SWE 760

Lecture 13 —
System and Software Quality Attributes for
Real-Time Embedded Systems

Reference:

H. Gomaa, Chapters 16 - Real-Time Software Design for Embedded
Systems, Cambridge University Press, 2016

Copyright © 2016 Hassan Gomaa

All rights reserved. No part of this document may be reproduced in any form or by any means,
without the prior written permission of the author.

Copyright 2016 H.Gomaa 1

Figure 4.1 COMET/RTE life cycle model

System
Structural

—> Modeling

User
Requirements.
Modeling
=
Analysis
Modeli

Design
Modeling
Incremental
Software
Construction
\— Incremental
Software
Integration
1 System
Prototyping Testing

Copyright © 2016 Hassan Gomaa

- A

Customer

System and Software Quality Attributes

* Address non-functional requirements
* System (hardware + software) Quality Attributes
— Scalability
— Performance
— Availability
— Safety
— Security
* Software Quality Attributes
— Maintainability
— Modifiability
— Testability
— Traceability
— Reusability

Copyright © 2016 Hassan Gomaa

Scalability

+ Extent to which the system is capable of growing after its
initial deployment

» System needs to be designed in such a way that it is
capable of growth

* Distributed component-based software architecture

— Much more capable of scaling upwards than a
centralized design

— Components are designed such that multiple instances
of each component can be deployed to different nodes
in a distributed configuration

Copyright © 2016 Hassan Gomaa

Figure 16.1 Scaleup in Light Rail System

Railroad Crossing

{1 node per railroad

Control

crossing}

Train Control
{1 node per train}

Station
{1 node per station}

Example of Scalability

«wide area network»

ﬂ_

I

N

Rail Operations
Interaction
{1 node per
operator}

Wayside Monitoring
{1 node per wayside
location}

Rail Operations
Service
{1 node per region}

Copyright 2016 H.Gomaa 5

Performance

* Performance analysis
— Quantitative analysis of a real-time software design

— Conceptually executing on a given hardware
configuration

— With a given external workload applied to it
* Performance modeling
— Abstraction of the real computer system behavior

— Developed for the purpose of gaining greater insight
into the performance of the system

— Whether or not the system actually exist

— E.g., simulation modeling, real-time scheduling

Copyright © 2016 Hassan Gomaa

Example of Performance

Figure 17.1 Timing diagram for tasks executing on a sin

«swSchedulable
Resource» Resourcen Resourcen

Time t t, ts
(msec)

0 — -

30
PI — ’
60 |—

50
80 —

T, —» 100 (—] —
— 20

120 — — —

30
140 —

T > - - -
160 —
| 30
180 —] 0 D
;_T — > 200 : L L L
Copyright 2016 H.Gomaa 7
Availability

Extent to which system is available for operational usage
— Addresses system failure
— E.g., system must be operational for 99% of time

Fault tolerant systems
— E.g., Triple redundancy and voting systems

Hot standby, e.g., backup server in Banking system

Software design
— Systems without single points of failure
— Distributed component-based software architectures
* Deployed to multiple nodes
— If a single node goes down
» System can operate in a degraded mode.

Copyright 2016 H.Gomaa 8

Example of Availability

Figure 16.2 Example of system without single point of failure
* Minimize system failure

— No single point of failure

Remote System Proxy
{1 node per remote
system}

Monitoring Sensor
Component
{1 node per

monitoring location}

Operator
Presentation
{1 node per

’ «wide area network»
operator}

Monitoring Data
Alarm Service Service

{1 node per region} {1 node per region}

Copyright 2016 H.Gomaa 9

Safety

* Goal of System Safety: accident prevention

* Proactively identifying, assessing, and eliminating or controlling
safety-related hazards, to acceptable levels, can achieve accident
prevention (FAA)

e Hazard

— A condition, event, or circumstance that could lead to or contribute
to an unplanned or undesired event (FAA)

» Safety critical system
— Safety-related hazards identified during requirements specification
— Software design must detect hazards and take appropriate action
» Examples of safety requirements
— Railroad Crossing Control System (Chapter 20),
 Barrier must be lowered within a pre-specified time
— Light Rail Control System
» Train must slow down to a stop if an obstacle is detected

Copyright 2016 H.Gomaa 10

Modifiability

Extent to which software is capable of being modified during and after initial
development

Design for Change,
— e.g., Oven Prompt class with language specific subclasses

Figure 16.3 Example of modifiability - abstract Oven Prompts class and language specific subclasses

«entity»
OvenPrompts
{abstract}

textPrompt: String[1..*, 1..*]

initialize (in language)
{abstract}
readPrompt (in promptld,
out promptText)

|

«entity»
FrenchOvenPrompts

«entity» «entity»
SpanishOvenPrompts || GermanOvenPrompts

«entity»
EnglishOvenPrompts

R initialize (in spanish) Initialize (in german)
initialize (in english) initialize (in french)

Copyright 2016 H.Gomaa 11

Testability

Extent to which software is capable of being tested during
and after its initial development

During Requirements Phase

— Develop functional (black box) test cases

— Develop test cases from use case descriptions
During Software Architectural Design

— Develop integration test cases

— Test interfaces between communicating components
Scenario based testing

— Develop integration test cases from interaction
scenarios sequence or communication diagrams

Copyright 2016 H.Gomaa 12

Determine scenario to test from Sequence Diagram

Determine testing scenario from sequence diagram
Figure 21.15 Sequence diagram: Banking Service — Validate PIN use case

«coordinator»
: BankTransaction
Coordinator

«business logic» «entity»

: PINValidation : DebitCard

TransactionManager

«entity»

: CardAccount

«entity»
: TransactionLog

V1: Validate PIN

(PIN Validation Transaction)

V7: Valid PIN
(Account #s)

V2: Validate
(Card Id, PIN)

V3: Valid PIN

V4: Read (Card Id)

V5: Account #s

V6: Log Transaction

Copyright 2016 H.Gomaa

13

Traceability

» Extent to which artifacts of each phase can be traced back
to products of previous phases

* Build traceability into software development method

» Software requirements — use case model

» Use case based interaction diagrams

— Determines objects required to realize each use case

— Determine sequence of interactions between objects

» Software architecture

— Integrate use case based interaction diagrams

* Impact Analysis

— Determine impact of software change using traceability

Copyright 2016 H.Gomaa

Example of
Traceability

Figure 16.4 Traceability analysis before and after change to introduce Oven Prompts object

«software system»
: MicrowaveOvenSystem

«external output
device»
: OvenDisplay

«external output

device»
: OvenDisplay

Figure 16.4b

Copyright 2016 H.Gomaa

2: Prompt "
P 1: Prompt for Time
-— «output» -— «state dependent
: OvenDisplay control»
Output : MicrowaveControl
Figure 16.4a
«software system»
: MicrowaveOvenSystem
1: Prompt for Tim
2: Prompt ptio e
-—
-— «output» «state dependent
: OvenDisplay control»
Output : MicrowaveControl

1.1: Read (promptid) S~

<~ - 1.2: Prompt Text

«entity»
: OvenPrompts

Reusability

» Extent to which software is capable of being reused

* Software Component Reuse

— Library of reusable code components

* May be functional or object-oriented

* Software Design reuse

— Reuse components and their interconnections

* Architecture reuse

— Large grained reuse

— Focuses on requirements and design

— Much greater potential than component reuse

* Generic architecture

— One architecture for the application domain

— Manually adapted (tailored) for a specific application

Copyright 2016 H.Gomaa

16

Software Design Reuse

* Design Patterns
— Describes a recurring design problem
— Arises in specific design context
— Presents a well proven design for its solution
— Larger grained reuse than component
» Software Product Line Engineering
— Captures similarities and variations of product family
— Develop software architecture for a product family
— Tailor and configure for a given application

* One member of product family

Copyright 2016 H.Gomaa 17

System and Software Quality Attributes

* Address non-functional requirements
» System (hardware + software) Quality Attributes
— Scalability
— Performance
— Availability
— Safety
— Security
+ Software Quality Attributes
— Maintainability
— Modifiability
— Testability
— Traceability
— Reusability

Copyright © 2016 Hassan Gomaa 18

