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Abstract. – Tunneling of Bloch electrons through a vacuum barrier introduces new physical
effects in comparison with the textbook case of free (plane wave) electrons. For the latter, the
exponential decay rate in the vacuum is minimal for electrons with the parallel component of
momentum k‖ = 0, and the prefactor is defined by the electron momentum component in the
normal to the surface direction. However, the decay rate of Bloch electrons may be minimal at
an arbitrary k‖ (“hot spots”), and the prefactor is determined by the electron’s group velocity,
rather than by its quasimomentum. We illustrate this by first-principles calculations for (110)
Pd surface.

There is a general feeling in the applied-physics community nowadays that the next decade
will bespeak an advent of magnetoelectronics, exploiting spin, rather than charge, degrees of
freedom [1]. Many of such spintronic devices are based on the phenomenon of quantum tun-
neling, and specifically on the difference between tunneling currents in different spin channels.
This opens up a possibility to control the electric properties via magnetic field. In view of all
that, an explosion of publication on spin-polarized tunneling, which started around 1995, is
not surprising at all.

Interestingly, despite the fact that tunnelling is one of the best studied phenomena in
quantum mechanics, there is still substantial diversity in microscopic understanding of tun-
neling in real systems. Tunneling problems are very easily solved in one dimension and for free
electrons; but it is not so obvious how this is related to real systems, and how to incorporate
the effects of realistic electronic structure. This is the reason why most theoretical papers
use the free-electron model, that is, the electronic wave functions that are plane waves and a
spherical Fermi surface. The deviations of the wave function from the single plane-wave form,
and of the Fermi surface from a sphere, are very often crucial for understanding the physics
of tunneling. In particular, a totally counterintuitive result has been observed in some recent
calculations [2], when the electrons with nonzero quasimomentum parallel to the interface had
a larger probablility to tunnel through a vacuum barrier compared to those with zero parallel
quasimomentum. It was also pointed out [3] that electrons in different Bloch states with the
same energy and quasimomentum may, in principle, have different decay rates in vacuum:
another counterintuitive result. In this regard, it is important to establish a formal theory
for tunneling of Bloch electrons through a vacuum barrier, elucidating the qualitatively new
aspects of this process as opposed to the free-electron tunneling, particularly because only the
latter is discussed in the classical textbooks. This is the goal of the current paper.
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The simplest case of a tunneling contact is the so-called Sharvin contact [4], which is
essentially an orifice between two metals (or a metal and the vacuum), whose size is smaller
than the mean free path of electrons in the bulk. All electrons with the a positive projection
onto the current direction (which we will denote as x) pass through the contact. Conductance
of a Sharvin contact between two identical metals is

G =
e2

h̄

1
2
〈N |vx|〉A, (1)

where A is the contact area, N is the volume density of electronic states at the Fermi level, v
is the Fermi velocity, and brackets denote Fermi surface averaging:

1
2
〈N |vx|〉 = 1

Ω

∑
kiσ

δ(εkiσ − EF)vkiσ,x =
1

(2π)3
∑
iσ

∫
dSF

|vkiσ|vkiσ,x . (2)

Integration and summations are over the states with vkiσ,x > 0, and Ω is the unit cell vol-
ume [5,6]. k, i, and σ denote the quasimomentum, the band index, and the spin of an electron,
respectively. This formula can be derived by considering the voltage-induced shift of the Fermi
surface [6], but there is a more instructive derivation starting from the Landauer-Buttiker for-
mula for the conductance of a single ballistic electron, G0 = e2/h. In this formalism, the total
conductance is equal to G0 times the number of conductivity channels, Ncc, which is defined
as the number of electrons that can pass through the contact. Assuming that the transla-
tional symmetry in the interface plane is not violated, we observe that the quasimomentum
in this plane, k‖, is conserved, and Ncc is the number of quantum-mechanically allowed k‖’s.
Thus Ncc is given by the total area of the contact times the density of the two-dimensional
quasimomenta. The latter is simply Sx/(2π)2, where Sx is the area of the projection of the
bulk Fermi surface onto the contact plane. Thus

G =
e2

h

SxA

(2π)2
≡ e

2

h̄

1
2
〈N |vx|〉A. (3)

This is an important result. To the best of our knowledge, Walter Harrison was the first
to spell it out in 1961 [7], and there is no lack of more recent papers manifesting proper
understanding of this issue (e.g., ref. [8]). However, till now many otherwise correct and
useful papers erroneously identify the number of conductivity channels and the density of
states at the Fermi level, that is

Ncc ∝ N(EF) =
1
Ω

∑
kiσ

δ(εkiσ − EF) =
1

(2π)3
∑
iσ

∫
dSF

|vkiσ| . (4)

incorrect!

Equation (3) is the basis for all more sophisticated expressions describing various aspects
of quantum tunneling. None of them may explicitly depend on the bulk density of states. It
may, however, be that instead of the straight 〈N |vx|〉 averaging, one has to compute a weighted
average, with the weights coming from tunneling matrix elements, or other additional physics.

Equation (3) takes care of one important difference between the free electrons and the Bloch
electrons: deviation of the Fermi surface from a sphere, for Sx �= πk2F. Another important
difference that is often neglected is that between the group velocity h̄−1dεk/dk and the phase
velocity h̄k/m0. One can get some qualitative understanding of the role that this fact plays
in tunneling by considering a simplified model, where electrons in metal are approximated
by free electrons with an effective mass. While this model is too crude for a quantitative



406 EUROPHYSICS LETTERS

analysis of real metals, it has one great advantage: in this approximation, the phase velocity,
(h̄k/m0), is different from the group velocity, (dεk/h̄dk). The standard formula (see, e.g.,
ref. [9]) for the transparency of a symmetric rectangular barrier can be written in terms of
either velocity, but only the formulation in terms of the group velocity remains correct for an
arbitrary effective mass:

D(k) =
4m2

0h̄
2K2vLvR

h̄2m2
0K

2(vL + vR)2 + (h̄2K2 +m2
0v

2
L)(h̄

2K2 +m2
0v

2
R) sinh(dK)2

, (5)

where vL(R) stands for (k-dependent) Fermi velocity in the left and in the right leads, and the
imaginary quasimomentum h̄K is calculated from the energy conservation condition,

U + h̄2[k2
‖ −K2]/2m0 = E ,

where m0 is the free-electron mass, U is the barrier height, and d is its thickness.
The physical reason that one has to use group velocities, and not wave vectors, is very

profound and extends well beyound the limited scope of the effective mass model: these
factors appear in eq. (5) as a result of matching the gradients of the wave functions at the
interface, and the gradient is, in fact, the velocity operator. Another way to express the
same idea is to recall the physical meaning of the usual quantum-mechanical requirement
that the wave functions be smooth: it is needed to ensure the flux continuity and, therefore,
particle conservation [10]. On the other hand, the expression for K includes the momentum,
k‖, and the free electron mass, m0, because it comes from the solution of the Schrödinger
equation inside the barrier (in vacuum) [11]. We will discuss below how the exponential part
of eq. (5) should be modified when going beyond the effective mass approximation; however,
the presence of the group velocities in the prefactors is universal.

The conductance of a contact described by eq. (5) is given by the appropriately modified
eq. (1):

G =
e2

h̄

A

Ω

∑
k

δ(εk − EF)vkxD(k) . (6)

It is instructive to consider the last formula in some limiting cases. First, let us con-
sider a specular barrier. It is defined by the limit U → ∞, d → 0, Ud = V . Then

K →
√
2m0U/h̄

2 and

D(k) =
4h̄2vLvR

h̄2(vL + vR)2 + 4V 2
, (7)

Note that in the literature the ratio V/h̄vx = Z is commonly used to characterize the barrier
strength. In principle, this quantity is different for different electrons, as vx depends on k. In
the limit of low transparency, Z 
 1, D(k) = h̄2vLvR/V

2. Substituting this into eq. (6), we
find that the total current is proportional to∑

k

δ(εk − EF)vkxvLvR, (8)

where summation is, of course, over those k that are allowed in both left and right lead.
Roughly speaking, the total conductance is defined by the smaller of the two

〈
Nv2x

〉
’s, that

is, by min
(〈Nv2x〉L, 〈Nv2x〉R)

. In the high-transparency limit D is still smaller than 1, D =
4vLvR/(vL + vR)2, (the so-called Fermi velocity mismatch), but in most cases this is not a
large effect: a factor of two mismatch reduces D by only 10%.
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In the case of a thick barrier, defined as dK 
 1, eq. (5) can be expanded in h̄2k2‖/4m0(U−
EF), and the transparency is

D(k) =
2m2

0(U − EF)vLvR
(U − EF +m0v2L/2)(U − EF +m0v2R/2)

exp[−2d2W ] exp

[
−
k2‖
W

]
, (9)

where
√
2m0(U − E0)/h̄d = W � k2 (thick barrier limit). W does not depend on k. The

tunneling current is proportional to

J ∝
∑
k‖

2m2
0(U − EF)vLvR

(U − EF +m0v2L/2)(U −EF +m0v2R/2)
exp

[
− k

2

W

]
. (10)

Let kn be the set of points on the Fermi surface where k‖ = 0 (note that for Bloch
electrons beyond the effective mass approximation tunneling from some of these points may
be suppressed by symmetry, as discussed later in the paper). Except in the exponent, we can
put k‖ to zero,

J ∝ 1
(2π)3

∑
n

{∫
d2k exp

[
− k

2

W

]}
2m2

0(U − EF)vLvR
(U − EF +m0v2L/2)(U − EF +m0v2R/2)

(11)

∝
∑

n

vL

m0h̄
2v2L/2 + U − EF

vR

m0h̄
2v2R/2 + U − EF

.

All factors omitted in this expression are k‖-independent. One should not be confused by
the fact that, unlike eq. (8), the numerator here does not have the third velocity. We have
reduced our problem to an effective 1D problem, in which case the role of the density of states
is played by the inverse velocity. Correspondingly, the product Nv cancels out.

Equations (8), (9) emphasize the role of kinematics in tunneling. For instance, the long-
standing problem of the reversed (compared to the density of states) spin polarization of
the 3d ferromagnets is entirely explained in terms of kinematics. Direct calculations show
that s-like electrons in Fe, Co and Ni have much larger Fermi velocity than d-like electrons.
Taking this fact into account brings the calculated spin polarization to a very good agreement
with experiment, without making any additional assumptions about the character of the
surface states [6, 12]. This is by no means surprising: the bulk transport is controlled by the
same factor

〈
Nv2x

〉
, and the Ohmic current in these metals is carried predominantly by s-like

electrons. It is only natural that in another transport phenomenon, tunneling, these electrons
also play the leading role. We would like to emphasize that the effect considered above (as
opposed to another effect discussed later in the paper) is not related to the s or d symmetry
of the wave functions, but to the group velocities in the respective bands. In other cases the
“light” and the “heavy” bands may not be directly related to the angular symmetry of the
wave functions. For example, in SrRuO3 both spin-up and spin-down Fermi surfaces are made
up by Ru t2g d-electrons, but the average group velocity in the spin-majority channel is twice
smaller than that in the spin-minority one [13]. As a result, although the spin polarization of
the density of states is positive, N↑ > N↓, while the transport spin polarization is negative,
〈Nv〉↑ < 〈Nv〉↓ [14].

Now we have some understanding of the two remarkable differences between the free elec-
trons and the Bloch electrons: the effect of the Fermi surface geometry and the difference
between the group and the phase velocities. There is, however, yet another, extremely impor-
tant, dissimilarity between the two systems, recently pointed out by Butler [3]: the difference
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between the momentum and the quasimomentum. In order to discuss this difference, and
its physical consequences, let us consider reflection of an individual Bloch wave from a metal
surface. Let x be the direction normal to the surface, and r the coordinate in the surface
plane. At x < 0 we have a metal, and vacuum at x > 0. The vacuum potential is again U ,
and the Fermi energy is E. Since we have perfect in-plane periodicity, the wave function at
any x can be classified by k‖, and is given by

ψ(k‖, x, r‖) =
∑
G

exp[i(k‖ + G)r‖]FG(k‖,x). (12)

The quasimomentum in the surface plane, h̄k‖, is conserved, as well as the energy. In vacuum,
the solution of the Schrödinger equation is

ψT (k‖, x, r‖) =
∑
G

αG exp[i(k‖ + G)r‖] exp[−KGx] , (13)

where G is the 2D reciprocal lattice vector, and KG is now defined by taking into account the
kinetic energy associated with the given reciprocal lattice vector, U + h̄2[k2

‖ −K2
G]/2m0 = E.

An incoming Bloch wave with a given k penetrates into the barrier as a linear combination (13)
with the coefficients αG defined by matching conditions, set by the requirement of continuity
of the wave function and its derivative:∑

G

FG(0) exp[i(k‖ + G)r‖] =
∑
G

αG exp[i(k‖ + G)r‖] ,

∑
G

F ′
G(0) exp[i(k‖ + G)r‖] = −

∑
G

αGKG exp[i(k‖ + G)r‖] ,

since this has to hold for any r‖, αG = FG(0), and F ′
G(0) = −αGKG for each G. Thus

FG(0)KG + F ′
G(0) = 0. (14)

A bulk electronic Bloch wave, progagating in the x-direction, is given by eq. (12) again, where
now F bulk

G (k‖, x) = uG,kx
(x) exp[ikxx], and uG,kx

(x) is periodic in x. If the wave functions
still had the same form at x = 0, i.e., at the interface, one would write for the incident and
the reflected wave together a linear combination of the bulk states with the energy E and the
quasimomentum in the plane h̄k‖,

FG(x) = uG,kx
(x) exp[ikxx] + auG ,−kx

(x) exp[−ikxx] . (15)

But then we would have only one free parameter, a, to satisfy eq. (14) for all G’s, which is
obviously impossible. The answer is that FG(x) has the form (15) only far away from the
surface, while near the surface it is distorted as required by eq. (14). This emphasizes once
again the role of surface states in tunneling. In fact, one of the ways to realize the necessity of
forming the surface states is that the bulk Bloch functions, in general, cannot be augmented
continuously and smoothly into vacuum.

In the case of a thick barrier, the actual tunneling current will be defined by that component
of the wave function (13) which has the smallest K, that is, by the one with G = 0. The
amplitude of this evanescent wave is set by α0. As pointed out by Butler [3], k‖ = 0 is
a high-symmetry direction (ΓX), and the electronic states possess certain symmetry in the
yz-plane. In particular, α0 for some states may vanish by symmetry, in which case the decay
rate K will be defined by the smallest G allowed by symmetry. Since we consider now a
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Fig. 1 – Average decay rate of the occupied bulk states of Pd metal into a vacuum barrier, for different
k‖ and the (110) surface.

thick barrier, this essentially means that tunnelling from such a band will be defined not
by the k‖ = 0 state, but, rather counterintuitively, by general (not high-symmetry) points
in the 2D Brillouin zone (as confirmed by actual calculations [2]). Indeed, consider a band
where by symmetry F0(0, x) = 0 at k‖ = 0. At k‖ �= 0 thus F0(k‖, x) = F ′′

0 (0, x)k
2
‖, while

K =
√
2m0(U − E)/h̄2 + k2 ≈ √

2m0(U − E)/h̄ + h̄k2‖/2
√

2m0(U − E) = K0 + k2‖/2K0.
The optimal distance from the zone center that gives maximal contribution to the tunneling
current can be estimated by maximizing with respect to k‖ of

F ′′
0 (0, x)k

2
‖ exp[−K0d− k2‖d/2K0] , (16)

where d is the barrier thickness, which gives k‖ ∼ √
2K0/d. For Fe, for instance, K0 ≈ 0.6

a.u., about the same as the ΓX distance. Thus for a barrier, say, of 5 lattice parameters, k‖ ∼
0.2 a.u., a sizeable distance from the center of the Brillouin zone. Yet another counterintuitive
result is that one can define to physically different the low transparency limits: a thick, but
low-height barrier, or a high, but thin barrier. In the former case tunneling is predominantly
from the states infinitely close to the zone center. In the latter it occurs far away from the
zone center, possibly at the zone boundary. This is the effect observed in refs. [2], and in our
calculations below.

The described situation is fairly universal. Most transition metals interfaces have bands of
different symmetry near the Fermi level. Two remarks are important when speaking about real
systems, though. First, it is not only the difference between s states and higher moments that
is important, but also between different higher-moment states, as illustrated below. Second,
one should not confuse the bulk symmetry and the surface symmetry. For instance, electronic
states that are s or d3z2−r2 in the bulk have the same (s) surface symmetry. To illustrate
this on a realistic example, we performed linear muffin tin orbital calculations for Pd metal
(110) surface, using a supercell of 5 Pd layers, and 7 empty sphere layers, and monitoring the
intensity of the occupied bulk states in the middle empty sphere layer. The results are shown
in fig. 1, where the intensity is averaged over all occupied states of a given 2D symmetry.
First of all, we observe that at the zone center the s states, which have a G = 0 component,
decay much slower than all others states. The next highest transparency corresponds to the
px and py states, where the lowest allowed reciprocal lattice vector is G1 = 2π/a (a being the
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surface lattice vector). The Bloch waves with dx2−y2 symmetry include combinations of two
reciprocal lattice vectors, Gx and Gy, and thus decay faster than px,y states. The states with
the dxy symmetry have an even faster decay rate, because they lack both G = 0 and G = G1

component. However, when we move away from the zone center, selection rules are lifted and
the other states start to pick up, and in fact for the wave vectors shown in fig. 1 the slowest
decay rate appears for the states with the px symmetry, at k‖ = {0.1, 0}2π/a.

To conclude, we discussed here three new effects which appear in tunneling of the Bloch
electrons through a vacuum barrier, as compared with the textbook case of free-electron
(plane wave) tunneling. These effects are due to i) complexity of the Fermi surface geometry
(“fermiology”), ii) difference between the group and the phase velocities of a Bloch electron,
and iii) nonconservation of the parallel component of electron momentum (and conservation
of its quasimomentum). Each effect influences the tunneling current in its own way, and, as a
result, even for the most simple case of a vacuum barrier, the tunneling of the Bloch electrons
appears to be qualitatively different from the free-electron tunneling.
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