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Figure 4.1 COMET/RTE life cycle model
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System and Software Quality Attributes

* Address non-functional requirements
* System (hardware + software) Quality Attributes
— Scalability
— Performance
— Availability
— Safety
— Security
* Software Quality Attributes
— Maintainability
— Modifiability
— Testability
— Traceability
— Reusability
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Scalability

+ Extent to which the system is capable of growing after its
initial deployment

» System needs to be designed in such a way that it is
capable of growth

* Distributed component-based software architecture

— Much more capable of scaling upwards than a
centralized design

— Components are designed such that multiple instances
of each component can be deployed to different nodes
in a distributed configuration
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Figure 16.1 Scaleup in Light Rail System
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Performance

* Performance analysis
— Quantitative analysis of a real-time software design

— Conceptually executing on a given hardware
configuration

— With a given external workload applied to it
* Performance modeling
— Abstraction of the real computer system behavior

— Developed for the purpose of gaining greater insight
into the performance of the system

— Whether or not the system actually exist

— E.g., simulation modeling, real-time scheduling
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Example of Performance

Figure 17.1 Timing diagram for tasks executing on a sin
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Availability

Extent to which system is available for operational usage
— Addresses system failure
— E.g., system must be operational for 99% of time

Fault tolerant systems
— E.g., Triple redundancy and voting systems

Hot standby, e.g., backup server in Banking system

Software design
— Systems without single points of failure
— Distributed component-based software architectures
* Deployed to multiple nodes
— If a single node goes down
» System can operate in a degraded mode.
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Example of Availability

Figure 16.2 Example of system without single point of failure
* Minimize system failure

— No single point of failure
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Safety

* Goal of System Safety: accident prevention

* Proactively identifying, assessing, and eliminating or controlling
safety-related hazards, to acceptable levels, can achieve accident
prevention (FAA)

e Hazard

— A condition, event, or circumstance that could lead to or contribute
to an unplanned or undesired event (FAA)

» Safety critical system
— Safety-related hazards identified during requirements specification
— Software design must detect hazards and take appropriate action
» Examples of safety requirements
— Railroad Crossing Control System (Chapter 20),
 Barrier must be lowered within a pre-specified time
— Light Rail Control System
» Train must slow down to a stop if an obstacle is detected
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Modifiability

Extent to which software is capable of being modified during and after initial
development

Design for Change,
— e.g., Oven Prompt class with language specific subclasses

Figure 16.3 Example of modifiability - abstract Oven Prompts class and language specific subclasses
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Testability

Extent to which software is capable of being tested during
and after its initial development

During Requirements Phase

— Develop functional (black box) test cases

— Develop test cases from use case descriptions
During Software Architectural Design

— Develop integration test cases

— Test interfaces between communicating components
Scenario based testing

— Develop integration test cases from interaction
scenarios sequence or communication diagrams
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Determine scenario to test from Sequence Diagram

Determine testing scenario from sequence diagram
Figure 21.15 Sequence diagram: Banking Service — Validate PIN use case
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Traceability

» Extent to which artifacts of each phase can be traced back
to products of previous phases

* Build traceability into software development method

» Software requirements — use case model

» Use case based interaction diagrams

— Determines objects required to realize each use case

— Determine sequence of interactions between objects

» Software architecture

— Integrate use case based interaction diagrams

* Impact Analysis

— Determine impact of software change using traceability
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Example of
Traceability

Figure 16.4 Traceability analysis before and after change to introduce Oven Prompts object
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Reusability

» Extent to which software is capable of being reused

* Software Component Reuse

— Library of reusable code components

* May be functional or object-oriented

* Software Design reuse

— Reuse components and their interconnections

* Architecture reuse

— Large grained reuse

— Focuses on requirements and design

— Much greater potential than component reuse

* Generic architecture

— One architecture for the application domain

— Manually adapted (tailored) for a specific application
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Software Design Reuse

* Design Patterns
— Describes a recurring design problem
— Arises in specific design context
— Presents a well proven design for its solution
— Larger grained reuse than component
» Software Product Line Engineering
— Captures similarities and variations of product family
— Develop software architecture for a product family
— Tailor and configure for a given application

* One member of product family
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System and Software Quality Attributes

* Address non-functional requirements
» System (hardware + software) Quality Attributes
— Scalability
— Performance
— Availability
— Safety
— Security
+ Software Quality Attributes
— Maintainability
— Modifiability
— Testability
— Traceability
— Reusability
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