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The concept of a charge density wave �CDW�, which is induced by Fermi-surface nesting, originated from
the Peierls idea of electronic instabilities in purely one-dimensional metals and is now often applied to charge
ordering in real low-dimensional materials. The idea is that if Fermi surface contours coincide when shifted
along the observed CDW wave vector, then the CDW is considered to be nesting derived. We show that, in
most cases, this procedure has no predictive power, since Fermi surfaces either do not nest at the right wave
vector or nest more strongly at the wrong vector. We argue that only a tiny fraction, if any, of the observed
charge ordering phase transitions are true analogs of the Peierls instability because electronic instabilities are
easily destroyed by even small deviations from perfect nesting conditions. By using prototypical CDW mate-
rials NbSe2, TaSe2, and CeTe3, we show that such conditions are hardly ever fulfilled and that the CDW phases
are actually structural phase transitions driven by the concerted action of electronic and ionic subsystems, i.e.,
a q-dependent electron-phonon coupling plays an indispensable part. We also mathematically show that the
original Peierls construction is so fragile that it is unlikely to apply to real materials. We argue that no
meaningful distinction between a CDW and an incommensurate lattice transition exists.
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I. INTRODUCTION

One common misconception in modern solid state physics
is that the Fermi surface �FS� nesting is always or nearly
always responsible for a charge density wave �CDW�. While
many materials experience a structural or magnetic transition
with a wave vector that is incommensurate or badly com-
mensurate with the high-symmetry phase, and while, in some
cases, a visual inspection of the FS seems to reveal nesting
parts with roughly the same wave vector, a quantitative
search aimed at finding a nesting-driven instability at the
experimental CDW vector on the level of one-electron ener-
gies practically always fails.1–5 This failure is a symptom of
a larger misconception about CDWs, specifically, that they
are the result of a purely electronic instability along the lines
of the Peierls instability in one dimension, and an even big-
ger misconception that the structure of the electronic suscep-
tibility in the reciprocal space can be revealed by inspecting
the Fermi surface alone, without analyzing the high-energy
electronic excitations.

In the Peierls picture, lattice distortion is a secondary ef-
fect that arises in response to an electronically driven charge
redistribution that would occur regardless of whether or not
the ions subsequently shift from their high symmetry posi-
tions. In real materials, the electronic and ionic instabilities
always occur simultaneously. Computational attempts to sta-
bilize a CDW without allowing the ions to move have failed
in all cases we are aware of, most particularly for a proto-
typical CDW metal NbSe2. We will show that the concur-
rence of the two transitions is not a coincidence but arises
from the fact that CDW formation relies on the lattice dis-
tortion as an essential element and not the reverse. The ne-
cessity of a strong q-dependent electron-phonon coupling in-
dicates that Fermi surface nesting, which is a purely
electronic effect, may help CDW formation, but it cannot be
the only driving force behind the CDW phenomenon.6

In the literature, the term CDW is used in two different
senses. In some cases, a structural transition with an incom-

mensurate or a long period is termed as CDW, regardless of
its origin, while in other cases, the term CDW is reserved for
Peierls-type instabilities that occur due to a divergency in the
real part of the electronic susceptibility, such that the elec-
tronic subsystem would be unstable per se, even if the ions
were clamped at their high symmetry positions. We choose
the latter definition for two reasons: first, many accepted
CDW materials actually exhibit a commensurate CDW
phase,7 and second, it allows for a distinction between a
general incommensurate lattice transition �ILT� and a CDW.
Moreover, the archetypal CDW, i.e., the one-dimensional
�1D� Peierls transition in a half-filled band, is commensurate,
with just a doubled unit cell. To fit the definition of a Peierls
system �and, therefore, of a CDW, for the purposes of this
paper�, a system must satisfy several requirements. �a� There
must be substantial nesting of the FS. Note that a quantitative
measure of the FS nesting, sometimes called the “nesting
function,” is nothing but the low-frequency limit of the
imaginary part of the bare electronic susceptibility, �0��q�, in
the constant matrix element approximation.8 This must, cor-
respondingly, peak at the CDW wave vector. �b� The nesting-
derived peak must carry over into the real part of the suscep-
tibility, �0��q�, at the same wave vector because it is ���q�
that defines the stability of the electronic subsystem. �c� The
peak in �0��q� must translate into a divergence in the full
electronic susceptibility to cause the electronic subsystem to
be unstable even without any ionic shifts. �d� All phonons
must soften at the CDW wave vector, not only the one cor-
responding to the mode that eventually gives rise to the ob-
served CDW �except maybe a few that cannot couple to this
electronic instability for a particular symmetry reason�. With
respect to the final point, we are not aware of any material in
which such softening for multiple modes has actually been
observed, although in theory it is unavoidable.9 In fact, we
intend to show that this definition as a whole is not fulfilled
in real systems and, therefore, aside from convention, there is
nothing to distinguish a CDW from a structural phase tran-
sition.
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The issue is even more confounded by the fact that the
words “nesting” and “Peierls transition” are also differently
interpreted by different researchers. We use the first term in
its literal sense: Fermi surface parts are nested if, when rig-
idly shifted, they coincide with other Fermi surface parts.
Some authors, appreciating the fact that this is not sufficient
for a peak in ���q�, distinguish between “real nesting,”
which exists not only at zero frequency but also within some
finite range of transition energies �as we discuss later in con-
nection with CeTe3, this imposes an additional constraint on
the Fermi velocities�, and “false nesting,” which has unfavor-
able Fermi velocities. As for the second term, there is a ten-
dency to use the Peierls transition as a synonym for dimer-
ization �e.g., dimerization in VO2 is often called a Peierls
transition10�. Again, we adhere to a more strict definition that
reserves this nomenclature for a transition driven by a low-
ering of one-electron band energy caused by the opening of a
gap, as in the original Peierls model. Note that the doubling
of the unit cell may occur via dimerization, but it can also
easily occur via zigzagging of the atomic chain or via an
even more complicated pattern.

In Sec. II, we consider the classical 1D Peierls transition,
for which the conditions that are listed above are fully satis-
fied and in which FS nesting is, indeed, expected to give rise
to CDW formation �the results for a nested two-dimensional
�2D� system, such as the nearest neighbor one-band TB
model, are qualitatively the same�. We will demonstrate how
fragile this construction is even in 1D since a CDW of fully
electronic origin is exponentially weak. Furthermore, we will
show how rather small deviations �on the order of what is
expected in real materials� from the perfect model are suffi-
ciently strong to suppress FS nesting-driven CDW formation.
In Sec. III, we perform density functional calculations of
several real materials that are commonly considered to be
CDW systems and show that even in these canonical sys-
tems, electron-phonon coupling and not nesting is at the
heart of the CDW phenomenon. For a clear understanding in
both of the following sections, it is necessary to point out
that an electronic CDW instability is not induced by a diver-
gence in the imaginary part of susceptibility, ���q�, which is
the function that reflects the FS topology and can be easily
measured experimentally by neutron scattering. Instead, it is
the real part, ���q�, which must diverge in order to trigger an
electronic CDW. Unfortunately, ���q� is difficult to experi-
mentally map �however, see Ref. 11�. We write the two parts
in the constant matrix element approximation as

���q� = �
k

f��k� − f��k+q�
�k − �k+q

, �1�

lim
�→0

���q,��/� = �
k

���k − �F����k+q − �F� . �2�

Since ���q ,�→0� is easier to calculate, it is often presented
in first-principles studies as a quantitative test of the FS nest-
ing �which it is� and/or as a gauge of a tendency to CDW
formation �which it is not�.12–17

II. MODEL PEIERLS SYSTEM

In the 1D Peierls system, we have a parabolic band of
noninteracting particles in a periodic external potential that
disperses as E=k2 �in Ry units� and has a particular Fermi
vector �=kF

2 , where � is the chemical potential. One as-
sumes that the band is half filled so that the first reciprocal
lattice vector G=2� /a=4kF. Peierls was the first to point out
that such a system is formally unstable against any doubling
of the unit cell because it creates an additional potential with
a nonzero component at q=2kF, V�q��0, and opens a gap.
He emphasized that a gain in the one-electron energy de-
pends on the amplitude of the lattice distortion logarithmi-
cally �as u2 log u�, while the elastic energy is normally qua-
dratic, and therefore, the ground state would always
correspond to a nonzero distortion. It appears that actual nu-
merical calculations do not necessarily find a distortion.18

Ashkenazi et al.18 argued that when the electronic suscepti-
bility is nonanalytic, the elastic energy may be nonanalytic as
well and, therefore, it is not guaranteed that for an infinitesi-
mal distortion, the one-electron energy will be larger. This
same point can be argued as an inability to cleanly partition
the total energy into the one-electron energy and the elastic
energy in a real system, where the particles in question are
interacting electrons. Instead, the full expression for the total
energy �in density functional theory �DFT�, for instance�
must be analyzed. Following Ref. 18, we can write, by using
implicit matrix notation �in real or reciprocal space�, the
change in energy arising from the nuclear displacement in
terms of the change in the potential of the nuclei, �Vext, and
the induced density change �n as

�Etot = − �1/2��n�−1�n , �3�

�n = ��Vext, �4�

� = �0/� , �5�

� = 1 − vi�0 = �1 + vi��−1, �6�

�Etot = − �1/2��Vext��Vext, �7�

=− �1/2��Vext�0�1 − vi�0�−1�Vext, �8�

where vi is the total DFT interaction, including the Coulomb
and exchange-correlation kernel. Note that we use a sign
convention, such that in a stable system, �0	0. Neglecting
the matrix character of these equations, we immediately ob-
serve that a divergence in �0, as found by Peierls, is by itself
insufficient to cause an instability, since the total susceptibil-
ity is bounded by −vi and does not diverge. This is not nec-
essarily true if the matrix character �or local fields� is taken
into account and such an inclusion results in a complicated
formula for the phonon frequencies known as the Pick–
Cohen–Martin formula, as discussed in Ref. 19. However,
without these considerations, this result demonstrates that
there is no direct relation between the Peierls instability in a
system of noninteracting particles and CDWs in real sys-
tems. The same point can be made by using a linear response
approach;20 an interacting half-filled electronic system is

M. D. JOHANNES AND I. I. MAZIN PHYSICAL REVIEW B 77, 165135 �2008�

165135-2



stable against an infinitesimal perturbation. A distortion can
only be stable if it is finite and if e-ph coupling is larger than
a critical value.

This is already a very serious reservation but, nonetheless,
it is instructive to step back and investigate the “classical”
Peierls instability in a noninteracting system. There is no
question that the susceptibility of this system is logarithmi-
cally divergent, but there are interesting and important ques-
tions left to ask. First, is this divergency robust with respect
to small deviations from a “perfect nesting,” as is always the
case in real materials? Second, where is the energy gain as-
sociated with this instability collected? That is, can electrons
away from the Fermi surface be effectively neglected or
must the effects of the lower filled states be taken into ac-
count?

The standard expression for the real part of susceptibility
reads

���q� =
1

q
ln�q − 2kF

q + 2kF
� . �9�

This expression is normalized to 1 /kF at q→0 �the overall
scale is not important at the moment� and has a very weak,
logarithmic divergency at q= 
2kF. To illustrate just how
weak it is, we assume a relaxation rate �, which corresponds
to the Drude relaxation rate in optics, and recalculate ���q�.
The new result reads

���q� =
1

2q
ln��2 + q2�q − 2kF�2

�2 + q2�q + 2kF�2� . �10�

The divergency has been reduced to merely an enhancement
of ���
2kF� over ���0� by a factor of ln�1+ 64�2 / �2 � /4. For a
typical � of the order of 0.1–0.2 eV, this enhancement is by
a factor of 2–2.5. One can also add that at any finite tem-
perature, even without relaxation, ���
2kF� /���0�=ln� 2kF

2

−kT / kT � /2� ln� 2� / kT � /2. For typical Fermi energies and T
=10 K �most observed ILTs occur at higher temperatures�,
the enhancement is again only a factor of the order of 4.

Thus, carrier scattering and Fermi function broadening are
sufficient to reduce the nesting-induced divergency to a mi-
nor structure in ���q�. However, an even more severe effect
is caused by geometrical deviations of the Fermi surface
from a perfect nesting. A common procedure in the search
for nesting vectors in a particular fermiology is to copy a
quasi-2D Fermi surface cut onto transparent paper and to
slide it until a piece of the displaced Fermi surface visually
coincides with another piece of the original plot. It is instruc-
tive to give a quantitative gauge of what constitutes a “good
nesting” vs a “bad nesting.” Assuming that the “nested” parts
really nest only up to some �k in the reciprocal space, we
observe, by averaging Eq. �9�, that

���q� =
1

2�k
ln� q2 − �2kF − �k�2

q2 + �2kF − �k�2� +
kF

�kq
ln� �q − �k�2 − 4kF

2

�q + �k�2 − 4kF
2 �

+
1

2q
ln� �q − 2kF�2 − �k2

�q + 2kF�2 − �k2� ,

which gives

���2kF� =
1

�k
ln�4kF − �k

4kF + �k
� +

1

4kF
ln� �k2

�k2 − 16kF
2 � . �11�

In the small �k limit, ���2kF� /���0��1 /2��1
+ln�4kF /�k���. In other words, if 2D Fermi lines coincide
within 5% of the Fermi vector, the corresponding enhance-
ment of the susceptibility is about a factor of 3. It is also
important to remember that real materials are quasi-two-
dimensional, not two dimensional. Any dispersion in the
third direction of the order of �k brings us again to Eq. �11�.
In a one-band case, one can estimate the ratio kF /�k as
�p�

2 /�p�
2 ��� /��. This shows that anything with a calculated

transport anisotropy of less than one order of magnitude is
three dimensional from a “nesting point of view.” Figure 1
illustrates the effect of various deviations from the perfect
Peierls picture on the divergence of ���q�.

To further emphasize the nonrole that FS nesting plays, let
us investigate a system in which an ILT with Q=2kF has
actually occurred and, as a result, a gap equal to 2V has
opened, with a corresponding energy gain in the one-electron
energy �see Fig. 2�. The common wisdom is that energy is
gained predominantly near the former Fermi energy, where
the lowering of one-electron states is the largest. But, is this
really so? In first order perturbation theory, the new one-
electron spectrum is

Ek� =
Ek + Ek−Q − 	�Ek − Ek−Q�2 + 4V2

2
, �12�

�Ek = Ek − Ek� =
Ek + 	Ek

2 + 4V2

2
, �13�

where �Ek is the energy shift of the state 
k� and Ek is the
energy difference between the two states connected by the
nesting vector Q. An inspection of this expression shows that
integrating it over Ek does not diverge at Ek=0 �that is, at
the Fermi energy�, but would diverge at large energies,

1.8 1.9 2 2.1 2.2
q

2

4

χ’
(q

)

Ideal system

γ=0.1
T=10K
T=100K
δk/kF=0.02

FIG. 1. �Color online� A comparison of ���q� under ideal 1D
conditions with perfect nesting at T=0 to ���q� under various non-
ideal conditions. Even moderate deviations from the ideal �such as
those found in real materials� rapidly reduce the divergence to a
relatively weak enhancement.
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Ek→�, if the integration were not limited by the band-
width. Substituting Ek=k2, we get

�Ek = 	4kF
2�k − kF�2 + V2 + 2kF�k − kF� . �14�

The total energy gain, EG= 1 / 2kF �−kF

kF �Ekdk, is

�EG

V2 �
1

16kF
2 +

1

8kF
2 ln8kF

2

V
� =

1

16�
�1 + 2 ln8�

V
�� .

�15�

The first term corresponds to an integration over the region
Ek	V and neglect of Ek, and the second corresponds to
integration over the region Ek�V and neglect of terms
smaller than V2. In other words, the first �nondivergent� term
comes from the states near the Fermi level, where the gap
opens up, and the second term �divergent at large �� comes
from the rest of the states below the Fermi level and down to
the bottom of the band. Since an actual instability is always
a competition between an electronic �in this picture, one
electron� energy gain and an elastic energy loss, it is appar-
ently more important to optimize the energy gain from all
occupied states than to open a gap over the largest possible
part of the Fermi surface.

Since, as we have just found, all occupied states are im-
portant for an ILT, it is important to keep in mind the multi-
band character of real solids, and, correspondingly, the con-
tribution of the interband transitions to ���q�. To get a sense
of the interband effects, let us consider an insulating system,
which, instead of the free-electron band discussed above, has
a fully occupied first neighbor tight-binding band, E1�k�=
−cos�ka�, which is separated from a similar empty band by
an energy �, i.e., E2�k�=�+cos�ka�. Let us assume for sim-
plicity a constant interband dipole matrix element equal to
unity. The susceptibility is given by

�inter� �q� =
1

a	�2 − 4 sin2�qa/2�
. �16�

This susceptibility is enhanced at q=� /a �at the edge of the
BZ� compared to its minimum value �at q=0� by a factor of
� /	�2−4. This enhancement can be very large even for
bands with a large relative shift. Using, for example, �
=2.25 �giving a gap of 1/8 of the bandwidth�, the enhance-
ment is 2.2, which is quite comparable to what one might
expect in a realistic nesting scenario. This demonstrates
again that the Fermi surface topology is unlikely to be a
factor in the CDW formation. Note that the band structure
that we have used is not special in any way, as opposed to the
half-filled band exhibiting a Peierls instability.

III. FIRST PRINCIPLES CALCULATIONS OF
REAL MATERIALS

In the following sections, we present three examples of
real materials that are commonly thought to be canonical
examples of nesting-driven CDW systems: NbSe2, TaSe2,
and CeTe3. By using first principles density functional theory
calculations, we show that FS nesting is not the driving force
behind the observed CDW in any of the three compounds.
We additionally investigate a chain of Na ions and show that
even for this artificially perfect 1D system, the strong FS
nesting fails to produce any appreciable CDW when the
ionic positions are fixed. This is perfectly in line with our
contention that electron-phonon coupling is necessary to in-
stigate the ILT and that even in the Peierls formulation, the
resulting CDW is exponentially small.

For all of the investigated compounds, first-principles cal-
culations were performed by using the well-known WIEN2K

package,21 with the local density approximation �LDA� to
the exchange correlation potential.22 For NbSe2 and TaSe2, it
was found that spin-orbit coupling has a finite effect on the
band structure and the Fermi surface and, therefore, was
taken into account. To get a good energy mesh, we calculated
eigenvalues at nearly 15 000 k points in the full BZ. For
CeTe3, the partially filled f states pose a well-known prob-
lem for the mean-field LDA methodology by partially filling
each of the f states rather than completely filling some and
emptying all others. We have addressed this shortcoming by
using LDA+U in the fully localized limit scheme.23 We ap-
plied a U of 4.5 eV and successfully reproduced the f1 state
observed by magnetization measurements24 for the Ce ion,
simultaneously removing all f bands from the Fermi energy.
None of the quantities we calculate are expected to be sen-
sitive to the precise value of U and we did not investigate the
effects of changing it. We used a mesh of approximately
30 000 k points in the full BZ to calculate the energy eigen-
values used for the susceptibilities. For all compounds, we
used a temperature smearing of 2 mRy during numerical in-
tegration. For calculation of the chain of Na atoms, we used
the Vienna ab initio simulation �VASP� package with the pro-
jector augmented wave basis set.25–27 We used several differ-
ent pseudopotentials with varying levels of hardness for the
Na core, all giving identical results to within the accuracy of
our calculations.
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FIG. 2. �Color online� A schematic showing the original energy
bands of our model system in comparison to the bands after a tran-
sition has caused a gap at the Fermi energy. The energy associated
with a gap formation is shaded �red� and continues down to the
bottom of the band. Representative energy states connected by the
nesting vector are shown �Ek� along with infinitesimal energy gain
��Ek� associated with the gap opening at each k.
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A. NbSe2 and TaSe2

Quasi-two-dimensional NbSe2 belongs to a family of lay-
ered dichalcogenides that undergoes a CDW transition,
which is sometimes thought to be related to FS nesting. A
calculation of both the real and imaginary parts of the one-
electron susceptibility19 shows this to be unequivocally not
the case. Although FS nesting does exist and does produce a
peak in ���q�, it is located at q= �1 /3,1 /3,0� and not at the
observed qCDW= �1 /3,0 ,0� �see Ref. 19 for pictures�. On the
other hand, a weak peak at qCDW appears in ���q�. This peak
is not strong enough alone to stimulate the observed CDW
transition, but must be assisted by electron-phonon coupling
at the same wave vector. To verify this, we performed two
first-principles calculations of NbSe2 in a supercell corre-
sponding to the observed CDW vector. In one case, we
clamp the ions to their high symmetry positions, and in the
other, we allow them to shift. When allowed, the ions do,
indeed, shift and an instability at the right wave vector �1/
3,0,0� is reproduced. In the case where the ions are forced to
be stationary, both ionic and electronic systems remain stable
in their high symmetry states. Even if we prompt the elec-
tronic system by artificially redistributing the charge along
the known CDW direction, it relaxes back to its high sym-
metry state. Our calculations on this system provide a clear
example of the lack of influence of Fermi surface nesting
with respect to CDWs: a strong FS nesting that produces a
sharp peak fails to give rise to a CDW at the associated wave
vector, while a peak wholly unrelated to FS nesting but at the
correct vector appears in the real part of the susceptibility
and, in conjunction with electron-lattice effects �but not
without�, does produce a CDW.

We have also investigated an isostructural material TaSe2,
which has an observed CDW at approximately the same
wave vector as NbSe2. The Fermi surface of the Ta com-
pound is different from that of NbSe2, as was most recently
observed by Rossnagel et al.28 who also pointed out that the
measured surface differs from the calculated one.11,28,29 This
is somewhat surprising because the calculated and the ob-
served Fermi surfaces are in quite good agreement for
NbSe2. One reason for the discrepancy between NbSe2 and
TaSe2 and between theory and experiment is spin-orbit cou-
pling, which is strong for the heavy Ta ion. This coupling has
not been included in most previously published TaSe2 band
structures and Fermi surfaces,29–31 with the result that they
differ less than they should from NbSe2 band structures. The

spin-orbit interaction nontrivially changes the band disper-
sion near the Fermi energy, particularly along �−K and leads
to a different Fermi surface topology. Scalar relativistic ef-
fects are responsible for the lower Se band in TaSe2 �com-
pared to NbSe2� which removes it from the Fermi surface
entirely. Although we include both scalar relativistic effect
and spin-orbit coupling in our calculations and find qualita-
tive differences between the Nb and Ta diselenides, we still
find that the TaSe2 Fermi surface differs somewhat from the
ARPES observed surface. However, nearly perfect agree-
ment can be achieved by a small shift of the Fermi energy
�about 0.04 eV�. In Fig. 3, the Fermi surface both with and
without the small shift in Fermi energy is shown.

The susceptibilities that are presented here are calculated
by using the Fermi energy shift necessary to bring theoretical
and experimental Fermi surfaces into agreement, but, in fact,
this shift has no visible effect whatsoever on either the real
or imaginary parts, despite its dramatic effect on the FS to-
pology. In Fig. 4, the real and imaginary parts of the suscep-
tibilities for TaSe2 are presented. Looking at the susceptibili-
ties in Fig. 4, one can see some similarity between the peak
structures in this compound and in NbSe2,19 most particu-
larly in the location of the nesting-driven peak in ���q� vs
the peak in ���q�. Again we find that the peaks are in differ-
ent locations, indicating that nesting cannot give rise to a
charge instability.

A recent study of these two materials28 concluded that
both materials have CDWs driven by strong electron-phonon
coupling in the presence of weak nesting. Our calculations
show that, indeed, electron-phonon coupling is behind the
transition, but we can entirely eliminate Fermi surface nest-
ing from the phenomenon. There is no nesting at all, not
even weak, at the CDW wave vector. The electronic suscep-
tibility structure, which is, indeed, favorable to a CDW at the
right wave vector, is due to finite energy electronic transi-
tions and not to a Fermi surface geometry.

B. CeTe3

CeTe3 is another layered material �see Fig. 5�, which also
belongs to a family of compounds RTe3, R=rare earth, all of
which exhibit CDWs.32–34 The two dimensionality is consid-
erably stronger in this series than in the dichalcogenides dis-
cussed above, producing an easily visible Fermi surface nest-
ing between strongly two-dimensional Fermi sheets. As in

a) b)

FIG. 3. �Color online� The Fermi surface of TaSe2 shown with
�a� no shift of the Fermi level and �b� a downward shift of the Fermi
level �−40 meV�. The topology of the Fermi surface, especially the
light �yellow� sheets changes appreciably with a small change in the
Fermi energy, and brings the surface into good agreement with
experiment.

qCDW

a) b)

FIG. 4. �Color online� The imaginary �left� and real �right� parts
of the susceptibility for TaSe2. The nesting peaks �imaginary part�
do not correspond to the observed CDW wave vector, while the
very weak peaks in the real part do.
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the former series, the strongest nesting peaks seen in ���q�
produced by this nesting are far away from qCDW and do not
carry over into ���q�, as shown in Fig. 6. However, much
weaker peaks associated with a different nesting do appear in
���q� at the observed CDW wave vector and are then
strongly enhanced by contributions away from the Fermi en-
ergy to eventually produce peaks in ���q�. It has previously
been suggested that in this compound two imperfect
quasi-1D nestings at qCDW could combine to produce a stron-
ger peak than the single perfect nesting at qnest. This, indeed,
happens in a number of other materials �e.g., Sr2RuO4�.35

Our calculations show that, in the case of CeTe3, this hypoth-
esis is incorrect on a quantitative level and that the strongest
nesting peaks are due to the strongest Fermi surface nestings.
Nonetheless, the strongest peak in ���q� is unrelated and
appears, as expected, at qCDW. It is an interesting and instruc-
tive exercise to track down the origin of both kinds of nest-
ing peaks to examine why the strongest ones are irrelevant
and why the weaker peaks are present throughout the energy

spectrum, finally resulting in a peak in ���q�. To begin, we
describe how the structure of the CeTe3, very simply, gives
rise to its Fermi surface. CeTe3 is composed of two different
types of layers: those containing staggered Ce and Te ions
and those containing Te ions only �see Fig. 5�. The states
near the Fermi energy have predominantly Te p character
and come from the pure Te layers. Assuming a nearest neigh-
bor only tight binding model of Te px and py orbitals �see
Fig. 5�b�� in these layers with t��5t�, as in Fig. 5�b�, we
produce the crosshatched pattern of slightly warped one-
dimensional Fermi sheets shown in Fig. 5�c�. This model and
the values of the tight-binding parameters are very similar to
those developed in Ref. 36.

Nearest neighbor Te ions are inequivalent due to symme-
try breaking imposed by the stacking of layers along the
third direction. This results in a larger unit cell and a smaller
rotated BZ, as shown superimposed in Fig. 5�c�. The full
calculated FS is shown in Fig. 7. A very good facsimile of it
is achieved by folding the quasi-1D sheets of our TB model
down into the new zone. Though small gaps appear during
the folding down process, the long 1D ribbons are still
clearly visible and both the nesting peak and the peak in
���q� can be traced back to these sheets.

As can be seen by the cartoons in Fig. 7, there is an
excellent �ideally perfect in the nearest-neighbor TB model�
FS nesting between two of the quasi-1D ribbons along the
�110� direction of the BZ. This produces very sharp nesting-
derived peaks in ���q�, away from the observed CDW vec-
tor. A moderate peak at q=qCDW is visible, but by far the
strongest peaks are located elsewhere in the Brillouin zone.
Any CDW directly stemming from FS nesting would occur
first at wave vectors corresponding to these alternate spots
rather than at the observed qCDW. In the real part of the
susceptibility, the strongest FS nesting peaks are dramatically
suppressed, leaving only a peak at the correct wave vector
�Fig. 6�. This is entirely due to an effect of the finite-energy
transitions �note the nonzero value of terms in Eq. �1� even
for widely spaced eigenvalues�, which appear in the real part
of susceptibility but not in the nesting function �imaginary
part�. The reason that the bulk of the ���q� peak height at

σ

π

t

t
a)

c)

b)

FIG. 5. �Color online� �a� The structure of CeTe3 showing the
Te �large spheres� planes interposed with Ce �small spheres� and Te
staggered units. One of the two nonequivalent Te ions in the Te-
only planes is shaded lighter to distinguish it. �b� A schematic of the
quasi-1D tight-binding model employed to illustrate the origin of
the Fermi surface. �c� The quasi-1D Fermi sheets resulting from the
nearest-neighbor tight binding model. The new BZ corresponding to
the larger unit cell in which the two different Te ions are distin-
guished is shown as a darker �blue� diamond.

q
CDW

a) b)

FIG. 6. �Color online� A diagram showing the imaginary �left�
and real �right� parts of the susceptibility as a function of qx ,qy,
with qz=0. The arrow connects the strongest peak in the imaginary
part, located at qnest, to its corresponding position in the real part. In
the real part, the nesting peak is absent and qCDW dominates the
spectrum, indicating the importance of states away from EF.

qCDW

qnest

a) b)

c)

FIG. 7. �Color online� �a� The full, calculated Fermi surface of
CeTe3 �thin solid lines, green and brown�, with the one-dimensional
bands obtained from a nearest neighbor tight-binding model over-
layed on top �thick dashed crimson lines�. The Fermi surface in
essence can still be thought of as intersecting 1D Fermi sheets, even
after the bands have been folded down into the lower symmetry cell
�see text�. �b� A shift of one of the quasi-1D Fermi sheets �dashed
lines represent the shifted FS� along the �1,1,0� direction produces
nearly perfect nesting. �c� A shift along the observed CDW wave
vector direction �1,0,0� produces imperfect nesting.
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q=qCDW comes from contributions away from the Fermi en-
ergy can be understood by an examination of the band struc-
ture: the velocities of the electronic states connected by
qCDW ��k and �k+q� are nearly equal and opposite at the Fermi
energy �note that for the wave vector qnest in Fig. 7�b�, the
opposite is true: vk and vk+q have the same sign�. Therefore,
nearby states �k+v�k and �k+q−v�k are also of equal energy
and are connected by qCDW. These are located above and
below the Fermi energy, respectively, and do not contribute
to the nesting function but do contribute to the real part of
the susceptibility. This phenomenon has been pointed out
earlier in Ref. 2 under the title of “hidden nesting.” Obvi-
ously, if there are regions of the energy spectrum with equal
and opposite velocities, they will heavily contribute to ���q�
even if they are imperfectly nested at the Fermi energy itself.
On the other hand, strong nesting between states exactly at
the Fermi energy may die away quickly in other parts of the
energy spectrum and contribute little to ���q�. This is the
essence of why well-nested Fermi surfaces fail to produce a
peak in ���q� not only for CeTe3 but also for the dichalco-
genides discussed in the previous section. The Fermi surface
is simply too small a part of the energy range from which
���q� collects to have a decisive effect.

C. Na chain

To best approximate a perfect Peierls system, we calcu-
lated the ground state of a chain of Na ions separated by
38 Å in the two nonchain directions. The Na-Na distance
was relaxed along the chain to its optimal value of 3.34 Å.
As we saw previously with NbSe2, no CDW could be stabi-
lized if the ions were clamped to their high symmetry posi-
tions, even though this system is ideal in every respect, i.e.,
the electronic-only CDW is unstable even when no mitigat-
ing factors, such as higher dimensionality or imperfect nest-
ing, are present. Surprisingly, a relaxation of the ionic posi-
tions along the 1D chain also failed to produce any deviation
from the high symmetry, equally spaced arrangement, even
when an initial dimerization was imposed. However, when
the ions were allowed a larger dimensional freedom, the sys-
tem became distorted into a zigzag configuration, as shown
in Fig. 8. The ions in the zigzag arrangement are 3.43 Å
apart and the angle formed by the distortion is 152°. Al-
though this distortion doubles the unit cell and lowers the
total energy, it does not create the expected gap at EF. The
coupling between matrix elements at the BZ boundary �k
= 
� /a�, which would give rise to a gapped system, does
not occur because the distortion is two dimensional, while
the wave functions are one dimensional. Thus, integration
over the direction perpendicular to the chain in the dimen-
sion in which the distortion occurs drives the matrix element
to zero. Precisely, the same result can be obtained using a

tight-binding formulation. Regardless of the number of
neighbors included in the model, the states at the edge of the
BZ remain degenerate; i.e., there is no gap. On the other
hand, an enforced dimerization of the ions does produce a
gap at EF, but is unstable. The true origin of the two-
dimensional distortion is not yet entirely clear, but the Peierls
mechanism can be ruled out. Thus, under perfect conditions,
no electronic-only CDW forms, and no electron-ion interac-
tion assisted CDW forms either. This indicates that the
Peierls formulation is even weaker than we had originally set
out to prove. Not only do small deviations from the ideal
system destroy the divergence that is purported to cause
CDW formation, but in the ideal case itself, where no such
deviations are present, the existence of ion cores is enough to
effectively nullify the Peierls instability.

IV. SUMMARY

To summarize, we have first explored the standard half-
filled 1D free electron system from the perspective of a
Peierls distortion and have shown that the divergence in the
real part of the susceptibility, which is caused by Fermi sur-
face nesting, is exceedingly fragile. Effects such as tempera-
ture, imperfect nesting, or scattering, all of which are ex-
pected to be operative in a real material, will reduce the
divergence to a simple peak that is often not more than a
factor of 2 or 3 enhanced over the base line susceptibility at
q�0. Thus, expectations of a CDW transition driven entirely
by Fermi surface nesting in any real material are unrealistic
from the outset. Next, we have examined a system in which
a gap at the Fermi surface has already been opened due to a
commensurate or incommensurate lattice transition, and
found that the energy gain comes largely from the lowering
of already filled states located away from the Fermi energy
and not from removing states from the Fermi energy itself.
This reinforces our contention that the Fermi surface topol-
ogy plays at best a secondary role in CDW formation. By
using first-principles calculations, we take three examples of
well-known CDW materials to illustrate our point and, in
each case, we find that Fermi surface nesting either does not
exist at the CDW wave vector or is not the strongest nesting
in the system. We further find that the CDW instability is not
fundamentally electronic, but rather stems from strong
electron-phonon interaction, which, of course, is itself af-
fected by the electronic structure. Finally, we examine the
canonical Peierls system, i.e., a one-dimensional chain of
atoms, and find that the expected dimerization along the
chain axis with any realistic amplitude is energetically unfa-
vorable. The expected doubling of the unit cell occurs only if
the one dimensionality is relaxed to allow a zigzag, rather
than dimerized, distortion. We conclude that no true distinc-
tion between CDWs and structural phase transitions, in par-
ticular, incommensurate lattice transitions, can be made. In-
specting the FS itself for possible nesting features, without
actually calculating the real part of electronic susceptibility,
has no predictive power for such structural transitions. Cal-
culating the real part of the electronic susceptibility may be
helpful in analyzing such instabilities, but only in relatively
few cases can it be accepted as the only or even the main
driving force for such transitions.

FIG. 8. �Color online� The relaxed configuration of an initially
one-dimensional chain of Na ions. If the dimensionality of the chain
is restricted, no distortion at all occurs.
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