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Abstract

In this paper, we introduce a moving target defense mechanism that defends authenticated clients against Internet service DDoS
attacks. Our mechanism employs a group of dynamic, hidden proxies to relay traffic between authenticated clients and servers. By
continuously replacing attacked proxies with backup proxies and reassigning (shuffling) the attacked clients onto the new proxies,
innocent clients are segregated from malicious insiders through a series of shuffles. To accelerate the process of insider segregation,
we designed an efficient greedy algorithm which is proven to have near optimal empirical performance. In addition, the insider
quarantine capability of this greedy algorithm is studied and quantified to enable defenders to estimate the resource required to
defend against DDoS attacks and meet defined QoS levels under various attack scenarios. Simulations were then performed which
confirmed the theoretical results and showed that our mechanism is effective in mitigating the effects of a DDoS attack. The
simulations also demonstrated that the overhead introduced by the shuffling procedure is low.
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1. Introduction

Distributed Denial-of-Service (DDoS) attacks are a rapidly
growing problem which poses an immense threat to the In-
ternet. Arbor Networks reported a significant increase in the
prevalence of large-scale distributed denial-of-service (DDoS)
attacks in recent years [1]. In 2010, the largest reported band-
width achieved by a flood-based DDoS attack reached 100 Gbps.
Even as the bandwidth of attacks has increased, the cost of per-
forming a DDoS attack has turned out to be surprisingly low.
A Trend Micro white paper [2] reported that the price for a
1-week DDoS attack could be as low as $150 on the Russian
underground market.

A number of mechanisms have been proposed in the past to
prevent or mitigate the impact of DDoS attacks. Filtering-based
approaches [3, 4, 5] use ubiquitously deployed filters that block
unwanted traffic sent to the protected nodes. Capability-based
defense mechanisms [6, 7, 8, 9] endeavor to constrain resource
usage by senders to beneath a threshold defined by the defended
system. Secure overlay solutions [10, 11, 12, 13, 14, 15] inter-
pose a network of proxy nodes that redirect packets between
clients and the protected nodes and are designed to absorb and
filter out attack traffic. All these mechanisms are effective to
varying degrees; but these static defense mechanisms either rely
on the global deployment of additional functionalities on Inter-
net routers or require large, robust, virtual networks designed to
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withstand the ever-larger attacks. Due to the large investment
required and the vulnerability to sophisticated attacks such as
sweeping [11] and adaptive flooding attacks [12], the develop-
ment of novel, effective, efficient, and low cost defense mecha-
nisms continues to be a high priority, but elusive goal.

Motivated by the aforementioned elusive goal, we propose
MOTAG [16], a MOving Target defense mechanism AGainst
Internet DDoS attacks. This dynamic DDoS defense mecha-
nism implements a scheme of moving proxy nodes to protect
centralized online services. In particular, MOTAG offers DDoS
resilience for authenticated clients of security sensitive services
such as online banking and e-commerce. MOTAG employs a
layer of secret moving proxy nodes to relay communications
between clients and the protected application servers.

The proxy nodes in MOTAG have two important character-
istics. First, the proxy nodes are “secret” in that their IP ad-
dresses are concealed from the general public and are exclu-
sively known only to legitimate clients and only after successful
authentication. In order to avoid unnecessary information leak-
age, each authenticated client is provided with the IP address of
only a single proxy node at any given time. Existing Proof-of-
Work (PoW) schemes [17, 18, 19, 20] are employed to protect
the client authentication channel. Second, the proxy nodes are
“moving”. As soon as an active proxy node is attacked, it is
replaced by a set of alternate proxy nodes instantiated at a dif-
ferent IP address; and the clients associated with the attacked
proxy node are migrated to alternative proxy node(s). We show
that this migration to “secret” proxy nodes not only enables the
MOTAG mechanism to mitigate brute-force DDoS attacks, but
also provides a means to discover and isolate malicious insid-
ers designed to divulge the location of the secret proxy nodes
to external attackers. The malicious insiders are isolated via a



shuffling process that reassigns and migrates clients through se-
quential sets of instantiated of proxy nodes. This paper presents
the algorithms developed to (1) accurately estimate the number
of insiders and (2) to dynamically determine client-to-proxy
assignment that will “save” the largest number of legitimate
clients after each shuffle.

Unlike previously proposed DDoS defense mechanisms, MO-
TAG does not rely on global adoption on Internet routers or
collaboration across different ISPs to function. Also MOTAG
neither depends on resource-abundant overlay networks to out-
muscle high bandwidth attacks nor uses filters to provide fault
tolerance. Instead, we take advantage of our proxy nodes’ se-
crecy and mobility to fend off powerful DDoS attacks includ-
ing sweeping and adaptive flooding attacks. Employing the
MOTAG DDoS defense mechanism requires lower deployment
costs while offering substantial defensive agility which results
in effective and cost-efficient DDoS protection.

This paper is an extension of the work we presented in [16].
The main contributions of this paper are:

• A discussion of the reduction of the computational com-
plexity of greedy algorithm from O(N ·Ni) to O(1) where
N is the number of total clients and Ni is the number of
insiders.

• A theoretical and empirical analysis of the insider quar-
antine capability of the greedy algorithm.

• A discussion of a special DDoS attack case for which a
simple and elegant shuffling mechanism is designed to
segregate innocent clients from insiders.

2. Threat Model and Assumptions

Instead of targeting open and general-purpose web services,
we focused on protecting security sensitive online services against
network flooding attacks. We assume that legitimate clients of
the protected services are pre-authorized and their identities can
be authenticated before they are served. We assume the avail-
ability of a cloud environment with sufficient computing power
and bandwidth to instantiate numerous backup proxy nodes.
Since only a small group of proxy nodes are active at any time,
a cloud environment in which customers are charged only for
running instances would be ideal to avoid extensive operational
costs. We further assume that although powerful attackers with
a high aggregate bandwidth are capable of simultaneously over-
whelming many stand-alone machines on the Internet, attackers
cannot saturate the well-provisioned Internet backbone links of
ISPs, data centers, and cloud service providers.

We also assume that attackers, in case of uncertainty, can
first perform reconnaissance attacks (e.g., IP and port scan-
ning) to pinpoint targets for the subsequent flooding attacks.
With knowledge of the MOTAG mechanism, attackers could
attempt to flood the authentication channel through which the
legitimate clients are admitted. Successful attacks against the
authentication server are considered unlikely because it em-
ploys proof-of-work(PoW) schemes to prevent both computa-
tional and network flooding attack. MOTAG takes advantage

of PoW schemes that are designed to prevent computational at-
tacks. In a cloud environment, the ability of lightweight PoW
schemes to quickly reject non-authentication requests makes it
resistant to flooding attacks. Since it is significantly harder for
attackers to pass strong authentication by brute force and reach
the proxy nodes as legitimate clients, some attackers will at-
tempt to uncover the network locations of proxy nodes and may
plant ”insiders” by compromising legitimate clients or eaves-
dropping on legitimate clients’ network connections. However,
the number of such insiders in a protected system is assumed to
be limited.

3. MOTAG Architecture

The proposed MOTAG mechanism employs a group of dy-
namic proxy nodes that relay traffic between servers and au-
thenticated clients and that provide a moving target defense
mechanism that mitigates Internet service DDoS attacks. The
IP address of the proxy nodes are hidden from clients (and po-
tential attackers), and each client can only see the IP address of
the proxy node to which he is randomly assigned. Therefore,
insiders will only be able to attack the proxy node(s) to which
they are assigned, and the innocent clients who are impacted by
the attack will be only those who share the proxy node(s) with
the insiders. In order to separate affected innocent clients from
insiders, MOTAG instantiates proxy nodes and performs client-
to-proxy reassignment under the guidance of the shuffling algo-
rithm discussed in Section 4 and 5. In the following sections,
we first give an overview of MOTAG, and then introduce the
main components in greater detail.

3.1. MOTAG Overview

Figure 1 shows the overall architecture of MOTAG which
consists of four inter-connected components: the authentica-
tion server, the proxy nodes, the filter ring, and the application
server. The application server provides the online services (e.g.,
banking or e-commerce services) that we want to protect and
make accessible to authenticated clients. The IP address of the
application server is concealed from all clients and all traffic
is relayed to the application server via the proxy nodes. The
filter ring, similar to what was described in [12], is comprised
of a number of high speed routers placed around the applica-
tion server which allows inbound traffic only from valid proxy
nodes. The proxy nodes are a group of dynamic and distributed
cloud instantiations that relay communications between clients
and the application server. The authentication server is respon-
sible for authenticating clients, assigning legitimate ones to in-
dividual proxy nodes, and coordinating the shuffling of clients.

MOTAG allows a client to access the application server via
a proxy node only if the client can be successfully authenti-
cated. One simple solution is to associate the application do-
main name with the IP address of the authentication server dur-
ing DNS registration. Each successfully authenticated client
is then randomly assigned to one of the active proxy nodes
whose identities are not publicly known. The authentication
server will inform each client of the IP address of a designated
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Figure 1: Overview of the MOTAG Architecture.

proxy node, and simultaneously notify the proxy node of the
forthcoming connection from the client. This communication
between the authentication server and the proxy nodes is via a
dedicated signaling channel. Through this signaling channel,
proxy nodes report to the authentication server if they are un-
der attack. The authentication server also uses this channel to
inform proxy nodes of client assignments and to support coor-
dination of their actions against DDoS attacks.

The authentication server also assigns a capability token
for each client-to-proxy session. This token is used to limit
a client’s throughput by specifying the number of packets (or,
the number of bytes) allowed for the session in the next time
window (t seconds). In order to validate a client connection, a
proxy node should receive two identical copies of a capability
token; one from the authentication server as notification of a
new authenticated client assignment, and one from the client as
a proof of identity. Every proxy node maintains a per-session
counter and regulates traffic according to individual capabil-
ity. Such capability-based policing is key to detecting external,
brute-force flooding attacks in that it allows proxy nodes to dis-
tinguish between authorized packets and illegal ones. Further-
more, the use of a capability token helps frustrate an internal
attempt to abuse the assigned capability.

For communications between proxy nodes and the appli-
cation server, a lightweight authenticator as described in May-
day [12] can be employed for proxy identity validation. The fil-
ter ring routers can perform fast look-ups to verify such lightweight
authenticators in proxy-to-application packets. These authenti-
cators can be dynamically altered, and active proxy nodes will
receive timely updates via the signaling channel. To prevent the
authentication server from being flooded by botnets, we em-
ploy proof-of-work (PoW) schemes [17, 18, 19, 20] to ensure
its accessibility for legitimate clients.

Overall, the procedure that a client needs to go through
in order to get access to the application server is: First, the
client resolves the domain name of the target web service via
a DNS and is redirected to the authentication sever (step 1).
Upon authentication, the authentication server assigns the client
randomly to a proxy node. Both the client and proxy will re-
ceive a capability token (step 2) that serves to notify each of

the client-to-proxy node assignment (including IP addresses)
and provides a means of validating the client to the proxy node.
The client can then communicate with application server via the
proxy node (step 3). The specifics of the implementation of the
proxy nodes and authentication server are discussed below.

3.2. Secret Moving Proxy nodes
MOTAG is designed to take advantage of the unique capa-

bilities of a cloud environment. The MOTAG builds an inter-
mediate layer consisting of a pool of geographically distributed
proxy nodes designed to diffuse attackers’ traffic and insulate
the application server. When not under DDoS attack, only a
small subset of the available proxy nodes are active. These
active proxy nodes provide sufficient capability to relay nor-
mal traffic to the application server. When under DDoS at-
tack, dynamically instantiated proxy nodes are substituted for
the attacked proxy nodes in real time, confusing attackers with
“moving” target proxy nodes. The “moving” proxy nodes are
resilient to scanning attacks because they only respond to IP
addresses of the authenticated clients.

When under attack, a proxy node informs the authentica-
tion server, and the authentication server coordinates the in-
stantiation of new proxy node(s) at different network locations.
Clients (both innocent and insiders) on the attacked proxy node(s)
are migrated to the newly instantiated proxy nodes, and the
proxy node(s) under attack are shut down. Proxy instantiation
and client migration is a fast, lightweight operation because all
session information is centrally stored at the application server;
and all proxy nodes run the same, simple traffic redirection
logic and maintain no client state. The clients connected to
the under attack proxy node(s) are re-assigned across the entire
set of active proxy nodes. The new client-to-proxy node assign-
ments can be pushed to the affected clients by the authentication
server, or the clients can be made to re-authenticated for secu-
rity assurance. The overall process of proxy replacement and
client re-assignment is called client-to-proxy shuffling, and de-
tails of the shuffling algorithm are presented in Section 4. No
shuffling is performed if there is no attack, and only a small set
of proxy nodes with constant IP addresses are required to serve
all legitimate clients.

MOTAG is different from existing overlay network solu-
tions [10, 11, 12, 15], which rely on a fairly static, high-capacity,
network composition of overlay nodes to tolerate and filter out
the attack traffic. Building and maintaining such an overlay
entails extensive and continuous investment to acquire more
nodes and bandwidth. As currently implemented, existing over-
lay networks may be subject to sever service disruptions due
to sweeping [11] and adaptive [12] flooding attacks. In con-
trast, MOTAG proxy nodes are dynamic and their IP addresses
are kept confidential. The combination of these two factors
serves to enhance the agility of the MOTAG defense mecha-
nism against massive, sophisticated attacks while reducing de-
pendence on the capacity of individual proxy resources.

3.3. Authentication with Proof-of-Work Protection
An authentication server with assured accessibility is essen-

tial to our moving target defense. It acts as the initial checkpoint



to separate legitimate clients from external attackers. MOTAG
uses established authentication procedures as a mechanism to
bind a client to a specific network flow. Only with such a unique
binding is the authentication server able to keep track of the
proxy to which each client is assigned throughout the shuffling
process. Since each client has to pass authentication before be-
ing assigned to a proxy node, the IP addresses of authenticated
clients are recorded and sent to proxy nodes and used by the
proxy nodes to enforce IP-based filtering. The authentication
server is also responsible for coordinating subsequent client-to-
proxy assignments during shuffling. MOTAG is agnostic to the
specific authentication mechanism employed.

The authentication server is the only part of the MOTAG
architecture that can be publicly addressed. Therefore, only it
can be a target of non-insider assisted, distributed flooding at-
tacks. To mitigate this type of attack, the authentication server
takes advantage of existing proof-of-work (PoW) schemes [17,
18, 19, 20], which force clients to solve cryptographic puz-
zles before allowing them to consume resources on the applica-
tion server. Using the PoW schemes, the authentication server
can realize per-computation fairness regarding bandwidth us-
age among all clients [20], prevent connection depletion at-
tacks [19], and mitigate DDoS attacks on application-level au-
thentication protocols [17, 18]. Although mandating the extra
computational tasks involved with PoW schemes can help re-
duce attackers’ throughput, it also imposes considerable burden
on legitimate clients. Therefore, PoW approaches are suitable
for client authentication mechanisms that require authentication
packets to be sent infrequently and which are delay-tolerant.
However, PoW schemes are not preferred for securing applica-
tion data communication due to their high overhead.

4. Client-to-Proxy Shuffling Modeling

While using hidden proxy nodes and enforcing client au-
thentication can effectively prevent external attackers from reach-
ing MOTAG’s packet delivery system, implementing a shuffling
process that employs mobile proxies and intelligent shuffling of
client-to-proxy assignments enables MOTAG to also mitigate
insider attacks designed to expose the hidden proxy nodes to
flooding attacks.

Under our assumptions, the use of effective authentication
prevents DDoS attacks from external attackers. Therefore MO-
TAG is designed to combat attacks from authenticated users
(insiders). Attackers can gain access to the application server
and implant malicious insiders in the targeted system via social
engineering, compromising legitimate clients, stealing clients’
identities for authentication, and eavesdropping on clients’ net-
work connections. Insider attacks within a protected system
are the results of targeted attacks with relatively high techni-
cal sophistication. Thus, the number of functioning insiders
is expected to be small (maybe hundreds) compared to a typi-
cal external-only DDoS attack. Nevertheless, the damage they
can cause is still significant. Once insiders uncover the IP ad-
dresses of some proxy nodes, they will notify external attackers
who will carry out DDoS attacks against these exposed prox-
ies. MOTAG is designed to combat such insider-assisted DDoS

attacks, or simply insider attacks. Although insider attacks can-
not be fully prevented, MOTAG aims to minimize their impact
on innocent clients. In this portion of the paper, we discuss a
client-to-proxy shuffling mechanism designed to quarantine in-
sider attacks over time and ensure service accessibility for as
many innocent clients as possible.

4.1. Shuffling Strategy Overview
In MOTAG, cloud computing capacity and bandwidth is re-

served to meet the needs of the proxy nodes used in normal op-
erations as well as providing sufficient capacity to instantiate a
large number of additional proxy nodes. In the event of a DDoS
attack, a small number of additional proxy nodes are instanti-
ated. The total set of instantiated proxy nodes can be logically
classified into two groups: namely serving proxy nodes and
shuffling proxy nodes. The relatively static serving proxy nodes
provide more reliable connection services for known innocent
clients, while shuffling proxy nodes are responsible for the dy-
namic shuffling operations and are designed to provide inter-
mittent connections to suspicious clients. During the course of
an attack, sets of shuffling proxy nodes will be replaced and
the associated clients reassigned to new shuffling proxy nodes.
This shuffling of clients provides a continually moving target
for insider-assisted attacks and allows MOTAG to isolate mali-
cious insiders.

Prior to an attack, all the active proxy nodes are unmarked,
and clients are randomly assigned to proxy nodes by the authen-
tication server. Each client is assigned to only one proxy node.
Proxy nodes that are subsequently attacked will be marked as
shuffling proxy nodes while the unattacked proxy nodes remain
unmarked and are still considered serving proxy nodes. Once
a proxy node or nodes comes under attack, the authentication
server employs the greedy algorithm described in Section 5.1
to repeatedly shuffle the client-to-proxy assignments within the
shuffling proxy group to distinguish between, and eventually
segregate, insiders and innocent clients.

After each shuffle, some shuffling proxy nodes will still be
under attack, and some will not. The shuffling proxy nodes
that are no longer under attack are unmarked and become serv-
ing proxy nodes and the associated clients are marked as trusted
and considered as saved from the on-going attack (i.e. no longer
affected by the attack). Clients connected to the attacked proxy
nodes are considered untrusted since we cannot determine which
clients are insiders. To save the innocent clients from among the
untrusted group, the authentication server randomly re-distributes
all the untrusted clients across the shuffling proxy nodes. Given
an estimated number of suspicious clients and the available proxy
nodes, new proxy nodes can be instantiated as shuffling proxy
nodes to accelerate shuffling operations. As will be shown later,
the more nodes used as shuffling proxies, the faster insiders
will be quarantined and innocent clients saved. By repeating
the client-to-proxy shuffling for multiple rounds and keeping
record of the suspicious proxies/clients, most of the innocent
clients can be gradually identified. Based on the estimated num-
ber of insiders and given a desired percentage of clients to be
saved, the greedy algorithm initiates a limited number of shuf-
fling rounds after which the (expected) percentage of innocent



clients will be saved, the remaining clients will be quarantined,
and the attack damage will be minimized.

In order to reduce overhead, the shuffling process is state-
less, meaning each shuffle is considered independent. The tags
(trusted/untrusted) that are placed on clients are reset after each
shuffle. These tags do not necessarily reflect the true iden-
tity of the clients, but instead characterize the proxy node to
which they are assigned. Also, the roles of proxy nodes (shuf-
fling/serving) are interchangeable across shuffles, depending on
the behavior of attackers i.e previously unmarked proxy nodes
can become shuffling proxy nodes if attacked during the shuf-
fling process. The goal of shuffling operations is to separate
innocent but attacked/suspected clients from true insiders. Be-
cause of the iterative nature of the sequential shuffles and since
the characteristics of the individual clients are not used to deter-
mine the maliciousness of the client, insider attempts to mimic
innocent clients will not affect MOTAG’s ability to detect and
isolate attackers.

4.2. A Simple Shuffling Example
Figure 2 illustrates how client-to-proxy shuffling works. Ini-

tially, seven clients (including insiders, denoted by C1, . . . ,C7)
are randomly assigned to three proxy nodes (denoted by K1, K2,
and K3), as suggested by the dotted lines: Client C1, C2, and C3
are assigned to proxy node K1, clients C4 and C5 are assigned to
proxy node K2, and clients C6 and C7 are assigned to proxy node
K3. In this example, clients C3 and C5 are insiders; they will di-
vulge the location of the proxies in which they reside and bring
an attack to proxy nodes K1 and K2. In this case proxy nodes K1
and K2 are marked as shuffling proxy nodes, and since the iden-
tity of specific clients cannot be determined, clients C1−5 are
equally suspicious. As a result, the MOTAG reacts by replac-
ing shuffling proxy nodes K1 and K2 with new shuffling proxy
nodes K4 and K5. Clients and insiders previously assigned to
K1 and K2 are re-assigned to K4 and K5. One possible reassign-
ment scheme assigns C1, C3, and C5 to K4, while assigning C2
and C4 to K5, as indicated by the solid lines. In this case, K5 was
not under attack and the clients on K5 are saved. Conversely, K4
is still be under attack and the clients on it are suspect. The as-
signment of clients C6, C7 and K3 remain unchanged because
they are not affected by the attack. As a result of this shuffle,
only K4 remains marked as a shuffling proxy node, and it’s as-
sociated clients marked as suspect. Only K4 will be involved in
the next round of shuffling. Whereas proxy nodes K3 and K5
are unmarked as serving proxy nodes and will not be involved
in the next round of shuffling.

4.3. Problem Modeling
To mitigate insider attacks as quickly as possible, and also

to adapt to system dynamics such as client mobility, we need a
shuffling algorithm that can identify and separate as many in-
nocent clients as possible per shuffle. To that end, we first ana-
lyzed the effect of different client-to-proxy assignment schemes
on the desired number of innocent clients saved. The main no-
tations used in this model are summarized in Table 1.

Specifically, among a total number of N clients to be shuf-
fled, the number of insiders is Ni, and the number of innocent
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Figure 2: Client-to-Proxy Shuffling

Table 1: Notations used in this paper and their meanings

Notation Meaning
N number of clients (including insiders)
Ni number of insiders
K number of shuffling proxies
Ncu number of innocent clients to be saved
Nca number of innocent clients that are under attack
A j number of clients assign to the j-th proxy
p j probability that the j-th shuffling proxy is not

under attack

clients is Nc; so we have Ni +Nc = N 1. After one round of
shuffling, Nca innocent clients are still being attacked, and Ncu
of them are not (Nca +Ncu = Nc). Our goal is to mathemati-
cally compute the expected value of Ncu (denoted as E(Ncu))
under different circumstances and find a method that maximize
it given K available shuffling proxies. We use A j to represent
the number of clients appointed to proxy j.

Given that E(Ncu) = ∑
K
j=1 p jA j, where p j is the probability

that proxy j is not under attack, an arbitrary proxy j, it is not
under attack only when none of the insiders are connecting to it.
Hence, p j is also the probability that all insiders are assigned to
proxy nodes other than j. According to simple combinatorics,
p j =

(N−A j
Ni

)
/
(N

Ni

)
, where

(N
Ni

)
is the total number of ways to

distribute the Ni insiders in the population N, and
(N−A j

Ni

)
is the

number of combinations in which all insiders are in the N−A j
clients not connecting to proxy j. Therefore, the expected value
of Ncu can be calculated by Equation (4.1).

E(Ncu) =
K

∑
j=1

p jA j =
∑

K
j=1
(N−A j

Ni

)
A j(N

Ni

) (4.1)

1We provide a method to estimate the number of insiders in Section 5.4.



From the above we also have E(Nca) = Nc−E(Ncu).
Given the total number of clients N, the number of insiders

Ni, the number of shuffling proxies K, and the client-to-proxy
assignment vector A, we want to maximize E(Ncu). As a result
of analyzing Equation (4.1), increasing the number of shuffling
proxy nodes also increases the number of clients that are ex-
pected to be saved in each shuffle. In the extreme case where
K ≥ N, each client can be allocated to an exclusive proxy node
(A j = 1, ∀ j ∈ (1,K)). E(Ncu) = Nc implies that, in this case,
no innocent client will be attacked. This is the ideal scenario
where all insiders are quarantined within their own proxy nodes
in a single round of shuffling. However, due to resource con-
straints, it will typically not be cost-effective to provide a dedi-
cated proxy node for each client. In most cases, the client popu-
lation would greatly outnumber the shuffling proxies (K� N).
Consequently, the method of distributing clients across proxy
nodes becomes vitally important to the number of clients saved.

Assuming we have a constant number of K shuffling proxy
nodes, we are facing an optimization/maximization problem
with Equation (4.1) as the objective function. The variables are
summarized into the vector A of natural numbers that defines
the client-to-proxy assignment scheme, with the constraint be-
ing

K

∑
j=1

A j = N, where A ∈ NK (4.2)

Although recursive algorithms such as dynamic program-
ming can be employed to compute the optimal solution, we
adopt a greedy approach described in Section 5.1 to produce
a quick and near-optimal solution. Our simulations of various
configurations showed that the results produced by the greedy
algorithm approached very closely the theoretical upper bound
of E(Ncu).

4.4. A Special Case

Before presenting the greedy algorithm solution to the client-
to-proxy shuffling optimization problem in Section 5.1, we will
first introduce a simple, elegant, and straightforward optimal
solution to a special case of the general problem. We note
that when the number of insiders (Ni) is less than or equal to
the number of proxies (K), then evenly distributing all clients
among all shuffling proxies will be optimal in saving maximum
number of clients.

Theorem 1 Evenly distributing clients to all shuffling proxies
maximizes E(Ncu) when Ni ≤K and client-to-proxy distribution
is uniform.

PROOF. We prove Theorem 1 using the exchange argument.
For simplicity without loss of generality, we consider an ar-
bitrary pair of proxy nodes among all shuffling proxy nodes.
Assuming these two proxy nodes are the i-th and j-th proxy
nodes, and there are Ai and A j clients on them respectively,
where Ai +A j = T . Given that client-to-proxy distribution is
uniform and Ni ≤ K(K = 2), it is expected that there are 1 or

2 insiders here, i.e. Ni = 1 or 2. Using Equation (4.1), when
Ni = 1, we have

E(Ncu) =

(T−Ai
1

)
·Ai(T

1

) +

(T−A j
1

)
·A j(T

1

) =
2 ·Ai ·A j

T

When Ni = 2, we have

E(Ncu) =

(T−Ai
2

)
·Ai(T

2

) +

(T−A j
2

)
·A j(T

2

) =
Ai ·A j · (T −2)

T · (T −1)
.

In both cases, Ai = A j maximizes E(Ncu). Since this pair of
shuffling proxy nodes is randomly chosen, we can iteratively
apply the exchange argument to any pair of shuffling proxy
nodes, and eventually every proxy node will have the same
number of clients. From this we can conclude that E(Ncu) is
maximized when all proxy nodes are assigned an equal number
of clients.

As a result, in the special case where the number of insid-
ers is less than or equal to the number of shuffling proxies, we
can obtain an optimal client-to-proxy assignment in O(1) by
randomly assigning Ni/K clients to each of the shuffling proxy
nodes. Next we will discuss the general case solved by a greedy
algorithm.

5. Greedy Algorithm

In this section, we present a greedy algorithm for guiding
client-to-proxy shuffling. First, we show a naive version of
the greedy algorithm which applies an enumeration approach
in finding the local optimal. Then by applying approxima-
tion techniques, we improve the greedy algorithm and dramat-
ically reduce its computational complexity. Next, we theoreti-
cally investigate the insider quarantine capability of the greedy
algorithm under various attack scenarios. Finally, to support
the greedy algorithm, we present maximum-likelihood estima-
tion(MLE) approach for estimating the number of insiders.

5.1. The Greedy Shuffling Algorithm

As determined from the previous discussion, evenly dis-
tributing all clients to all proxy nodes is optimal for saving
clients when the number of insiders is less than or equal to the
number of clients. However, in reality, the number of insiders
can be far greater than the number of proxy nodes. In this more
likely case, evenly distributing clients may result in all proxy
nodes being under attack and thus shuffling may be unable to
save clients efficiently. Therefore, the strategy of evenly dis-
tributing clients among proxy nodes may not be applicable to
the case when the number of insider is far more than the proxy
number. This motivated us to design a shuffling algorithm that
can be applicable to general case.

Intuitively, assigning fewer clients to a given proxy node
should reduce the probability of introducing insiders to this
proxy. However, if the proxy node is not under attack, assign-
ing fewer clients to it also results in fewer clients being saved.



Therefore, an efficient shuffling algorithm was needed to deter-
mine how many clients to assign to each proxy node in order
to maximize the expected number of clients saved among all
proxy nodes.

Based on this intuition, the greedy algorithm decides how
many clients to assign to a given proxy node, one proxy node
at a time, based on the goal of maximizing the overall expected
number of clients to be saved in a given shuffle. For an arbitrary
proxy j, the number of clients assigned to it and the number of
innocent clients that are expectedly to be saved are denoted as
A j and E(A j), respectively. The greedy algorithm computes
E(A j) as follows.

E(A j) =

(N−N j
A j

)(N
A j

) ·A j (5.1)

The detailed procedure of greedy algorithm used in com-
puting the client-to-proxy assignment is shown in Algorithm 1.
The main function is called GreedyAssign. Since in Equation (4.1)
E(Ncu) is the sum of expected number of clients saved for each
proxy node (i.e. p j ·A j) for all the active shuffling proxy nodes,
an optimality analysis was first performed for an individual shuf-
fling proxy node. For an arbitrary proxy node j, A j can be any
value within [0,N− 1]. A j cannot be N; otherwise, all clients
would be under attack if there is a single insider present.

Since the value of Ni will affect the optimal choice of A j, for
a particular Ni, all possible values of A j will be enumerated and
the parameter ω that maximized p j ·A j will then be selected.
This subroutine is described in procedure MaxProxy of Algo-
rithm 1. Under our greedy approach, we assign ω clients to as
many proxy nodes as possible.

Function GreedyAssign is called recursively to assign the
remaining clients to the rest of the proxy nodes. The computa-
tion will terminate when any one of three conditions is met:
first, when there are more proxy nodes left than clients, i.e.
when each client will be assigned to an exclusive proxy node;
second, when there is only one proxy node left, i.e. all remain-
ing clients will be appointed to a single proxy node; and, third,
when the expected number of remaining insiders is rounded
to 0, i.e. there are no insiders, and all remaining clients will
be evenly distributed for load balancing. The overall compu-
tational complexity of the greedy algorithm is O(N ·Ni). To
further reduce the computational overhead throughout the shuf-
fling procedures, the client-to-proxy assignment vectors for dif-
ferent N, K, Ni combinations can be pre-computed and stored
in lookup tables for runtime reference.

To evaluate the optimality of the greedy algorithm, the re-
sults of experimental implementations were compared with the
theoretical upper bound of E(Ncu). Since Equation (4.1) is
a summation of p j ·A j for each individual shuffling proxy j,
the maximal value of (4.1) cannot be greater than the sum of
the max of each p j · A j when relaxing Constraint (4.2), i.e.
Max(E(Ncu)) ≤ K ·Max(p j · A j). Here, Max(p j · A j) can be
obtained by running subroutine MaxProxy(N,0,N−1,Ni). The
comparison between the greedy algorithm and the theoretical

Algorithm 1 Greedy algorithm for computing client-to-
proxy assignment

function GREEDYASSIGN(Client, Insider,Prox)
if Client ≤ Prox then

Assign 1 exclusive proxy to each client
else if Prox = 1 then

Assign all clients to the proxy
else if Insider = 0 then

Evenly distribute Client over Prox
else

ω = MaxProxy(Client,0,Client−1, Insider)
ProxToFill = b(Client/ω)c
if ProxToFill ≥ Prox then

ProxToFill = Prox−1
RemC =Client−ProxToFill ·ω
RemP = Prox−ProxToFill
RemA = Round

( Insider·RemC
Client

)
Fill ProxToFill proxy nodes with ω clients each
Fill the rest proxy nodes according to
GreedyAssign(RemC,RemA,RemP)

procedure MAXPROXY(Client,Lbnd,Ubnd, Insider)
Max = 0, MaxAssign = 0
for i = Lbnd→Ubnd do

Save =
(Client−i

Insider

)
· i/
(Client

Insider

)
if Save > Max then

Max = Save, MaxAssign = i
return MaxAssign

upper bound is done via simulations under various configura-
tions on MATLAB. The results are presented in Section 6.

5.2. Improving The Greedy Algorithm

As discussed above, the greedy algorithm aims to maximize
the overall number of innocent clients expected to be saved by
summing up the expected number of clients saved in each sin-
gle proxy. The subroutine MaxProxy of Algorithm 1 finds the
value of Ai that maximizes E(Ai) in Equation (5.1) by enumer-
ating all possible choices. For the purpose of the discussion, we
name this approach the enumeration approach. The enumera-
tion approach can find the optimal value of Ai in O(N ·Ni) time
complexity, where N denotes the total number of all clients and
Ni denotes the number of insiders among the clients. There-
fore, as N and Ni gets larger, the running time of the subroutine
MaxProxy will become notably longer.

To improve the efficiency of the greedy algorithm, we de-
signed an approximation approach that can find a near-optimal
value of Ai in O(1) time complexity. This is done by solving
Equation (5.1) using Stirling’s Approximation n!≈

( n
e

)n√2πn,
and a series of other approximations assuming Ni� N, as fol-
lows.



E(Ai) =
(N−Ni)!(N−Ai)!
(N−Ni−Ai)! N!

·Ai

≈
(N−Ni)

N−Ni(N−Ai)
N−Ai

√
(N−Ni)(N−Ai)

(N−Ni−Ai)N−Ni−AiNN
√
(N−Ni−Ai)N

·Ai

≈ (N−Ni)
N−Ni(N−Ai)

N−Ai

(N−Ni−Ai)N−Ni−AiNN ·Ai

≈
(

N−Ni

N

)Ai

·Ai

Let Ai =
N·x
Ni

, we have

E(Ai) =

(
1− Ni

N

)N·x
Ni
· N · x

Ni
= e−x N · x

Ni
(5.2)

After applying approximation limn→∞ (1−1/n)n ≈ e−1 on
the derivation of Equation (5.2), we get

∂E(Ai)

∂x
=

e−x ·N
Ni

· (1− x) (5.3)

From Equation (5.3), the derivation of E(Ai) equals 0 if and
only if x = 1. In other words, x = 1 maximizes E(Ai). As a
result, assigning Ai =

N
Ni

clients to proxy i will optimize the
expected number of benign clients that can be saved, which is

E
(

Ai =
N
Ni

)
=

N
Ni · e

(5.4)

With the analysis above, we can improve the greedy algo-
rithm by using an approximation approach for the subroutine
MaxProxy. Unlike the enumeration approach which enumer-
ates all the possible values of Ai to find an optimal value that
could maximize Equation (5.1), the approximation approach
computes the value of Ai only based on the total client number
and number of insiders, i.e. Ai =

N
Ni

. The enumeration approach
has computational complexity O(N ·Ni) while approximation
approach has computational complexity O(1).

To evaluate the accuracy and the optimality of the approxi-
mation approach, we compared it to the enumeration approach
using a series of simulations in MATLAB. Figure 3 shows the
number of clients that should be assigned to a given proxy node
in order to save the expected maximum number of innocent
clients from one proxy node under varying conditions for both
the enumeration and the approximation approach. Since the
enumeration approach enumerates and compares all possible
choices, we know that its results are optimal. In Figure 3, the
results produced by the approximation approach overlap with
those given by the enumeration approach in almost all cases
indicating that the approximation approach is nearly optimal.

For ease of presentation, we term the algorithm which adopts
the enumeration approach to implement MaxProxy subroutine
as greedy algorithm, and name the variant which replaces the
enumeration approach with approximation approach as the im-
proved greedy algorithm. Taking the analysis one step further,
we implemented both the greedy algorithm and the improved

greedy algorithm in MATLAB and ran simulations with varying
numbers of insiders and clients. In Figure 4, the y-axis repre-
sents the deviation between the improved greedy algorithm and
the greedy algorithm in the percentage of clients saved. The
y-axis values were computed using y = s2−s1

s1
, where s1 and s2

were the percentage of clients saved under greedy and improved
greedy algorithm respectively. From Figure 4, we can see that
the deviation was consistently less than 1%, and from this we
can conclude that the improved greedy algorithm has perfor-
mance very close to the greedy algorithm.

Since the improved greedy algorithm has a lower time com-
plexity in deciding client-to-proxy assignment(i.e. O(1)), is
likely to be computationally faster, and generates near-optimal
results, we believe the improved greedy approach is preferable
for practical usage.
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Figure 4: Deviation in percentage of innocent clients saved under greedy algo-
rithm and improved greedy algorithm, proxy number is 100, client numbers are
1K,5K,10K,100K respectively

5.3. Insider Quarantine Capability
Since we are able to demonstrate that the greedy algorithm

provides a near-optimal method for assigning clients to proxy
nodes in order to save the maximum number of clients, we next
approached the problem of estimating the insider quarantine ca-
pability of the greedy algorithm. This issue is considered very
important since knowing the insider quarantine capability of the
greedy algorithm would aid in estimating the number of proxy



nodes to instantiate as shuffling proxy nodes in order to meet
quality of service (QoS) goals. Here, QoS refers to the specific
percentage of clients saved.

The insider quarantine capability is defined as the percent-
age of clients can be quarantined (saved) from insiders given
N clients (among which Ni are insiders), K proxy nodes and
j rounds of shuffling. As is discussed in Section 5.2, the enu-
meration and the approximation approaches can both be used in
the subroutine MaxProxy of greedy algorithm to achieve near-
optimal assignment of clients to each shuffling proxy node. Since
the approximation approach has performance close to that of
the enumeration approach and is likely to perform faster, we
used the approximation approach based greedy algorithm in an-
alyzing the insider quarantine capability.

Equation (5.4) shows the number of clients that can be saved
in one proxy node when there are N client and Ni insiders. From
this equation it is evident that the number of clients saved is
dependent on the number of shuffling proxy nodes used. Recall
that the greedy algorithm tries to assign N/Ni clients to as many
proxy nodes as possible, and put the rest of clients in the last
proxy. Typically, the number of insiders is much larger than the
number of shuffling proxy nodes, i.e. Ni � K, the last proxy
is likely to be assigned far more clients than the other proxy
nodes. Therefore, the last proxy is likely to have the highest
probability of being attacked. For ease of analysis, we assume
it will always be attacked. Thus the maximum expected number
of clients saved will be the summation of the expected number
of clients saved in the first K−1 proxy nodes, i.e. (K−1)·N

Ni·e . Let
y be the percentage of clients saved among all N clients in one
round of shuffle, then we have:

y =
K−1
Ni · e

(5.5)

As the number of insiders (Ni) will almost be the same each
round and the number of shuffling proxy nodes (K) is a con-
stant, we can regard y as the same number in each round of
shuffling. If we define E(U j) as the percentage of clients not
saved and E(S j) as the percentage of clients saved after j rounds
of shuffle, then we have E(U j) = (1− y) j. Therefore, the per-
centage of clients saved in the first j rounds of shuffle is:

E(S j) = 1−E(U j) = 1−
(

1− K−1
Ni · e

) j

(5.6)

This result indicates that the percentage of clients saved
with j rounds of shuffle only depends on the number of insiders,Ni,
and the number of proxy nodes, K. The total number of clients,N,
will not affect the percentage of clients saved.

In order to confirm the correctness of the achieved theoret-
ical results, simulations were conducted using constant values
for the number of shuffling proxy nodes and insiders (100 and
500 respectively), using 10K, 50K, 100K innocent clients and
varying the number of rounds of shuffling. In Figure 5, the y-
axis represents the accumulated percentage of clients saved for
each value of the number of innocent clients. In all cases the
experimental results very nearly overlap with the theoretical re-
sults. The small differences can probably be attributed to the
use of the approximation approach in the greedy algorithm.
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Figure 5: Percentage of clients saved among all clients under 100 proxy nodes,
500 insiders and various innocent client numbers

5.4. Estimating the Number of Insiders

In our earlier discussion, we assume the number of insiders
(Ni) is fixed and given; however, in practice, we have no such
prior knowledge. Since the value of Ni has direct influence on
the client-to-proxy assignment, accurate estimation is important
to the efficiency of the shuffling mechanism. We investigated
the use of a maximum-likelihood estimation (MLE) as a source
of an estimate of the number insiders.

In order to use the MLE, it was necessary to establish a con-
nection between the number of insiders Ni and the number of
proxy nodes that are not under attack (denoted as X). In a par-
ticular attack where X = m, we can calculate the probabilities
Pr(X = m) with regard to different Ni values, and use the Ni
value that maximizes the probability as the estimated number
of insiders. According to the inclusion-exclusion principle un-
der balls-and-urns model [21], we can compose Equation (5.7)
to calculate Pr(X = m), where Pr(X ≥M) stands for the proba-
bility that at least M (M = m,m+1, . . . ,K) proxy nodes are not
attacked, K is the total number of all shuffling proxy nodes.

Pr(X = m) = Pr(X ≥ m)−
(

m+1
m

)
Pr(X ≥ (m+1))

+

(
m+2

m

)
Pr(X ≥ (m+2))− . . .

+ (−1)K−m
(

K
m

)
Pr(X ≥ K) (5.7)

In particular, these M not-under-attack proxy nodes consti-
tute the set U = {u1,u2, . . . ,uM}, where u j is the real ID of the
jth available proxy node. Set U can be any M sized subset of
the K shuffling proxy nodes.

The derivation of Pr(X ≥ M) is similar to the derivation
of Equation (4.1). If a particular set U of proxy nodes are not
attacked, the insiders must be among the clients assigned to
the remaining proxy nodes (the complement of U). Thus, we
have Equation (5.8), in which ∑

(M)
U denotes the summation over

all possible combinations of U (all M sized subsets of the K
shuffling proxy nodes), and N−∑

M
j=1 Au j gives the number of

clients connecting to the proxy nodes not in U. u j is an arbitrary
proxy node in the set, and Au j denotes the number of clients
assigned to that node.



Pr(X ≥M) =
∑
(M)
U
(N−∑

M
j=1 Au j
Ni

)(N
Ni

) (5.8)

Under a certain client-to-proxy assignment scheme A, we
can now derive Pr(X =m) with Ni by combining Equation (5.7)
and (5.8).

To evaluate the insider estimation algorithm, simulations
were run in MATLAB varying the number of insiders. Based
on the number of attacked proxy nodes, the algorithm uses the
MLE to estimate the real number of insiders. The estimate
of the number of insiders that maximizes the result of Equa-
tion (5.7) is used as the overall estimate. These estimations are
plotted against the actual numbers of insiders in Figure 6. For
each data point, we ran the simulation 30 times to compute the
mean and 99% confidence intervals. The overlapping plots and
the small error bound (relative to the number of insiders) indi-
cate that the MLE estimate of the number of insiders is quite
accurate.
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Figure 6: Insider estimation under 10K clients, 100 shuffling proxy nodes

6. MOTAG Evaluation

In the previous discussions, we generated a theoretical basis
for MOTAG and demonstrated via simulations, that our assump-
tions do not significantly degrade its expected performance. In
this section, we assess the overall effectiveness of the MOTAG
in mitigating the effects of a DDoS attack and evaluate the over-
head introduced by the shuffling mechanism.

6.1. Insider Quarantine Capability Evaluation
In evaluating the effectiveness of MOTAG, we (1) compared

the performance of an implementation of MOTAG using the
greedy algorithm to the theoretical upper bound discussed in
the previous sections, and (2) demonstrated that the greedy al-
gorithm can segregate innocent clients from insiders in only a
few shuffles.

In the simulations, we implemented the algorithms of MO-
TAG on MATLAB and simulated various combinations of the
number of clients, the number of insiders, the number of shuf-
fling proxy nodes. Although MOTAG does not require any of
these factors to remain constant from shuffle to shuffle, for ease
of comparison, all these factor were held constant during each
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(b) Varying the number of insiders under 100K clients, 100 shuffling
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(c) Varying the number of shuffling proxies under 10K clients, 100 insid-
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(d) Varying the number of shuffling proxies under 100K clients, 100 in-
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Figure 7: The number of shuffles needed to save 80% and 95% of innocent
clients

simulation run (series of shuffles). In each simulation, the clients
designated as insiders were randomly selected from the pool of
clients using Mersenne twister [22] as our random number gen-
erator. The insiders were assumed to always generate attacks on
the proxy nodes to which they were connected, and the attack-
ers were assumed to have sufficient bandwidth to overwhelm
an attacked proxy node. In practice, this means that a single
insider assigned to a proxy node will ensure that node is at-
tacked. However, as discussed earlier, due to the strong authen-
tication enforced by the authentication server, we assumed only
a limited number of insiders (hundreds) will be able to initiate
attacks. In these simulations, MOTAG used the MLE method
from Section 5.4 to estimate the number of insiders and uses



the greedy algorithm from Section 5.1 to determine the client-
to-proxy assignments for the each shuffle.

Figure 7 shows the number of shuffles needed to save 80%
and 95% of the innocent clients using the greedy algorithm
(solid lines) and the theoretical upper bound from Section 5.1
(dotted lines). As was expected, saving a specific percentage
of the innocent clients requires more shuffles as the number of
insiders increases and fewer shuffles as the number of shuffling
proxy nodes increases. In Figures 7a and 7b the total number of
clients (10k for 7a and 100k for 7b) and the number of shuf-
fling proxy nodes (100) are held constant while the number of
insiders varies from 10 to 500. In Figures 7c and 7d the total
number of clients are the same as in the previous two figures,
but the number of insiders is held constant at 100 and the num-
ber of shuffling proxy nodes varies between 40 and 500. Each
simulation was run 30 times to generate average data points and
99% confidence intervals.

Overall, the results of the simulations presented above indi-
cate that the performance of MOTAG is close to the theoretical
optimum. This suggests that the reassignment of clients to shuf-
fling proxy nodes is also nearly optimal. Specific conclusions
can be drawn from the individual figures. Figures 7a and 7b
show that the number of shuffles needed to save the same per-
centage of innocent clients grows approximately linearly with
the increase in the number of insiders. Similarly, Figures 7c
and 7d indicate that the number of shuffles required to save
a given percentage of innocent clients increases when fewer
proxy nodes are used in each shuffle. The number of shuffles
rises slowly while the number of proxy nodes outnumbers the
insiders, but that number begins to rise ever more steeply when
the number of proxy nodes falls below the number of insiders
(100). Moreover, the narrow confidence intervals of all the data
points indicate that the performance of the MOTAG shuffling
algorithm is reliable and predictable.
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Figure 8: Number of proxy nodes needed to save 95% of innocent clients within
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Figure 8 shows the relationship between the number of in-
siders and the number of shuffling proxy nodes for 5, 10 , and
15 shuffles with the number of clients held constant at 10k
(solid lines) and 100k (dotted lines). For both cases, when 80%
and 95% of the innocent clients are saved, there seems to be a
nearly linear relationship between the number of required shuf-
fling proxy nodes and the number of insiders. Also, the 10-

fold increase, from 10K to 100K, in the number of clients does
not require a similar 10-fold increase in the number of shuffling
proxy nodes. This seems to indicate that the greedy shuffling al-
gorithm is robust with respect to the number of innocent clients.
Overall, the simulation results show that MOTAG is effective in
mitigating the effect of DDoS attack initiated by hundreds of
insiders within a few shuffling.

6.2. Overhead
The experimental results presented above indicate that us-

ing MOTAG would be effective in defense, but implementing
MOTAG would also increase the overhead in the communica-
tions between clients and the application server due to the proxy-
based communication relay and the client-to-proxy shuffling.

Table 2: Latency overhead introduced by proxy indirection

Direct Indirect
RTT Mean RTT Overhead Max RTT Overhead

1 63ms 104ms 63.35% 143ms 125.41%
2 86ms 99ms 15.64% 128ms 49.45%
3 83ms 102ms 23.73% 133ms 60.47%
4 90ms 112ms 23.77% 131ms 45.18%
5 84ms 107ms 27.73% 120ms 42.48%

Table 3: Throughput overhead introduced by proxy indirection (Mb/s)

1 2 3 4 5
Direct 90.66 83.46 86.24 123.30 121.20

Indirect 15.20 14.46 13.99 15.97 14.09

First, to assess the overhead introduced by proxy-based traf-
fic relays, 10 geographically distinct U.S. nodes were selected
from PlanetLab to form 5 end-to-end flows. Also, 24 other
nodes that spread across the country were selected to serve
as proxy nodes. The latency and throughput for both direct
and relayed communications were measured for each of the
5 flows, and the results are shown in Tables 2 and 3, respec-
tively. SSH tunneling through individual proxy nodes was em-
ployed to redirect traffic between end nodes. Mean round trip
times (RTT) were obtained by bouncing short TCP messages
back and forth between the end nodes of each flow 100 times.
Throughput data was the average of 10 Iperf [23] sessions. From
the tables, the impact of introducing proxy nodes on latency
(usually less than 30%) is much less significant than its influ-
ence on throughput. The drop in throughput is not only due
to traffic redirection in the proxy nodes, but is also a result of
message encryption and decryption by SSH agents. Since MO-
TAG does not specify communication protocols, various cryp-
tographic strategies, including no encryption, can be listed as
options when implementing MOTAG based systems. Users can
make informed decisions based on the nature of the protected
application.



Table 4: Time to switch between two proxy nodes (seconds)

1 2 3 4 5
MEAN 0.514 0.512 0.509 0.546 0.530
MAX 0.677 0.773 0.693 0.714 0.753
MIN 0.291 0.208 0.249 0.357 0.214

The overall agility, and therefore the usability, of MOTAG is
dependent on the time needed to shuffle clients among different
proxy nodes. Rapid shuffles will make it harder for attackers to
“follow” the moving target (proxy) nodes as well as reducing
the time needed to quarantine insiders. Likewise, reducing the
time for individual shuffles will save clients more rapidly and
improve the overall QoS by reducing the severity of service dis-
ruptions. Therefore, to quantify the impact of our mechanism
on the end users, the time needed for a client to switch from
one proxy node to another was determined. To that end, 5 geo-
graphically dispersed nodes were chosen from PlanetLab to be
the destination servers. Another node was randomly selected to
play the role of the authentication server. Finally, 8 PlanetLab
nodes were selected as proxy nodes. The time between when
the redirection message was sent by the authentication server
to the client and when the client connected to the destination
server via the new proxy node was recorded as the time to mi-
grate clients between proxy nodes. Concurrent with client mi-
gration, the authentication server sends a session ticket to both
the client and the new proxy node, the client is authenticated by
the proxy node when this ticket is validated. Only upon authen-
tication will the new proxy node begin relaying packets for the
client. Table 4 presents the average, maximum, and minimum
proxy switching times for each destination node. The numbers
are fairly small yet consistent; the less than one second proxy
switching time should not cause significant service disruption
for most non-realtime applications.

7. Related Work

A number of research efforts have been devoted to defense
against DDoS attacks over the past decade [24]. Filtering-based
approaches [3, 4, 5] intend to use ubiquitously deployed filters
to block unwanted traffic far away from the protected nodes.
These filters assume that attack traffic can be differentiated from
legitimate traffic. However, this is usually a difficult task be-
cause clever attackers can spoof IP addresses and mimic legiti-
mate senders. Instead of trying to distinguish and then block
malicious traffic, MOTAG uses client authentication to filter
out unauthorized clients. Only authenticated clients will be as-
signed to the hidden moving Internet proxy noted that directly
communicate with the protected application server.

Capability-based mechanisms employ a different philoso-
phy from filter mechanisms. Capability-based mechanisms fo-
cus on controlling resource usage by the destination node [6, 7,
8, 9]. Senders have to obtain the receivers’ explicit permission
before transmitting packets to them. Traffic from authorized or

privileged senders with valid capability permissions can be pri-
oritized during an attack. Using capability-based mechanisms
is a more proactive form of defense than filtering, but both solu-
tions rely on the global adoption of protocols on Internet routers
for adequate capability enforcement. This is unlikely to happen
given limited financial incentives. MOTAG employs a dynamic
capability-based mechanism to augment the moving target de-
fense. MOTAG uses capability tokens to identify and rate-limit
authenticated clients at the proxy nodes. The use of these capa-
bility tokens allows legitimate clients to use (but not abuse) the
dynamically adjusted aggregate bandwidth of the proxies rather
than depending on static defenses on Internet routers for traffic
policing.

To eliminate the physical network constraints and admin-
istrative boundaries, secure overlay networks have been im-
plemented to provide flow authentication, filtering, and redi-
rection as well as attack tracking and tolerance enhancement
[10, 11, 12, 13, 14, 15]. The goal of overlay networks, such
as TOR [25], is to hide the protected nodes behind a well-
provisioned, distributed overlay network that is capable of ab-
sorbing DDoS traffic. But, by using an exposed, relatively
static, overlay network to withstand the ever-intensifying DDoS
attacks inflicted by expanding botnets, the defenders will in-
volve themselves in a never-ending bandwidth arms race with
potential attackers. Even if a strong overlay network that can
mitigate the effects of DDoS attacks is in place, advanced at-
tackers can attack a small portion of the overlay network and
sweep through the entire network step by step [11]. By repeat-
ing such sweeping attacks, attackers are guaranteed to hit the
critical nodes and cause major service disruptions. Sophisti-
cated attackers can even assess the impact of their attacks via
recruited legitimate clients, and then adapt their attacks based
this feedback and focus on the pinch points [12]. Moreover,
overlay networks are vulnerable to insider attacks that can po-
tentially expose the protected server to external attacks [26].

As an alternative to overlay networks, other mechanisms
that hide the paths to selected services behind intermediate pro-
tections [27, 28] have been implemented. These mechanisms
tend to employ a simpler, easier-to-deploy protection layer to
filter out un-authorized traffic and are thus conceptually sim-
ilar to MOTAG. Unfortunately, these protections layers fail to
defend against attacks in which authorized clients act as ma-
licious insiders to compromise their inter-layer protection. In
this paper, we thoroughly analyzed insider threats and proposed
a shuffling mechanism to quarantine insider attacks.

MOTAG takes advantage of the mobility in its packet relay
proxy nodes in its shuffling mechanism that segregates insiders
from innocent clients. The mobile relay proxy nodes resem-
ble the earlier network address randomization technique against
hitlist worms [29] and the fast-flux scheme to sustain accessi-
bility to illegal commercial websites [30]. To the best of our
knowledge, we are the first in using such dynamic method on
defense against DDoS attacks.

8. Discussion

MOTAG is a dynamic traffic relay framework open only to



authenticated clients. It is designed to counter both brute force
and sophisticated DDoS attacks against the protected applica-
tion server as well as other MOTAG components.

Resistance to brute-force attacks. With MOTAG protection,
external attackers will not be able to locate the hidden proxy
nodes without planting insiders, i.e. compromising or eaves-
dropping on legitimate clients. Using hidden proxy nodes en-
sures that external attackers will not be able to discover the IP
range of the entire proxy pool, and individual insiders will only
be able to discover the IP addresses of a small subset of the
active proxy nodes. The IP filtering employed by the MOTAG
proxy nodes and the filtering ring ensures that a MOTAG im-
plementation will be resistant to scanning attacks because all
active proxies will only respond to IP addresses representing
legitimate clients. The ability to distribute the individual com-
ponents of MOTAG to one or more cloud providers means that
the proxy pool (which can be the entire cloud domain) can po-
tentially be so large that even powerful botnets will be unable
to attack all the active proxy nodes.

The mobility of proxy nodes adds another layer of resiliency
against brute-force attackers. If attackers discover a secret proxy
node by chance, the attacked node will quickly “move away”;
and without the ability to trace the shifting proxies, external
attackers will not be able to retarget their attack.

The only exposed (static) component of the system is the
authentication server. Existing PoW schemes provide protec-
tion from external attacks by isolating the MOTAG components
from external threats through strong authentication protocols.

Resistance to insider attacks. Malicious insiders pose a more
serious DDoS threat to a MOTAG protected server than exter-
nal attackers because insiders will have access to the IP ad-
dress(es) of one or more secret moving proxy nodes, and can
expose the proxy nodes to potentially powerful external bot-
net attacks. As discussed in Section 4, by dynamically “mov-
ing” proxy nodes and shuffling client-to-proxy designation op-
timally, MOTAG can quarantine insiders in a few rounds, thus
mitigating the effects of a DDoS attack and maintain the QoS of
authenticated clients. MOTAG protects the precious bandwidth
of the application server, and any bandwidth that is wasted due
to attackers is at most proportional to the ratio of proxies under
attack (rather than the number of attackers). Any wasted band-
width will be recovered as multiple rounds of shuffling reduce
the number of proxy nodes under attack. In addition, since the
shuffling decisions are specific to each round, MOTAG can eas-
ily adjust to changing to system dynamics such as the varying
arrival and departure rates of both clients and insiders. Some in-
siders may delay attacking for several shuffles, aiming to profile
the IPs of the proxy nodes. However, since proxy nodes that are
not under attack are not marked as shuffling proxy nodes, the
associated clients are not shuffled, and silent insiders will only
be able to discover the IP address of a single proxy node and
thus fail in their purpose.

Resistance to compromised proxies. With the help of mali-
cious insiders, attackers may compromise some proxy nodes. If

successful, the application server and the authentication server
will be directly exposed to attackers. However, lightweight
authenticators, similar to what was used in [12], can be used
to identify and filter proxy-to-server traffic in the filter ring.
Therefore, traffic from any compromised proxy nodes that are
exploited to attack the application server can be readily identi-
fied and their packets blocked by the high-speed filter ring de-
ployed around the server.
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10. Conclusion

In this paper, we presented MOTAG, a framework that em-
ploys dynamic, hidden proxy nodes as moving targets to miti-
gate insider-assisted network flooding DDoS attacks. The dy-
namic proxy nodes perform packet forwarding between the au-
thenticated clients and a protected application server. When a
DDoS attack is mounted against MOTAG proxy node(s), the
authenticated clients connected to the attacked proxies are re-
assigned to alternative proxy nodes in realtime, enabling them
to evade the ongoing attack and maintain access to the protected
services. By continuously replacing the attacked proxies and
reassigning (shuffling) the attacked clients onto the new prox-
ies, MOTAG is able to separate innocent clients from insiders
through a series of shuffles.

To optimize the segregation of innocent clients, we designed
a novel, efficient greedy algorithm that guides the client-to-
proxy shuffling. In addition, the insider quarantine capability
of the greedy algorithm was studied and quantified to enable
defenders to estimate the resources required to defend against
DDoS attacks and meet defined QoS levels under various attack
scenarios. The simulation results showed that MOTAG can effi-
ciently mitigate a DDoS attack assisted by hundreds of insiders
using a small number of shuffles. In the future work, we plan to
study the economic cost of this defense scheme and extend the
defense scheme to protect a system with anonymous clients.
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