Lecture 4:
State Machines for
Real-Time Embedded Systems

Hassan Gomaa
Department of Computer Science
George Mason University
Email: hgomaa@gmu.edu

References:
H. Gomaa, Chapter 7 - Real-Time Software Design for Embedded Systems,
Cambridge University Press, 2016

Copyright © 2016 Hassan Gomaa
All rights reserved. No part of this document may be reproduced in any form
or by any means, without the prior written permission of the author.

Figure 4.1 COMET/RTE life cycle model
Analysis Modeling

- Static Modeling
 - Define entity classes and relationships
- **Dynamic State Machine Modeling**
 - Real-time systems are highly state dependent
 - Actions depend on input event AND current state
- Object Structuring
 - Determine objects that realize each use case
- Dynamic Interaction Modeling
 - Determine sequence of interactions among objects

State Machines

- Conceptual machine with finite number of states
 - a.k.a. finite state machine
- Graphical representation of State Machine
 - States are rounded boxes
 - Transitions are arcs
- State Machine
 - Relates events and states
- Event
 - Causes change of state
 - Referred to as state transition
- State
 - A recognizable situation
 - Exists over an interval of time
 - Represents an interval between successive events
Events and Actions

- State transition label
 - Event [condition] / action(s)
- Event
 - When event occurs, condition must be true for state transition to occur.
 - If condition is false, state transition does not occur
- Action
 - Executed as a result of state transition
 - Executes instantaneously at state transition
 - Terminates itself

Example of events and actions

Microwave Control - Cook Food main sequence

- Door Shut
- Door Open
- Door Closed
- Item Placed
- Item Removed
- Door Open With Item
- Door Closed
- Door Opened
- Cooking
- Timer Expired/Stop Cooking
- Cooking Time Entered/Display Cooking time, Update Cooking Time
- Ready To Cook
- Start/Start Cooking, Start Timer
Entry and Exit Actions

• Entry action
 – Action executed on entry into state
 • Entry / action
 – E.g., Start Cooking
 • Exit action
 – Action executed on exit from state
 • Exit / action
 – E.g., Stop Cooking
Example of entry action

Fig. 10.11a: Actions on state transitions

Fig. 10.11b: Entry action

Example of exit action

Actions on state transitions

Copyright 2016 H. Gomaa

Exit action

Copyright 2016 H. Gomaa
State Machine for Microwave Oven Control with entry and exit actions

Activities

- **Activity**
 - Executes for duration of state
 - `do / Activity in state`
- **Examples of activities in Cruise Control State Machine**
 - **Increase Speed**
 - Executes for duration of **Accelerating** state
 - **Maintain Speed**
 - Executes for duration of **Cruising** state
 - **Reduce Speed**
 - Executes for duration of **Decelerating** state
 - **Stop Train**
 - Executes for duration of **Stopping** state
Hierarchical State Machines

- Sequential State (OR) decomposition
 - When object is in composite state (superstate)
 - It is in one and only one of substates
 - Transition into composite state
 - Must be to one and only one of substates
 - Aggregation of state transitions
 - If same event causes transition out of every substate
 - Then aggregate into transition out of composite state
- History state
 - When composite state is re-entered
 - Enter substate that was previously active
 - Prior to previous exit from composite state
- Example: Microwave Oven Control
Orthogonal State Machines

- Concurrent State Machines
 - State of an object described by more than one state machine
- Orthogonal State Machine
 - Used to depict states of different aspects of object
 - Uses concurrent state machine
- Concurrent state (AND) decomposition
 - Object is in one substate on each lower level state machine
 - Object’s state is union of all substates
- Same event
 - May cause transitions on more than one state machine
- Output event on one state machine
 - May be input event on other state machine
- Substate on one state machine
 - May be condition on other state machine
- Example: Microwave Oven Control
Variability in State Machines
- Inherited State Machines

- When a state machine is specialized
- Child state machine inherits properties of parent state machine
- Child state machine can:
 - Add new states
 - New states at same level of hierarchy as inherited states
 - New substates of new or inherited states
 - New orthogonal (concurrent) states
 - Add new events and transitions
 - Add or remove actions and activities
- Child state machine
 - Must not delete states or events defined in parent
Inherited State Machines
Examples from Microwave Oven SPL

- Superclass: Microwave Oven Control
- Subclass with all features: Enhanced Microwave Oven Control
- Added functionality
 - Light, Turntable, Beeper, Minute Plus, Time of Day (TOD)
- Example of new states added
 - TOD
 - 3 substates of inherited Door Shut state
- Example of new transitions added
 - Minute Plus
- Example of new actions added
 - Turntable, Beeper

Inheritance of State Dependent Control Class
Cooperating State Machines

- Cooperating state-dependent control objects
- Each control object executes a state machine
- Cooperating state machines
 - Action on one state machine corresponds to event on another state machine
 - E.g., Microwave Oven Control, Oven Timer state machines
- Microwave Oven Control state machine
 - Action: Start Timer -> Oven Timer state machine
 - Event: Timer Expired
- Oven Timer state machine
 - Event: Start Timer
 - Action: Timer Expired -> Microwave Oven Control state machine
Cooperating State Machines:
Oven Timer State Machine – Cook Food use case

Figure 4.1 COMET/RTE life cycle model
Analysis Modeling

• Static Modeling
 – Define entity classes and relationships
• Dynamic State Machine Modeling
 – Real-time systems are highly state dependent
• Object Structuring
 – Determine objects that realize each use case
• Dynamic Interaction Modeling
 – Determine sequence of interactions among objects