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Altermagnetism is a recently discovered new type
of collinear magnets, which share some characteristic
features with ferromagnets (lack of the nonrelativistic
Kramers degeneracy at a general point in the Brillouin
zone, finite anomalous Hall effect, finite magnetooptical
effect) and other with antiferromagnets (net magnetiza-
tion zero by symmetry)[1]. While numerous properties of
altermagnets have been explored, largely from the point
of view of spintronics, interplay between superconductiv-
ity and altermagnetism, another aspect in which ferro-
and antiferromagnets are principally different, has not
been addressed so far. Not surprisingly, there altermag-
nets can can manifest properties typical for ferromagnets
in one contexts, and those typical for antiferromagnets
in another.

There are two issues that are typically considered in
terms of interaction between magnetism and supercon-
ductivity: (1) what kind of superconducting state may
be consistent with a given magnetic order and (2) what
kind of pairing can be generated by proximity to a mag-
netic order (in other words, if we can gradually suppress
the long range magnetic order by an external stimulus,
such as pressure, what supperconducting symmetry may
emerge on the either side of the quantum crutical point?).

Superconductivity and ordered altermagnetism
It is well known that the standard antiferromagnetism
can support singlet superconductivity (as for instance
in Fe-based superconductors) as long as the coherence
length is much larger than the period of antiferromag-
netic order. On the other hand, a split ferromagnet with
spin-split bands (i.e., the eigenvalues ϵk↑ ̸= ϵ−k↓) can
only support Cooper pairs with the spinor order parame-
ter ∆↑↑, which is triplet. A standard representation[2] of
the spinor triplet order parameter in terms of a spacial
vector d describe this spinor as

∆αβ =

(
−dx + idy dz

dz dx + idy

)
(1)

Obviously, since only the α = β =↑ element is nonzero
for a given k, dz = 0, and dx = −idy.
AM is rather close to FM in this sense, but it has an

additional symmetry: there is an element of the point
group that does not map the Fermi surface for a given
spin upon itself, but does map it upon the Fermi surface
for the opposite spin[1, 6]. Let us now, for simplicity,
consider a tetragonal FM material. Then the only triplet
state consistent with this requirement is the nonunitary
state d= F1(k)kz(x̂ + iŷ), where F has the full tetrago-
nal symmetry, so that of ∆αβ only ∆↑↑ ̸= 0. If we now

consider the other Fermi surface, for the opposite spin,
the order parameter there will be d =F2(k)kz(x̂ − iŷ),
with only ∆↓↓ ̸= 0. These two order parameters have dif-
ferent symmetries, and are not degenerate, so the critical
temperature Tc will be different. The symmetry consider-
ation dictate that, without spin-orbit interaction, there
will be no coupling between the two order parameters.
In a typical experiment probing the average order pa-
rameter such a system at low temperature will behave as
mixed state d =kz

2 [F1(k)+F2(k)]x̂+ikz

2 [F1(k)−F2(k)]ŷ.
This state is nonunitary as long as F1 ̸= F2, and nematic
(breaks the C4 symmetry).
AM, despite the absence of the net magnetization, be-

haves very much like a ferromagnet in the sense that
any Cooper paper can be either ∆↑↑ or ∆↓↓. Corre-
spondingly, the order parameters will be F1(k)kz(x̂+ iŷ)
and F2(k)kz(x̂ − iŷ). However, in this case F1 = F2 by
symmetry (the same symmetry that transfoms one spin
sublattice into the other), so the average order param-
eter will be just d =kzF (k)x̂. This order parameter is
strictly unitary (correspondingly, the condensate is not
spin-polarized, just as the normal state isn’t), and ne-
matic. Of course, the partner state d =kzF (k)ŷ will be
degenerate with this one. In this sense, the AM as re-
gards superconductivity again has some features similar
to ferromagnets, some similar to antiferromagnets, and
some unique. An interesting analogy may be drawn with
the Ising superconductivity, appearing when the Kramers
degeneracy is lifted not by the exchange field, but by the
spin-orbit coupling. In that case the two spin-split Fermi
surfaces carry order parameters that are strictly S + T
and S − T, where S(T ) stands for singlet(triplet)[7]. De-
spite that, in most experiments, namely those that probe
the average order parameters, they behave approximately
as singlet (approximately because no symmetry requires
the two order parameters to be exactly the same). In case
of AM the difference is that the average order param-
eter becomes unitary exactly, by symmetry (of course,
remaining triplet)

Superconductivity and altermagnetic fluctua-
tions A related question is what superconducting sym-
metry can be generated by the AM-type spin fluctua-
tions. Before discussing that let us compare FM and AF
fluctuations a bit more carefully than how it is usually
done.
In case of ferromagnetic fluctuations, the spin fluctua-

tion spectrum is peaked at q = 0. Given that spin fluctu-
ations are repulsive in the singlet channel (the partners
in a Cooper pair interact to a spin fluctuations with op-
posite signs), and that by continuity ∆(k) ≈∆(k+ q), as
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long as q is small, such fluctuations will always be pair-
breaking. Traditional, Néel type AF order at a finite
vector q (if q lies at the zone boundary, this order will
correspond to doubling of the unit cell). In that case spin
fluctuations can be pairing as long as ∆(k)·∆(k+ q) < 0.
Popular theories ascribing the d-wave superconductivity
in cuprates (q2D = {π, π}) and the s± superconductivity
in Fe pnictides (q2D = {π, 0}) to spin fluctuations utilize
this property. While such fluctuations can also gener-
ate a p-wave pairing, especially when combined with an
anisotropic electron-phonon coupling[3], in practice it is
very difficult[4].

In such discussions it is routinely assumed that AF
fluctuations always correspond to a finite q. However,
several hundreds of known antiferromagnets have mag-
netic order corresponding to q = 0. This can happen, of
course, if the magnetic species occupies a Wyckoff po-
sition with a multiplicity larger that one. For instance,
the very popular now family of Kagome superconduc-
tors, AV3Sb5 (A is an alkaline metal) is believed to host
spin-fluctuations at q ≈ 0 and the intra-triangular cor-
relations of 120◦. Of course, magnetic order and spin
fluctuations q ≈ 0 and collinear spins are also perfectly
possible, and altermagnetic (and some conventional an-
tiferromagnets) belong to this class.

In order to understand the physics of q ≈ 0 spin fluctu-
ations in the context of superconductivity, let us consider
a hypothetical 2D lattice depicted in Fig. 1(left). Here M
is a metal ion and L is a ligand. This is a tetragonal struc-
ture with the symmetry group I4/mmm. Lets us assume
that this structure generates a Fermi surface centered
around the X(Y) points, as shown in Fig. 2 (left), and
spin-fluctuations corresponding to q ={π, π}.This model
was introduced by Agterberg et al[8], and it leads a d-
wave superconductivity of the type k2x − k2y.

FIG. 1. (left) An example of a 2D P4/mmm structure. The
grey balls are metallic (M), and potentially magnetic ions,
and the red ones are ligands (L). (right) Same for a P4/mbm
structure, which can carry an altermagnetic state (shown by
arrows)

Let us now introduce a small distortion, rotations of
the ML2 squares, shown in Fig. 1(right). The symmetry
group is now P4/mbm, it is also tetragonal, but has now
two metal ions per cell. This will lead to folding down of
the original Brillouin zone (Fig. 2), so that now there are
to Fermi contours around each M point; if the original

Fermi contours were close to circular, the downfolded one
will be nearly degenerate.

FIG. 2. (left) A possible 2D Brillouin zone consistent with the
crystal symmetry shown in Fig. 1(left). (right) The same, af-
ter downfolding corresponding to the double unit cell shown in
Fig. 1(right). The downfolded zone is shown with the dashed
lines. Colors reflect the signs of a possible d-wave (in the un-
folded zone) order parameter. The arrows give examples of
antiferromagnetic spin fluctuations with q ≈ π, π generating
a d-wave pairing. Nothe that the case on the right these are
fromally altermagnetic fluctuations.

Altermagnetic spin fluctuations will have q ≈ 0, how-
ever, this does not mean that, as in for ferromagnetic
fluctuations, such fluctuations can only generate triplet
pairing. In fact, since in this particular example the AM
order only slightly deviates from the AF order, the gener-
ated pairing state must be close to the downfolded d-state
of Ref. [8]. In principle, the two crossing Fermi lines will
hybridize, and the order parameter form nodal lines, as
discussed in Ref. [9]. However, this is a relatively unim-
porant effect.

From the formal point of view, the issue is that
q ≈ 0 the spin susceptibility may have importand inter-
nal structure, and has to be written as χ(q, r1, r2), where
r is defined inside the first unit cell, or as a matrix in
reciprocal vectors, χ(q+G,q+G′). The corresponding
vertex will be determined by the variation of the (non-
magnetic) one-electron Green function with respect to a
fluctuation generating opposite magnetic moments on the
two sublattices. A more detailed theory than that usu-
ally used for ferro- or antiferromagnetic spin fluctuations
needs to be developed, and it is not unreasonable to as-
sume that both triplet and singlet pairing can be iduced
by AM spin fluctuations, depending on the details.

Lastly, one can make another interesting observation:
so far, two very different classes of superconductors of-
fer protection from thermodynamic pair breaking (Pauli
limiting) for some directions of magnetic fields. The first
one are triplet superconductors without net magnetiza-
tion (such as 3He or the initial (now debunked) model
for Sr2RuO4); there the spin susceptibility in the su-
perconducting state is the same as in the normal state,
χsc = χn, due to triplet pairs having the same ability to
screen the field (in some directions) as the individual elec-
trons. Unitary triplet superconductivity, often discussed
in connection with some ferromagnetic U compounds, is
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also protected, and again χsc = χn, but there the un-
derlying mechanism is different: If there is and easy-axis
magnetocrystalline anisotropy in the normal state, then
screening of a small external field is afforder not by in-
creasing the net number of electrons in one spin chan-
nel at the expense of the other, but by canting spins of
electrons removed from the Fermi level. Indeed, if an ex-
ternal field H is applied perpendicular to this axis, the
Fermi surface does not change in the linear in H order,
but a linear in H magnetization does appear, on the or-
der of H∆Ω/ ⟨δVxc⟩ , where ∆Ω is the volume difference
between the two spin-split Fermi surfaces and ⟨δVxc⟩ is
the properly averaged exchange splitting. Obviously, the
ratio ∆Ω/ ⟨δVxc⟩ is a number on the order of the density
of states, so this provides a contribution to susceptibilty
on the order of the Pauli susceptibility, and is not af-
fected by opening a superconducting gap ∆ ≪ ⟨δVxc⟩ .
Note that similar protections is operative in Ising super-
conductors, where the role of δVxc is played by the spin-
orbit coupling[7]. In the spirit of the key feature of AM,
namely sharing features of both FM and AFM, they also
have a Pauli protection, but which in this case is similar
to that in ferromagnets, so it does not require accounting
for relativistic effects in the band structure, but requires
a magnetic anisotropy.

In the above discussion, we have addressed issues re-
lated to possible coexistance of AM and superconductiv-
ity, as well as superconductivity possibly induced by AM
spin fluctuation. A further step in investigating the in-
terplay between magnetism and superconductivity would
involve possible effects at the interface between a conven-
tional superconductor and an altermagnet.

One of the most interesting effects in this environment
is spin-polarized Andreev reflection. Andreev reflection
at a boundary between a conventional superconductor
and a ferromagnet is well understood[10] and is often
use to measure the transport spin polarization of fer-
romagnets. In a generic ferromagnet, as opposed to a
traditional antiferromagnet, the number of conductivity
channels for two spins are not the same (in other words,
the area of the Fermi surface projection onto the interface
is spin-dependent. Since an Andreev process consist of
a spin-up electron with a momentum k and a spin-down
one with a momentum −k, some electrons will never find
a partner and therefore the conventional Andreev con-

ductivity, which is twice the normal conductivity, will be
suppressed. So defined spin polarization depends on the
orientation of the interface. While for a ferromagnet is
can only be zero by accident, in an AM, for particular in-
terface orientations the number of conductivity channels
is the same for both spins, therefore one expects no sup-
pression, just as in an AF, but in some other, and in fact
in general directions the areas of the two projections will
be different, and a finite suppression will be measured.
Again, an AM sometimes behaves as an AF, and some-
times as a FM. This is illustrated in Fig. 3(left), where
a single pocket of the Fermi surface of the hypothetical
AM FeSb2[6] at a particular Fermi energy is cut off to

FIG. 3. (left) A possible 2D Brillouin zone consistent with
the crystal symmetry shown in Fig. 1(left). Specifically, a
cut-off of a specific Fermi surface pocket in the hypotheti-
cal altermagnetic FeSb2??. Different colors denote different
spins. (right) Projection of this pocket onto the (110) inte-
face.

show the symmetry. Evidently, for a {100), or (010), or
(001) interface every k|| has a partner with − k|| and the
opposite spin, for the (110) interface, for instance, this is
not the case, as is quite obvious from Fig.3(right), where
the projections of the two Fermi surfaces are shown.

In this note we have analyized various aspects of in-
terplay between the novel magnetic phenomenon, alter-
magnetism, and superconductivity. This analysis should
be helpful in designing new experiments to further study
this unusual state.
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