
B-1

Copyright 2016 H. Gomaa

SWE 760

Lecture 9:
Component-based Software Architectures

for Real-Time Embedded Systems

Reference:

H. Gomaa, Chapter 12 - Real-Time Software Design for Embedded
Systems, Cambridge University Press, 2016

Hassan Gomaa

Dept of Computer Science
George Mason University

Fairfax, VA

Copyright © 2016 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any means,
without the prior written permission of the author.

Copyright © 2016 Hassan Gomaa 2

Figure 4.1 COMET/RTE life cycle model

Requirements
Modeling

Analysis
Modeling

Incremental
Software

Construction

Incremental
Software

Integration

System
Testing

Incremental
Prototyping

Customer

User

Design
Modeling

System
Structural
Modeling

B-2

Copyright 2016 H. Gomaa
3

Software Modeling for RT Embedded Systems

1 Develop RT Software Requirements Model

– Develop Use Case Model

2 Develop RT Software Analysis Model

– Develop state machines for state dependent objects

– Structure software system into objects

– Develop object interaction diagrams for each use case

3 Develop RT Software Design Model
‒ Design of Software Architecture for RT Embedded Systems
‒ Apply RT Software Architectural Design Patterns
‒ Design of Component-Based RT Software Architecture
‒ Design Concurrent RT Tasks
‒ Develop Detailed RT Software Design
‒ Analyze Performance of Real-Time Software Designs

Copyright 2016 H. Gomaa
4

Active and Passive Objects

• Objects may be active or passive
• Active object

– Concurrent task or component
– Has thread of control

• Passive object
– a.k.a. Information Hiding Object
– Has no thread of control
– Operations of passive object are executed

by task

B-3

Copyright 2016 H. Gomaa
5

Architectural Design of
Distributed Applications

• Distributed processing environment

– Multiple computers communicating over network

• Typical applications

– Distributed real-time data collection

– Distributed real-time control

– RT Client / Service applications

• COMET/RTE for Distributed RT Applications

– Addresses structuring RTE application into distributed
subsystems

Copyright 2016 H. Gomaa
6

Distributed processing environment

Node 1 Node 2

Node 3 Node 4

«local area network»

B-4

Copyright 2016 H. Gomaa
7

Characteristics of Distributed Applications

• Structure of component-based distributed application
– Consists of one or more component-based subsystems
– Each subsystem designed as a distributed component
– Execute on multiple nodes in distributed configuration

• Component
– Concurrent self-contained object with a well-defined interface,

capable of being used in different applications from that for which
it was originally designed

• Structure of component-based subsystem
– Consists of one or more objects
– Objects all execute on same node

• Communication between component-based subsystems
– Message communication

Copyright 2016 H. Gomaa
8

Steps in Designing Distributed
Component-based Software Architectures

• Design software architecture
– Structure architecture into distributed subsystems

• Each subsystem designed as composite component
– Define message communication interfaces

• Design constituent components
– Structure composite component into simple components
– Simple component can execute on only one node

• Deploy software components
– Define component instances
– Instantiate and deploy to hardware configuration

• Distributed physical nodes

B-5

Copyright 2016 H. Gomaa
9

Component-based Software Architecture

• Executes on multiple nodes in distributed configuration

– Consists of distributed components

• Distributed component

– Well-defined provided and required interfaces

– Concurrent object

– Logical unit of distribution and deployment

– Communicates with other components using messages

– Structure

• Composite object consisting of other objects

• Simple object

– Capable of being reused

Copyright 2016 H. Gomaa
10

Component Interface Design

• Interface

– Externally visible operations of a class, service, or
component

• UML notation

– Interface can be modeled separately from component

– Two ways to depict (simple and expanded)

• Component can provide one or more interfaces

– Use different interfaces if clients require different services

• Component can require one or more interfaces

• Component realizes an interface

– Provides implementation of interface

B-6

Copyright 2016 H. Gomaa
11

Copyright 2016 H. Gomaa
12

Figure 12.1: Example of component interfaces and provided operations:
Emergency Monitoring System

B-7

Copyright 2016 H. Gomaa
13

Modeling Component Interfaces
• Component have provided and required interfaces

• Provided interface

– Specifies operations that a component must fulfill

• Required interface

– Specifies operations that other components provide for
this component

• Components
– Communicate with each other through ports

• Port
– Consists of provided and/or required interfaces

• Connector
– Joins required port of one component to provided port

of another component

Copyright 2016 H. Gomaa
14

Example of Component Interfaces
• Alarm Service provides 2 interfaces, requires 1interface

– Provided interfaces
• IAlarmService interface to receive alarm requests and subscriptions
• IAlarmStatus interface to receive new alarms

– Required interface
• IAlarmNotification interface to send alarm notifications

• Operator Alarm Presentation component
– Required interface

• IAlarmService interface to make alarm requests and subscriptions
– Provided interface

• IAlarmNotification interface to receive alarm notifications
• Monitoring Sensor component

– Required interface
• IAlarmStatus interface to post new alarms

B-8

Copyright 2016 H. Gomaa
15

Modeling Components in UML 2
• Components

– Modeled as UML 2 structured classes

– Depicted on UML 2 composite structure diagrams

• Component provided and required interfaces are explicitly
modeled

• Components
– Communicate with each other through ports

• Ports and interfaces
– Provided Port supports provided interface
– Required Port supports required interface
– Complex Port supports both provided and required

interfaces

Copyright 2016 H. Gomaa

Example of ports, provided, and required
interfaces in UML 2 (Fig. 12.2)

16

B-9

Copyright 2016 H. Gomaa

Example of components, ports and connectors in software architecture (Fig. 12.3)

17

Copyright 2016 H. Gomaa

Design of Composite Components

• Composite Component
– Component that encapsulates internal components
– Both a logical and physical container
– Functionality provided entirely by components it contains
– Internal components referred to as

• Constituent, nested, or part components
• Structure of Composite Component

– Structured into part components
– Part components are depicted as instances
– Can have more than one instance of part component

• Simple component
– Component with no internal components

18

B-10

Copyright 2016 H. Gomaa

Example of Composite Component

19

Copyright 2016 H. Gomaa

Design of Composite Component

• Delegation connector (provided port to provided port)
– Provided port of composite (outer) component connected to

• Provided port of nested (inner) component
• Both provided ports are given the same name

– Operation of outer component calls
• Operation of inner component

• Delegation connector (required port to required port)
– Required port of nested (inner) component connected to

• Required port of composite (outer) component
• Both required ports are given the same name

– Operation of inner component calls
• Operation of outer component

20

B-11

Copyright 2016 H. Gomaa

Design of Composite Component

21

«component»
Warning Alarm

«demand»
«output»

«swSchedulableResource»
WarningLightOutput

«demand»
«output»

«swSchedulableResource»
WarningAudioOutput

PLight

PLight

PAudio

PAudio

Figure 12.5 Design of composite component

initialize ()
activate ()
deactivate ()

«interface»
ILight

initialize ()
activate ()
deactivate ()

«interface»
IAudio

ILight

«demand»
«output»

«swSchedulableResource»
WarningLightOutput

PLight

IAudio

«demand»
«output»

«swSchedulableResource»
WarningAudioOutput

PAudio

ILight

«component»
WarningAlarm

PLight

IAudio

PAudio

Copyright 2016 H. Gomaa
22

Component Structuring Criteria

• Proximity to source of physical data and/or component
• Ensures fast access to physical data
• Physically located with hardware component
• E.g., Barrier component (Fig. 12.9)

• Localized autonomy

• Performs specific site related function

• Same function performed at multiple sites

• Each instance of component resides on separate node

• Operational if other nodes temporarily unavailable
• E.g., Light Rail System (Fig. 12.10)

B-12

Copyright 2016 H. Gomaa

Figure 12.9 Example of component proximity to source of
local data: Barrier Component

23

Copyright 2016 H. Gomaa

Figure 12.10 Examples of component localized autonomy and control:
Deployment of Light Rail System

24

B-13

Copyright 2016 H. Gomaa
25

Subsystem Configuration Criteria

• Performance

• Provides time critical function
• More predictable performance,
• E.g., Train Control (Fig. 12.10)

• Specialized Hardware

• Node interfaces to special purpose hardware (Fig. 12.10)

• E.g., Interface to special purpose sensors and actuators

• I/O component
• Smart device (hardware + software)
• Interacts with external environment
• Input, Output, Input and Output (I/O), Network Interface
• E.g., Barrier Component (Fig. 12.9)

Copyright 2016 H. Gomaa
26

Design of Service Components
- Sequential Service Component

• Receives message requests from clients

– One message type for each service type

• Sequential Service designed as one component

– Services client requests sequentially

– Service completes one request before starting next

– E.g., Rail Operations Service (Fig. 12.10)

• Service Coordinator

– Acts as service stub

– Unpacks incoming message

– Invokes service operation

– Packs response in service response message

B-14

Copyright 2016 H. Gomaa
27

Design of Service Components
- Concurrent Service

• Service functionality shared among several concurrent objects

– Service Coordinator coordinates activities

• Synchronization algorithm is needed

– Mutual exclusion

• Only one reader or writer may access data repository at
any one time

– Multiple readers and writers algorithm (Fig. 12.11)

• Multiple readers access shared data repository
concurrently

• Only one writer can updates data repository at any one
time

Copyright 2016 H. Gomaa
28

«service»
«component»
aConcurrentService

read
Request

done

read
Request

done write
Request

done

write
Request

done

: DataRepository

read()

read()

write()

write()

service
Response

service
Response

service
Response

clientRequest

Figure 12.11: Example of concurrent component - multiple readers and writers

service
Response

aReader

: Service
Coordinator

anotherReader aWriter anotherWriter

: Client

1..*

1

B-15

Copyright 2016 H. Gomaa
29

Design of Service Component
- Subscription and Notification

• Real-Time Event Monitor receives external events

– Records external events of interest

• Subscription service

– Maintains subscription list of clients that wish to be
notified of monitored events

• Client subscribes to Subscription service

– Fig. 12.12, S prefix

– Client requests to be notified of events of a given type

• When significant event occurs (Fig 12.12, E prefix)

– Real-Time Event Monitor updates event archive

– Sends message to Event Distributor

– Event Distributor multicasts event notification to clients
on subscription list

Copyright 2016 H. Gomaa
30

B-16

Copyright 2016 H. Gomaa

Software Deployment

• Define instances of component

– Each component instance has unique name

– Component parameters need to be defined

• E.g., sensor names, sensor limits, alarm names

• Map component instances to physical nodes

– Depict physical configuration of component instances on
deployment diagram

• Interconnect component instances

– One-to-one inter-component communication

– One-to-many inter-component communication

– Many-to-one inter-component communication

• Examples – Figs.12.10, 12.13
31

Copyright 2016 H. Gomaa

Figure 12.10 Examples of software deployment:
Deployment of Light Rail System

32

B-17

Copyright 2016 H. Gomaa

Figure 12.13 Example of software deployment:
emergency monitoring system

33

Copyright 2016 H. Gomaa

Design of Software Connectors

• Encapsulates details of communication between components

• Producer component on one node

– Communicates with Consumer component on other node

• Connector Design is distributed

– Source Connector on Producer node

– Destination Connector on Consumer node

• Connector Design is based on message communication
pattern

– Asynchronous message communication

– Synchronous message communication without Reply

– Synchronous message communication with Reply
34

B-18

Copyright 2016 H. Gomaa

Example of Software Connector

35

Copyright 2016 H. Gomaa

Design of Distributed Message Connectors

• Asynchronous message communication (Fig. 12.14)

– Distributed message queue connector

– Source Connector

• Encapsulates outgoing message queue

• Provides send (in message) operation

– Destination Connector

• Encapsulates incoming message queue

• Provides receive (out message) operation

36

B-19

Copyright 2016 H. Gomaa

Design of Distributed Message Connectors

• Synchronous message communication without Reply

– Distributed message buffer connector (Fig. 12.14)

– Source Connector

• Encapsulates outgoing message buffer

• Provides send (in message) operation

– Destination Connector

• Encapsulates incoming message buffer

• Provides receive (out message) operation

37

Copyright 2016 H. Gomaa

Design of Distributed Message Connectors
• Synchronous message communication with Reply

– Distributed message buffer and response connector

– Source Connector

• Encapsulates

– Outgoing message buffer

– Incoming response buffer

• Provides send (in message, out response) operation

– Destination Connector

• Encapsulates

– Incoming message buffer

– Outgoing response buffer

• Provides two operations

– receive (out message)

– reply (in response)

38

B-20

Copyright 2016 H. Gomaa

Case Study:
Light Rail Control System

• Example of Component-based Software Design

– Fig. 21.32 - Software Architecture for Distributed Light
Rail Control System

• Concurrent communication diagram

– Fig. 21.36 - Component-based Software Architecture for
Distributed Light Rail System

• Composite structure diagram

• Components, ports, and connectors

– Fig. 21.37 – Component ports and interfaces

• Provided and required interfaces for each component

– Fig. 21.38 – Design of component interface specifications

• Design of operations provided by each interface 39

Copyright 2016 H. Gomaa
40

updateTrainStatus
(in trainId, in
trainStatus) «data collection»

«embedded system»
: WaysideMonitoring

System

«control»
«embedded system»
: RailroadCrossing

System

«service»
«subsystem»

: RailOperations
Service

«output»
«subsystem»

: StationSubsystem

«control»
«subsystem»

: TrainControl
Subsystem

«user interaction»
«subsystem»

: RailOperations
Interaction

processTrain
Command (in

trainId, in
trainCommand)

processTrain
Response (in
trainId, in
trainResponse)processStationCommand

(in stationId, in
stationCommand)

Figure 21.32 Distributed software architecture for Light Rail System

1..*

1..*

1..*

1

1..*

1..*

processStation
Response (in
stationId, in

stationResponse)

updateStationStatus
(in stationId, in

trainStatus)

updateTrainStatus
(in trainId, in
trainStatus)

railOpsRequest
(in Request, out

railOpsData)

railNotification
(in railData)

updateRX
Status (in RXId,

in RXStatus)

updateWayside
Status (in waysideId, in

waysideStatus)

Design Modeling

B-21

Copyright 2016 H. Gomaa
41

«user interaction»
«component»

RailOperationsInteraction

ROps RTrain RStation

PTrain

«control»
«component»

TrainControlSubsystem

RRailStatus RTrainStatus

PRailStatusPOps

«service»
«component»

RailOperationsService

«output»
«component»

StationSubsystem

PTrainStatus PStation

RRailStatus

«data collection»
«component»

WaysideMonitoring
System

RRailStatus

«control»
«component»

RailroadCrossing
System

RRailStatus

Figure 21.36 Railroad Crossing Control System component-based
software architecture

1..*

1..*

1..* 1..* 1..*

1

Component-based Software Design

Copyright 2016 H. Gomaa
42

«control»
«component»

RailroadCrossing
System

IRailStatus

RRailStatus

«data collection»
«component»

WaysideMonitoring
System

IRailStatus

RRailStatus

PTrain

«control»
«component»

TrainControlSubsystem

ITrainRespITrain

IRailStatus

RRailStatus

ITrainStatus

RTrainStatus

«user interaction»
«component»

RailOperationsInteraction

IRailNotification

ROps

IRailOps

RTrain

ITrain ITrainResp

RStation

IStation IStationResp

«service»
«component»

RailOperationsService

POps

IRailNotificationIRailOps

PRailStatus

IRailStatus

«output»
«component»

StationSubsystem

PStation

IStationRespIStation

IRailStatus

RRailStatus

ITrainStatus

PTrainStatus

Figure 21.37 Design of component ports and interfaces

Component-based Software Design

B-22

Copyright 2016 H. Gomaa
43

<<interface>>

ITrain

+processTrainCommand(in trainId, in

trainCommand)

<<interface>>

ITrainResp

+processTrainResponse(in trainId, in

trainResponse)

<<interface>>

IStation

+processStationCommand(in stationId, in

stationCommand)

<<interface>>

ITrainStatus

+updateTrainStatus(in trainId, in trainStatus)

<<interface>>

IStationResp

+processStationResponse(in stationId, in

stationResponse)

<<interface>>

IRailStatus

+updateTrainStatus(in trainId, in trainStatus)
+updateStationStatus(in stationId, in stationStatus)
+updateRXStatus(in RXId, in RXStatus)
+updateWaysideStatus(in waysideId, in

waysideStatus)

<<interface>>

IRailOps

+railOpsRequest(in request, out railOpsData)
+railSubscribe(in request, in notificationHandle, out

ack)

<<interface>>

IRailNotification

+railNotification(in railData)

Figure 21.38 Design of component interface specifications

Component-based Software Design

Copyright 2016 H. Gomaa
44

Software Modeling for RT Embedded Systems

1 Develop RT Software Requirements Model

– Develop Use Case Model

2 Develop RT Software Analysis Model

– Develop state machines for state dependent objects

– Structure software system into objects

– Develop object interaction diagrams for each use case

3 Develop RT Software Design Model
‒ Design of Software Architecture for RT Embedded Systems
‒ Apply RT Software Architectural Design Patterns
‒ Design of Component-Based RT Software Architecture
‒ Design Concurrent RT Tasks
‒ Develop Detailed RT Software Design
‒ Analyze Performance of Real-Time Software Designs

