SWE 760
Lecture 9:
Component-based Software Architectures
for Real-Time Embedded Systems
Reference: H. Gomaa, Chapter 12 - <i>Real-Time Software Design for Embedded</i>
Systems, Cambridge University Press, 2016
Hassan Gomaa
Dept of Computer Science
George Mason University
Fairfax, VA
Copyright © 2016 Hassan Gomaa
All rights reserved. No part of this document may be reproduced in any form or by any means, without the prior written permission of the author.

Software Modeling for RT Embedded Systems

- 1 Develop RT Software Requirements Model
 - Develop Use Case Model
- 2 Develop RT Software Analysis Model
 - Develop state machines for state dependent objects
 - Structure software system into objects
 - Develop object interaction diagrams for each use case
- 3 Develop RT Software Design Model
 - Design of Software Architecture for RT Embedded Systems
 - Apply RT Software Architectural Design Patterns
 - Design of Component-Based RT Software Architecture
 - Design Concurrent RT Tasks
 - Develop Detailed RT Software Design
 - Analyze Performance of Real-Time Software Designs

Architectural Design of Distributed Applications

- Distributed processing environment
 - Multiple computers communicating over network
- Typical applications
 - Distributed real-time data collection
 - Distributed real-time control
 - RT Client / Service applications
- COMET/RTE for Distributed RT Applications
 - Addresses structuring RTE application into distributed subsystems

Component Interface Design	
 Interface Externally visible operations of a class, service, or component UML notation Interface can be modeled separately from component Two ways to depict (simple and expanded) Component can provide one or more interfaces Use different interfaces if clients require different services Component can require one or more interfaces Component realizes an interface 	
- Provides implementation of interface	10

Subsystem Configuration Criteria

- Performance
 - Provides time critical function
 - More predictable performance,
 - E.g., Train Control (Fig. 12.10)
- Specialized Hardware
 - Node interfaces to special purpose hardware (Fig. 12.10)
 - E.g., Interface to special purpose sensors and actuators
- I/O component
 - Smart device (hardware + software)
 - Interacts with external environment
 - Input, Output, Input and Output (I/O), Network Interface

25

• E.g., Barrier Component (Fig. 12.9)

Design of Service Component - Subscription and Notification

- Real-Time Event Monitor receives external events
 - Records external events of interest
- Subscription service
 - Maintains subscription list of clients that wish to be notified of monitored events
- Client subscribes to Subscription service
 - Fig. 12.12, S prefix
 - Client requests to be notified of events of a given type
- When significant event occurs (Fig 12.12, E prefix)
 - Real-Time Event Monitor updates event archive
 - Sends message to Event Distributor
 - Event Distributor multicasts event notification to clients

Copyright 2016 H. Gomaa on subscription list

29

