and 0.4 hole dopings (for more details, see the Supplemental
Material [35]). We note that the intraplanar and interplanar
results roughly lie on the same universal curve, so we define
Jx(r) ≡ J

ij
x . Without hole doping (x = 0), Jx(r) is AFM for

all pairs and decays strongly with distance, consistent with
superexchange [11,26].

Hole doping drives the system toward ferromagnetism, so
that Jx(r) becomes FM for second and higher neighbors. For
NN pairs, Jx(r) remains AFM even for x = 0.4, but is reduced
threefold. This reduction, along with the second neighbor’s
exchange parameter barely changing sign to become FM for
x = 0.2, reveals that this behavior is due to the competition
between the short-range AFM superexchange and a longer-
range FM interaction.

We now address the puzzling reduction of the net mag-
netization M compared with the local Mn moments. We
verified that even for x = 0.4 doping that the NN exchange
parameter is AFM, such that NN Mn pairs form a singlet. Let
us first assume that Mn dopants are randomly distributed in
the Zn lattice and estimate the magnetization reduction. If we
neglect clusters of three or more Mn atoms (i.e., assuming
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FIG. 2. (Color online) (a) The exchange coupling Jx(r) as a
function of distance between Mn pairs for different hole dopings
x. (b) The dependence of the reduced magnetization due to singlet
formation on hole doping. The experimental points are from Ref. [19].
The solid lines are the reduced magnetization when Mn singlet
formation is in thermodynamic equilibrium at 500 K, while the
dashed-dotted lines are the reduced magnetization for a random
distribution of Mn atoms. The light gray, dark gray, and black lines
correspond to y = 0.05, 0.10, and 0.15, respectively.

y � 1), we obtain Mtheor(x,y) = M(x)(1 − y)4. Depending
on x, M(x) ≈ 3–5μB, and we can interpolate M(x) using our
results. Figure 2(b) shows Mtheor(x,y) for three values of y

(dashed-dotted lines) and compares it with the experiment
of Ref. [19]. While there is some qualitative agreement,
the magnetization suppression is noticeably underestimated,
especially for small x.

Our calculations also indicate an energetic preference for
NN Mn pairs to form. This, along with the variation in
experimental Mn moments, leads us to conclude that the
suppression is sensitive to sample preparation and hence the
Mn distribution is not entirely random. To quantify this, we
use the calculated energy differences between the AFM NN
pair and a remote FM pair: �E(x) ∼ 185, 80, and −30 meV,
for x = 0, 0.2, and 0.4, respectively. We can now evaluate the
free energy using these values and the combinatorial entropy
(see the Supplemental Material [35]) to obtain the moment
reduction r = (

√
β2 + 16βy − β)/8y, correct in the y � 1

limit, where β = exp[−�E/T ]. Interpolating the calculated
�E(x) and M(x), and using as the effective synthesis
temperature 500 K [39], we get the solid lines shown in
Fig. 2(b). Given the variation in the experimental data and the
lack of any adjustable parameter, the agreement is excellent. It
is worth noting that it is not well accepted that DFT can be used
to make useful predictions for DMS systems [4,12,40], so this

success demonstrates that DFT analysis has a strong role to
play in understanding this recently discovered class of systems.
From these calculations we can predict that quenching, rather
than slow cooling, may be advantageous for enhancing the
magnetization per Mn, which can be as high as 3μB.

Discussion. We determined that the magnetic ordering is a
combination of a short-range AFM interaction and a longer-
range FM interaction. We identify the AFM interaction as
superexchange, which is compatible with Mn being in the
high-spin S = 5/2 state, and is accounted for in DFT. The basic
picture of superexchange is that there is an effective amplitude
t̃dd for a d electron to hop from one Mn to another. For NN
pairs t is large, as only one intermediate hop to an As p state is
required, and in addition there is some direct overlap between
Mn dx2−y2 orbitals. If the alignment is FM, hopping leads to
a splitting of the occupied Mn states with no gain in kinetic
energy. For an AFM alignment, where hopping proceeds from
occupied to unoccupied states, this leads to a downshift of the
occupied Mn states by 2t̃2

dd/U, where U is the energy cost of
flipping the spin of one d electron. This cost in DFT is ∼5JH ,

where JH ∼ 0.8 eV is the Hund’s rule coupling in Mn (in the
Hubbard model U comes from the Coulomb repulsion and may
be larger than 5JH ). This creates the superexchange coupling
JSE ≈ 2t̃2

dd/U . For farther neighbors the hopping probability
involves multiple hoppings via high-lying Zn states and rapidly
decays.

We will argue now [41] that the long-range FM ordering
is a version of double exchange (DE) [11], but first we give
an overview of the DE interaction. The original model [22]
assumed a strong Hund’s coupling between localized spins
and itinerant electrons from the same atomic species, which
in practice is due to noninteger valency, and has led to the
misconception that DE itself requires mixed valency. Instead,
the only real requirement is that the interaction of the local
spins with itinerant electrons be described by an operator of
the form JH Ŝ · σ̂ . Note that the nature and sign of JH does not
matter, because in the end JH is squared.

The other essential ingredient of DE was the itinerant
carriers delocalizing to lower their kinetic energy, which
preferred a FM arrangement of the local spins. In the original
model [22] the strong coupling limit JH → ∞ was assumed in
order to simplify the calculations, but that was not a necessary
condition for DE. The DE picture, that of itinerant electrons
adjusting their spin density to the background of local spins
with some configurations being more energetically preferable,
is simply the standard spin response theory described in the
weak coupling regime by the linear spin susceptibility χ (q).
In general, χ (q) depends on the electronic structure and
Fermi surface geometry, so again for simplicity it is often
approximated by its value at the � point, χ (q) = χ (0) =
N↑(0), which is not a bad approximation when all sites contain
a local moment. Again, we note that this approximation is
not essential when defining DE. Finally, if the concentration
of itinerant carriers is small such that 2π/kF 
 d (d is the
average distance between spins), then the response is FM for
all relevant distances. For larger d the response decays rapidly
and might acquire an oscillatory part, which depends on the
Fermi surface. This is known as the RKKY interaction [23–25].

To review, the general picture is that the DE implies a local
spin interacting with an itinerant sea of carriers, which itself
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responds by adjusting its spin density to align with the other lo-
calized spins, and then another of these localized spins interacts
locally with the sea. There are two local exchange processes
involved (see the diagram in Fig. 1), hence DE. In other words,
DE and RKKY are two different sides of the same coin.

With this clarified, we now turn to the details of the effective
exchange interaction between the local Mn spins and itinerant
As holes. As discussed, in DFT the As electrons at the Fermi
level hybridize with Mn and acquire spin splitting (see Fig. 1).
The upshift of ↑ states at the Fermi energy is 5Zt2

pd/(EF − ε↑)
(the bottom of the As band shifts down), where Z = 4 is the
Mn-As coordination number. Here the Mn ↓ states are located
at ε↓ > EF , and the ↑ states at ε↑ < EF , and, for simplicity,
the hopping tpd is assumed to be the same for all Mn d states.
Similarly, the ↓ bands are shifted down by 5Zt2

pd/(ε↓ − EF ).
This yields an effective Mn spin splitting and thus an effective
Hund’s rule coupling of

J eff
H = −Zt2

pd (ε↑ − ε↓)

(EF − ε↑)(ε↓ − EF )
= −Zt2

pdU

(EF − ε↑)(ε↑ + U − EF )
.

This is formally the same as the Schrieffer-Wolff trans-
formation frequently used for Kondo systems [11,38]. The
DMS literature typically refers to this as the p-d model. We
emphasize that the p-d model [26] is not an alternative to DE,
but a modification of the latter, where JH is replaced with J eff

H .
The RKKY theory is in the same spirit, modifying the same
physics in a different way by lifting the q = 0 approximation,
in weak coupling, and using a q-dependent susceptibility. In
all cases the effective coupling appears as a pair of vertices
attached to a polarization bubble as in Fig. 1, and so the sign
of J eff

H is irrelevant.
Unlike JH, J eff

H is, in principle, tunable by changing the U

and the position of the occupied d-level ε↑. In our DFT calcula-
tions EF − ε↑ ∼ U/2, the least advantageous regime. We sug-
gest that substituting As with Sb or P may shift ε↑ up or down,
yielding a EF − ε↑ closer to U/5 or 4U/5 and increasing J eff

H

by ∼ 60%. Assuming that other parameters remain unchanged,
an enhancement of exchange coupling could increase TC by
a factor of 2.5, suggesting a path to room-temperature FM
ordering.

Conclusions. We have shown, based on our first principles
calculations, that ferromagnetism in (Ba,K)(Zn,Mn)2As2 is a
result of the interaction of localized Mn spins with itinerant
As holes that have a ferromagnetic spin response for all
relevant Mn-Mn distances, except for nearest neighbors. This
is a variant of the classical double exchange with the simple
modification of replacing the Hund’s coupling JH by the
effective p-d coupling J eff

H .
The nearest-neighbor magnetic interaction is a combination

of superexchange that is weakened, but not overcome, by the
ferromagnetic double exchange, and for a K concentration
less than ∼0.35 it is energetically advantageous for Mn to
form nearest-neighbor singlet pairs. Our calculations describe
this process quantitatively and predict a net magnetization
reduction from the ideal 5μB/Mn, in excellent agreement with
experiment.

While our findings have focused on the
(Ba,K)(Zn,Mn)2As2 compound, we believe that the
transparent and simple physical picture that has emerged from
studying this unique system is more general and applicable
to other DMS compounds. Our theory and calculations
are uncomplicated by multiple chemical issues common to
other families of DMSs. Indeed, the excellent agreement with
experiment confirms that DFT should be considered a valuable
tool for understanding DMS systems. Thus, this recently
discovered generation of DMSs is an exciting playground for
experimentalists and theorists alike and deserves further study
to elucidate the intrinsic physics of DMS materials.
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Additional computational details-A schematic of the
crystal structure of BaZn2As2 is depicted in Fig. 1(a).
BaZn2As2 belongs to space group I4/mmm, and for our
calculations we used the experimental lattice constants
a = 4.131 Å and c = 13.481 Å. These constants are
taken from the experiment in Ref. [1] and correspond to
the co-doped (Ba,K)(Zn,Mn)2As2 system. The Wyckoff
sites for the atoms are 2a, 4d, and 4e for Ba, Zn, and
As respectively, and the internal parameter for As is set
to zAs = 0.3645. For all supercells of BaZn2As2 with
Mn pairs substituted for Zn atoms, we relax the internal
atomic positions in VASP for the ferromagnetic (FM) and
antiferromagnetic (AFM) magnetic configurations. The
a and c lattice parameters are not relaxed, as the dop-
ing in our system is light and in an experimental system
would have a negligible effect on these parameters.

The virtual crystal approximation (VCA) was used to
simulate hole-doping (in experiment it is the substitu-
tion of K for Ba), and the implementation depends on
the code used. The VCA in ELK is implemented in the
standard way, by introducing a fictitious atom at the Ba
sites which has a fractional charge between that of Cs
and Ba, such as Z = 55.6. For VASP, the VCA corre-
sponds to a weighted average of the pseudopotentials for
Ba and K, such as 80% Ba and 20% K. The electronic
structure generated using this method is consistent with
the electronic structure obtained using the VCA in ELK.
We note that atomic relaxation is not possible when us-
ing the VCA in VASP, so we take the relaxed structure
from the Ba(Zn,Mn)2As2 supercells. The use of the VCA
in both ELK and VASP is reasonable as there are no Ba
states near the Fermi energy and this approach has been
used successfully on the similar compound BaMn2As2 [2]
as well as in isostructural Fe-based superconductors.

Electronic structure-The band structure of pure
BaZn2As2 calculated using ELK and the modified Becke-
Johnson (mBJ) functional [3, 4] is in Fig. 2. The band
character is indicated in the legend. The valence band
maximum is primarily As states and the conduction band
minimum is primarily Ba states with a small amount of
Zn character. Finally, the LAPW electronic structure for
pure BaZn2As2 is in excellent agreement with that gener-
ated by the pseudopotential method also using the mBJ
functional.

The density of states (DOS) for BaZn2As2, obtained
using VASP and the mBJ functional, is shown in Fig. 3,
where the total DOS and the Mn partial DOS are both
shown. The partial DOS of Mn confirms that it is in the
Mn2+ state.

Details of calculating J ij
x -The Heisenberg Hamiltonian,

H =
∑
i<j

J ij
x Ŝi · Ŝj , (1)

defines the exchange parameter J ij
x for Mn-Mn pairs

placed in the Zn lattice. The Mn atoms are substituted
in the two-dimensional Zn lattice as shown in Fig. 1(b),
which for a Mn atom fixed at site 0 indicates which other
site is the 1st nearest neighbor, 2nd nearest neighbor,
etc. We constructed supercells of different dimensions
and placed two Mn atoms in the Zn lattice at different
sites. Let us define the 1× 1× 1 unit cell to be the con-
ventional 10 atom cell with dimensions a×a×c with two
Zn layers as depicted in Fig. 1(a). The dimensions of the
supercells we used in our calculations are then summa-
rized in Table I along with the Mn doping level y from
substituting two of the Zn atoms with Mn atoms.

To extract the exchange parameter, we calculated the
energy difference EAFM − EFM for an AFM and FM
alignment of the Mn moments in VASP for the various
supercells. These calculations were carried out for hole-
doping concentrations of x = 0.0, x = 0.2, and x = 0.4 in
the VCA. The intraplane and interplane neighbors used
in our calculations for each supercell dimension are sum-
marized in Table I, which refer to the neighbor pairings
indicated in Fig. 1(b). The energies for the intraplane
FM and AFM alignments in the 3 × 3 × 1 supercell are
reported in Table III for the different hole-doping levels.
Finally, the magnitudes of the extracted exchange pa-
rameters and their standard errors for the different hole-
doping levels are summarized in Table II. Note that the
listed errors do not reflect inaccuracy of the DFT cal-
culations, but rather the standard errors of the fitting
procedure. Physically, it corresponds to the Heisenberg
model not being an entirely accurate description of the
exchange interaction in metallic systems.

Mn-Mn pair distribution-In the main text we discuss
that the reduction of the measured moment of Mn in
experiment can be understood using a thermodynamic
argument. In short, a statistical calculation of the en-
tropy of the chance of one Mn atom having another Mn
for a neighbor in the thermodynamic limit yields an ex-
pression for the reduction of the total magnetization per
Mn atom. Here, we explicitly derive this expression.

Let there be m Mn atoms that occupy sites on a two-
dimensional square lattice with n sites. The total number
of bonds in this system is 2n and there are k Mn-Mn
dimers. The total number of possible ways to populate
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FIG. 1. (Color online) (a) Schematic [5] of the crystal structure of the tetragonal ThCr2Si2 phase of BaZn2As2. (b) A schematic
view of the two-dimensional Zn planes. The labels indicate the neighbor numbers with one Mn fixed at site 0 and another
placed at sites 1-7. The nearest neighbor interaction connects sites 0 and 1, the 2nd nearest neighbor interaction connects sites
0 and 2, and so on. For the interplane interactions, the nearest interplane neighbor interaction connects site 0 in one plane
with site 0 in the neighboring plane, the 2nd nearest interplane neighbor interaction connects site 0 in one plane with site 1 in
the neighboring plane, and so on.

FIG. 2. (Color online) The character-resolved band structure of BaZn2As2 calculated using the mBJ functional.
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FIG. 3. The total density of states of Ba(Zn0.875Mn0.125)2As2 and the partial density of states for Mn calculated using the
mBJ functional.

TABLE I. The supercells dimensions and intraplanar and interplanar Mn-Mn configurations used for fitting to Eq. (1). Each
neighbor number entry represents two calculations, one for ferromagnetic alignment and another for antiferromagnetic alignment
of the Mn atoms. The doping level y for two Mn atoms placed in the supercells is also reported.

Dimensions y Intraplane Neighbors Interplane Neighbors

2 × 2 × 1 0.06250 1, 2, 3, 4, 5 1, 2, 3, 4, 6

3 × 3 × 1 0.02778 1, 2, 3, 4, 5, 6, 7

4 × 2 × 1 0.03125 1, 2, 3, 6, 7

2 × 2 × 2 0.03125 1, 2, 3, 4, 5

these 2n bonds with k dimers is(
2n

k

)
=

(2n)!

k!(2n− k)!
. (2)

This leaves m− 2k Mn atoms to populate the remaining
n− 2k sites, and the total number of ways to do this is(

n− 2k

m− 2k

)
=

(n− 2k)!

(n−m)!(m− k)!
. (3)

The total combinations for decorating the square lattice
is the product of Eqs. (2) and (3), which we define as W .
This is correct only in the dilute regime m � n, as we
neglect instances where any of the remaining (n−2k) Mn
atoms ends up next to a dimer, as well as the possibility
that two dimers border each other at a right angle.

We now approximate the factorials using Stirling’s for-
mula,

n! ≈
√

2πn(n/e)n, (4)

take the logarithm of W and expand in 1/n (again, pos-
sible in the dilute limit). The resulting entropy is

S = ln

(
2k−1

(
k
e

)−k
em−kek−m

(
m−2k

e

)2k−m
nm−k

π
√
k
√
m− 2k

)
.

(5)

We now substitute m = yn, k = κn, and write down the
free energy F per site,

−F
T

= −κ∆E

T
+
S

n
, (6)

where ∆E is the energy gained by forming a dimer com-
pared with two isolated Mn atoms. We now minimize
the free energy with respect to the number of dimers: we
expand the logarithm again in 1/n, take the derivative
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TABLE II. The distances between Mn-Mn pair configurations and the magnitude and standard error of the exchange constants

for both intraplanar (J
‖
x) and interplanar (J⊥

x ) couplings. The pairs are reported by their neighbor number as shown in the
diagram in Fig. 1(b)

J
‖
x(r‖) J⊥

x (r⊥)

(meV) (meV)

# r‖ (Å) x = 0.0 x = 0.2 x = 0.4 r⊥ (Å) x = 0.0 x = 0.2 x = 0.4

1 2.921 200.7 ± 1.4 109.1 ± 8.7 58.9 ± 8.7 6.741 28.7 ± 0.2 −10.1 ± 2.7 −29.2 ± 1.3

2 4.131 81.7 ± 1.5 −6.2 ± 9.2 −44.1 ± 11.7 7.346 5.7 ± 0.2 −17.0 ± 2.7 −24.0 ± 1.3

3 5.842 −4.3 ± 1.0 −24.8 ± 6.0 −18.5 ± 6.0 7.906 2.8 ± 0.2 −10.4 ± 2.7 −13.9 ± 1.3

4 6.532 4.5 ± 1.1 −29.5 ± 6.6 −35.8 ± 6.5 8.920 −0.3 ± 0.1 −3.9 ± 1.4 −5.2 ± 0.7

5 8.262 9.3 ± 0.6 −14.7 ± 3.6 −27.3 ± 3.5 9.386 0.9 ± 0.3 −1.9 ± 3.0 −6.2 ± 1.5

6 8.763 0.6 ± 1.0 −6.0 ± 6.2 −7.3 ± 6.1 10.663 0.1 ± 0.07 −1.0 ± 0.8 −3.3 ± 0.4

7 9.237 1.4 ± 0.9 −6.8 ± 5.3 −5.0 ± 5.5

TABLE III. The calculated energies of the 3 × 3 × 1 supercell for intraplane Mn-Mn pair configurations with ferromagnetic
(FM) and antiferromagnetic (AFM) alignment. The pairs are reported by their neighbor number as shown in the diagram in
Fig. 1(b). The three pairs of columns are the three different hole-doping levels used for x.

x = 0.0 x = 0.2 x = 0.4

(eV) (eV) (eV)

# FM AFM FM AFM FM AFM

1 -626.8359 -627.2429 -428.9581 -429.1655 -322.1117 -322.2600

2 -626.9715 -627.1397 -429.0902 -429.0730 -322.2467 -322.1584

3 -627.0589 -627.0548 -429.1219 -429.0755 -322.2930 -322.2575

4 -627.0479 -627.0605 -429.1160 -429.0636 -322.2854 -322.2248

5 -627.0427 -627.0706 -429.1178 -429.0587 -322.2859 -322.2181

6 -627.0567 -627.0613 -429.1129 -429.1018 -322.2844 -322.2843

7 -627.0571 -627.0634 -429.1134 -429.0890 -322.2911 -322.2754

with respect to κ, and get

ln
[(

2e∆E/T (−2κ+ y)
2
)
/κ
]

= ln
[(

2β−1 (−2κ+ y)
2
)
/κ
]

= 0, (7)

where β = e−∆E/T . Solving for κ, we get κ = (β + 8y −√
β2 + 16βy)/16.
In the main text we established that nearest-neighbor

dimers are AFM, and therefore each dimer results in the
cancellation of two Mn moments from the total magne-
tization. Therefore the reduction coefficient (observed
magnetization vs. maximum possible) can be defined as

r = 1− 2β/y = (
√
β2 + 16βy − β)/8y. (8)

There are a couple of limiting cases that we should
note. The first is the case of infinite energy gain, when
β = 0. As expected, r = 0 as all Mn atoms are paired
into dimers. The second limiting case is that of no en-
ergy gain, when β = 1. In this case we should expect
the solution to coincide with the “stochastic” solution,
r = (1− y)4 + 4y3(1− y), which is the computed proba-
bility that a given Mn atom forms, stochastically, a dimer
with one or a tetramer with three neighboring Mn atoms

(both combinations will cancel the involved Mn atoms’
contribution to the total magnetization). Our solution
in Eq. (8), derived in the limit y � 1, is correct to
the lowest order in y, yielding r = 1 − 4y + O(y2). In
the next order our formula underestimates the reduction,
r = 1− 4y + 32y2 +O(y3) vs. r = 1− 4y + 4y2 +O(y3),
and for y = 0.05 the error is less than 5%.

Stability of interstitial Mn impurities-A common issue
with the III-V dilute magnetic semiconductor compounds
is that Mn doping can lead to both interstitial and sub-
stitutional impurities. Here we show that there is a large
energy penalty for interstitial impurities in BaZn2As2 us-
ing the methodology developed by Jenkins [6].

Let µbulk
BaZn2As2

be the bulk chemical potential of

BaZn2As2, µbulk
BaAs2

the bulk chemical potential of a hy-

pothetical structure of BaAs2, and µbulk
Zn the bulk chemi-

cal potential of Zn. The potentials of the constituents of
BaZn2As2 are subject to the constraint

µbulk
BaZn2As2 = 2µZn + µBaAs2 . (9)

The constituents of BaZn2As2 are also related to their
respective bulk chemical potentials in the following in-
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FIG. 4. Schematics [5] of the supercell configurations of BaZn2As2 used to calculate the relative energetic stability of a
substitutional vs. interstitial Mn impurity. (a) The relaxed structure of Ba8Zn15MnAs16 where Mn was substituted for a Zn
atom. (b) The relaxed structure of Ba8Zn16MnAs16 where the Mn interstitial is in the empty space between neighboring As-Zn
planes.

equalities

µbulk
BaAs2 > µBaAs2 , (10)

µbulk
Zn > µZn. (11)

It follows from combining Eqs. (9), (10), and (11) that
µZn is subject to the following constraint,

µbulk
BaZn2As2

− µbulk
BaAs2

2
< µZn < µbulk

Zn . (12)

In practice the bulk potentials are equivalent to the DFT
energy, so to find them we calculate the total energy of
bulk BaZn2As2, bulk Zn, and bulk BaAs2 [7].

Next we write down the Gibbs free energy for two Mn
impurity scenarios. Let Gsub be the Gibbs free energy
and Esub be the calculated energy of the supercell with
a substitutional impurity, and let Gint be the Gibbs free
energy and Eint be the calculated energy of the supercell
with an interstitial impurity. For our calculations, the

chemical formula for the substitutional impurity super-
cell is Ba8Zn15MnAs16 and for the interstitial impurity
it is Ba8Zn16MnAs16, see Fig. 4 for a schematic repre-
sentation. The following then is the Gibbs free energy of
the supercells with either a substitutional or interstitial
impurity:

Gsub = Esub − 15µZn − 8µBaAs2 − µMn (13)

Gint = Eint − 16µZn − 8µBaAs2 − µMn (14)

It follows then that the difference in Gibbs free energy
between the substitutional and interstitial configurations
is given by

Gsub −Gint = Esub − Eint + µZn (15)

Using VASP, we calculate µbulk
BaZn2As2

= −16.98 eV/f.u.,

µbulk
BaAs2

= −13.60 eV/f.u., µbulk
Zn = −1.26 eV/Zn, Esub =

−143.64 eV, and Eint = −142.55 eV. We find that the
bounding for Zn is −1.69 eV < µZn < −1.26 eV and that
Gsub − Gint = −1.09 eV + µZn. Based on this analysis,
there is a substantial energetic preference of −2.6±0.2eV
for the substitutional impurity.
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