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Figure 4.1 COMET/RTE life cycle model
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Software Modeling for RT Embedded Systems

1 Develop RT Software Requirements Model 

– Develop Use Case Model

2  Develop RT Software Analysis Model

– Develop state machines for state dependent objects

– Structure software system into objects 

– Develop object interaction diagrams for each use case

3 Develop RT Software Design Model
‒ Design of Software Architecture for RT Embedded Systems
‒ Apply RT Software Architectural Design Patterns
‒ Design of Component-Based RT Software Architecture 
‒ Design Concurrent RT Tasks 
‒ Develop Detailed RT Software Design
‒ Analyze Performance of Real-Time Software Designs
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Active and Passive Objects

• Objects may be active or passive
• Active object

– Concurrent task or component
– Has thread of control

• Passive object
– a.k.a. Information Hiding Object
– Has no thread of control
– Operations of passive object are executed 

by task
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Architectural Design of 
Distributed Applications 

• Distributed processing environment

– Multiple computers communicating over network

• Typical applications

– Distributed real-time data collection

– Distributed real-time control

– RT Client / Service applications

• COMET/RTE for Distributed RT Applications 

– Addresses structuring RTE application into distributed 
subsystems
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Distributed processing environment
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Characteristics of Distributed Applications

• Structure of component-based distributed application
– Consists of one or more component-based subsystems
– Each subsystem designed as a distributed component
– Execute on multiple nodes in distributed configuration

• Component
– Concurrent self-contained object with a well-defined interface, 

capable of being used in different applications from that for which 
it was originally designed

• Structure of component-based subsystem 
– Consists of one or more objects
– Objects all execute on same node

• Communication between component-based subsystems 
– Message communication
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Steps in Designing Distributed 
Component-based Software Architectures

• Design software architecture
– Structure architecture into distributed subsystems

• Each subsystem designed as composite component
– Define message communication interfaces

• Design constituent components 
– Structure composite component into simple components
– Simple component can execute on only one node

• Deploy software components
– Define component instances 
– Instantiate and deploy to hardware configuration

• Distributed physical nodes
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Component-based Software Architecture

• Executes on multiple nodes in distributed configuration 

– Consists of distributed components

• Distributed component

– Well-defined provided and required interfaces

– Concurrent object

– Logical unit of distribution and deployment 

– Communicates with other components using messages

– Structure

• Composite object consisting of other objects 

• Simple object

– Capable of being reused
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Component Interface Design

• Interface

– Externally visible operations of a class, service, or 
component 

• UML notation

– Interface can be modeled separately from component 

– Two ways to depict (simple and expanded)

• Component can provide one or more interfaces

– Use different interfaces if clients require different services

• Component can require one or more interfaces

• Component realizes an interface

– Provides implementation of interface
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Figure 12.1: Example of component interfaces and provided operations: 
Emergency Monitoring System
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Modeling Component Interfaces
• Component have provided and required interfaces 

• Provided interface

– Specifies operations that a component must fulfill

• Required interface

– Specifies operations that other components provide for 
this component 

• Components
– Communicate with each other through ports

• Port
– Consists of provided and/or required interfaces

• Connector
– Joins required port of one component to provided port 

of another component
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Example of Component Interfaces
• Alarm Service provides 2 interfaces, requires 1interface

– Provided interfaces 
• IAlarmService interface to receive alarm requests and subscriptions
• IAlarmStatus interface to receive new alarms

– Required interface
• IAlarmNotification interface to send alarm notifications

• Operator Alarm Presentation component 
– Required interface 

• IAlarmService interface to make alarm requests and subscriptions
– Provided interface 

• IAlarmNotification interface to receive alarm notifications
• Monitoring Sensor component 

– Required interface 
• IAlarmStatus interface to post new alarms
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Modeling Components in UML 2 
• Components 

– Modeled as UML 2 structured classes 

– Depicted on UML 2 composite structure diagrams

• Component provided and required interfaces are explicitly 
modeled

• Components
– Communicate with each other through ports

• Ports and interfaces
– Provided Port supports provided interface
– Required Port supports required interface
– Complex Port supports both provided and required 

interfaces
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Example of ports, provided, and required 
interfaces in UML 2 (Fig. 12.2)
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Example of components, ports and connectors in software architecture (Fig. 12.3)
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Design of Composite Components

• Composite Component 
– Component that encapsulates internal components 
– Both a logical and physical container
– Functionality provided entirely by components it contains
– Internal components referred to as 

• Constituent, nested, or part components
• Structure of Composite Component 

– Structured into part components 
– Part components are depicted as instances
– Can have more than one instance of part component

• Simple component
– Component with no internal components

18
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Example of Composite Component 
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Design of Composite Component

• Delegation connector (provided port to provided port)
– Provided port of composite (outer) component connected to

• Provided port of nested (inner) component 
• Both provided ports are given the same name

– Operation of outer component calls 
• Operation of inner component

• Delegation connector (required port to required port)
– Required port of nested (inner) component connected to

• Required port of composite (outer) component 
• Both required ports are given the same name

– Operation of inner component calls 
• Operation of outer component

20
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Design of Composite Component

21

«component»
Warning Alarm

«demand»
«output»

«swSchedulableResource»
WarningLightOutput

«demand»
«output»

«swSchedulableResource»
WarningAudioOutput

PLight

PLight

PAudio

PAudio

Figure 12.5 Design of composite component 
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Component Structuring Criteria

• Proximity to source of physical data and/or component
• Ensures fast access to physical data
• Physically located with hardware component
• E.g., Barrier component (Fig. 12.9)

• Localized autonomy

• Performs specific site related function

• Same function performed at multiple sites

• Each instance of component resides on separate node

• Operational if other nodes temporarily unavailable
• E.g., Light Rail System (Fig. 12.10)



B-12

Copyright 2016  H. Gomaa

Figure 12.9 Example of component proximity to source of 
local data: Barrier Component
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Figure 12.10 Examples of component localized autonomy and control: 
Deployment of Light Rail System 
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Subsystem Configuration Criteria

• Performance

• Provides time critical function
• More predictable performance, 
• E.g., Train Control (Fig. 12.10)

• Specialized Hardware

• Node interfaces to special purpose hardware (Fig. 12.10)

• E.g., Interface to special purpose sensors and actuators

• I/O component
• Smart device (hardware + software)
• Interacts with external environment
• Input, Output, Input and Output (I/O), Network Interface
• E.g., Barrier Component (Fig. 12.9)
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Design of Service Components
- Sequential Service Component

• Receives message requests from clients

– One message type for each service type 

• Sequential Service designed as one component

– Services client requests sequentially

– Service completes one request before starting next

– E.g., Rail Operations Service (Fig. 12.10)

• Service Coordinator

– Acts as service stub 

– Unpacks incoming message

– Invokes service operation

– Packs response in service response message
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Design of Service Components
- Concurrent Service 

• Service functionality shared among several concurrent objects

– Service Coordinator coordinates activities

• Synchronization algorithm is needed 

– Mutual exclusion

• Only one reader or writer may access data repository at 
any one time

– Multiple readers and writers algorithm (Fig. 12.11)

• Multiple readers access shared data repository 
concurrently

• Only one writer can updates data repository at any one 
time
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Design of Service Component
- Subscription and Notification

• Real-Time Event Monitor receives external events

– Records external events of interest

• Subscription service

– Maintains subscription list of clients that wish to be 
notified of monitored events

• Client subscribes to Subscription service 

– Fig. 12.12, S prefix

– Client requests to be notified of events of a given type

• When significant event occurs (Fig 12.12, E prefix)

– Real-Time Event Monitor updates event archive

– Sends message to Event Distributor

– Event Distributor multicasts event notification to clients 
on subscription list

Copyright 2016  H. Gomaa
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Software Deployment

• Define instances of component

– Each component instance has unique name

– Component parameters need to be defined

• E.g., sensor names, sensor limits, alarm names

• Map component instances to physical nodes

– Depict physical configuration of component instances on 
deployment diagram

• Interconnect component instances

– One-to-one inter-component communication

– One-to-many inter-component communication

– Many-to-one inter-component communication

• Examples – Figs.12.10, 12.13
31
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Figure 12.10 Examples of software deployment: 
Deployment of Light Rail System 
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Figure 12.13 Example of software deployment: 
emergency monitoring system
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Design of Software Connectors

• Encapsulates details of communication between components

• Producer component on one node

– Communicates with Consumer component on other node

• Connector Design is distributed

– Source Connector on Producer node

– Destination Connector on Consumer node

• Connector Design is based on message communication 
pattern

– Asynchronous message communication 

– Synchronous message communication without Reply

– Synchronous message communication with Reply
34
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Example of Software Connector

35
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Design of Distributed Message Connectors

• Asynchronous message communication (Fig. 12.14)

– Distributed message queue connector

– Source Connector

• Encapsulates outgoing message queue

• Provides send (in message) operation

– Destination Connector

• Encapsulates incoming message queue

• Provides receive (out message) operation

36
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Design of Distributed Message Connectors

• Synchronous message communication without Reply

– Distributed message buffer connector (Fig. 12.14)

– Source Connector

• Encapsulates outgoing message buffer 

• Provides send (in message) operation

– Destination Connector

• Encapsulates incoming message buffer 

• Provides receive (out message) operation

37
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Design of Distributed Message Connectors
• Synchronous message communication with Reply

– Distributed message buffer and response connector

– Source Connector

• Encapsulates 

– Outgoing message buffer 

– Incoming response buffer

• Provides send (in message, out response) operation

– Destination Connector

• Encapsulates 

– Incoming message buffer 

– Outgoing response buffer

• Provides two operations

– receive (out message)

– reply (in response)

38
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Case Study:
Light Rail Control System 

• Example of  Component-based Software Design

– Fig. 21.32 - Software Architecture for Distributed Light 
Rail Control System

• Concurrent communication diagram 

– Fig. 21.36 - Component-based Software Architecture for 
Distributed Light Rail System

• Composite structure diagram

• Components, ports, and connectors

– Fig. 21.37 – Component ports and interfaces

• Provided and required interfaces for each component

– Fig. 21.38 – Design of component interface specifications

• Design of operations provided by each interface 39
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Component-based Software Design
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Figure 21.38 Design of component interface specifications 

Component-based Software Design
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Software Modeling for RT Embedded Systems

1 Develop RT Software Requirements Model 

– Develop Use Case Model

2  Develop RT Software Analysis Model

– Develop state machines for state dependent objects

– Structure software system into objects 

– Develop object interaction diagrams for each use case

3 Develop RT Software Design Model
‒ Design of Software Architecture for RT Embedded Systems
‒ Apply RT Software Architectural Design Patterns
‒ Design of Component-Based RT Software Architecture 
‒ Design Concurrent RT Tasks 
‒ Develop Detailed RT Software Design
‒ Analyze Performance of Real-Time Software Designs


