

Performance Analysis of Real-Time Designs
• Quantitative analysis of RT designs
 Allow early detection of potential performance problems
Investigate alternative
 Software designs
– Hardware configurations
• Approaches
 Real-time scheduling theory
Rate Monotonic Analysis (RMA) [SEI]
- Combine RMA with Event sequence analysis
• Sequence of components to process external event
UML timing diagram
 Sequence diagram annotated with time
 Depicts time-ordered execution sequence of tasks
Copyright 2016 H.Gomaa pa-4

Application Priorities

- Rate monotonic priorities
 - Tasks allocated priorities based on length of period
 - Task with shorter period assigned higher priority
 - Task can only be pre-empted by higher priority task with shorter period
- Non-rate monotonic priorities
 - Referred to as "Rate monotonic priority inversion"
 - Tasks allocated priorities based on application need
 - Could be different from rate monotonic priorities
 - E.g., Give task higher priority to address interrupt handling
- Extensions to RMA to address rate monotonic priority inversion
 - Task can be pre-empted by higher priority tasks with longer periods

IL'A V	ent Sequence Analysis
 RMA assumes 	s tasks are independent
Real RT system	ms
 Tasks inter 	act with each other
 Event sequ 	ence scenarios
• Performance r	equirements of real-time system
 Response t 	imes to external events
Given external	l event
– Determine	sequence of tasks activated
• Event sequence	e analysis
– Use event s	sequence timing diagrams
– Consider se	equence of tasks required to
• Process	external event
• Generat	te system output
Copyright 2016 H.Gomaa	pa-20

<section-header> Performance Analysis of Aultiprocessor Systems Use timing diagrams Depict tasks on different CPUs Global scheduling A task can execute on any CPU Partitioned scheduling Tasks are partitioned i.e., pre-assigned to individual CPUs A given task only executes on a single CPU Event sequence analysis Use event sequence timing diagrams Consider sequence of tasks on multiple CPUs

Integrating RMA with COMET Real-Time Design • Structure system into concurrent tasks - Use COMET task structuring criteria Define task interfaces Estimate for each Task ti - CPU time Ci - Period Ti - worst case estimate for aperiodic task • Estimate / measure system overhead - Add to each task's estimated CPU time Allocate task priorities - Initially use rate monotonic priority - Allocate non-rate monotonic priority if dictated by application Copyright 2016 H.Gomaa pa-25

Case Study: - Light Rail Control System Automated driverless trains Travel between stations along a track in both directions with a circular loop at each end. • Trains stop at each station. • Approaching, arrival, and departure sensors • Sensors to detect location and speed of train Actuators to control train motor and doors Proximity sensor detects hazards ahead • Automated acceleration, deceleration, speed control Train display and audio system Each station has display and audio system ٠ External systems send status to LRCS

Copyright 2016 H.Gomaa

Copyright 2016 H.Gomaa

Task	C _i (msec)	Periodic tasks	Arrival Sensor event sequence tasks	Proximity Sensor event sequence tasks	
		(C _i + 2*C _x) (msec)	$(C_i + C_x + C_m)$ (msec)	$(C_i + C_x + C_m)$ (msec)	
Approaching Sensor Input (C ₀)	4	5			
Arrival Sensor Input (C ₁)	4	5	5		
Train Control (C3)	5	6	6	6	
Speed Adjustment (C ₅)	9	10	10	10	
Motor Output (C7)	4	5	5	5	
Message communication overhead (C _m)	0.7				
Context switching overhead (Cx)	0.3				
Proximity Sensor Input (C ₈)	4	5		5	
Speed Sensor Input (C ₉)	2	3			
Location Speed Sensor Input (C10)	5	6			
Train Status Dispatcher (C11)	10	11			
Train Display Output (C12)	14	15			
Train Audio Output (C13)	11	12			
Total CPU time used by tasks in			26	26	
aa event sequence	I		pa-30		

Task	CPU time C _i	Period T _i	Utilization U _i	Priority
Speed Sensor Input	3	10	0.30	1
Location Sensor Input	6	50	0.12	2
Proximity Sensor Input	5	100	0.05	3
Motor Output	5	100	0.05	4
Speed Adjustment	10	100	0.10	5
Train Status Dispatcher	11	600	0.02	6
Train Display Output	15	600	0.03	7
Train Audio Output	12	600	0.02	8
Total Utilization for all tasks			0.68	

Light Rail Control System - Rate Monotonic Analysis • Consider impact of event sequence tasks Consider "equivalent" event sequence task added to • periodic/aperiodic tasks Arrival event sequence task ٠ - Use period of Arrival Sensor = 200 msec - Total utilization = 0.81> Upper Bound for Utilization Bound Theorem (0.69) • Proximity event sequence task - Use period of Proximity Sensor = 100 msec - Total utilization = 0.89 • Arrival + Proximity event sequence tasks - Total utilization = 1.02 Copyright 2016 H.Gomaa pa-34

Task	CPU time Ci	Period T _i	Arrival event sequence - Utilization U _a	Priority (case 1)	Proximity event sequence - Utilization U _p	Priority (case 2)	Arrival & Proximity event sequences Utilization Uq	Priority (case 3)
Speed Sensor Input	3	10	0.30	1	0.30	1	0.30	1
Location Sensor Input	6	50	0.12	2	0.12	2	0.12	2
Proximity Sensor Input	5	100	0.05	3				
Motor Output	5	100	0.05	4	0.05	4	0.05	4
Speed Adjustment	10	100	0.10	5	0.10	5	0.10	5
Train Status Dispatcher	11	600	0.02	7	0.02	6	0.02	7
Train Display Output	15	600	0.03	8	0.03	7	0.03	8
Train Audio Output	12	600	0.02	9	0.02	8	0.02	9
Arrival Event Sequence Task	26	200	0.13	6			0.13	6
Proximity Event Sequence Task	26	100			0.26	3	0.26	3
Total Utilization for all tasks			0.81		0.89		1.02	

Integrating RMA with COMET Real-Time Design

- Develop event sequence scenario for each external event
 - Consider execution sequence of tasks in scenario
 - Estimate period Ti for tasks in scenario
 - Consider all tasks that could pre-empt tasks in scenario
 - Determine if sequence of tasks in scenario complete before Ti?
- Apply generalized utilization bound theorem and/or generalized completion time theorem to tasks in each event sequence

Detailed Rate Monotonic Analysis
• Will tasks meet their deadlines?
 Consider each task individually
Tasks in Arrival event sequence
 Arrival Sensor Input, Train Control, Speed Adjustment, Motor Output
 Use period of Arrival Sensor = 200 msec
Tasks in Proximity event sequence
 Proximity Sensor Input, Train Control, Speed Adjustment, Motor Output
 Use period of Proximity Sensor = 100 msec
• Tasks in both Arrival + Proximity event sequences
• Use period of Proximity Sensor = 100 msec
• Total utilization = 0.77
> Upper Bound for Utilization Bound Theorem (0.69)
Copyright 2016 H.Gomaa pa-40

Task	CPU time C _i	Period T _i	Utilization U _i	Rate Monotic Priorities (case 1)	Non-rate Monotic Priorities (case 2)
Speed Sensor Input	3	10	0.30	1	1
Location Sensor Input	6	50	0.12	2	2
Proximity Sensor Input *	5	100	0.05	3	4
Motor Output *	5	100	0.05	4	5
Speed Adjustment *	10	100	0.10	5	6
Train Status Dispatcher	11	600	0.02	8	8
Train Display Output	15	600	0.03	9	9
Train Audio Output	12	600	0.02	10	10
Arrival Sensor Input *	5	200	0.03	7	3
Train Control *	6	100	0.06	6	7
Total Utilization for all tasks			0.77		

Copyright 2016 H.Gomaa

<section-header> Beview: Performance Analysis of COMET Designs Quantitative analysis of COMET designs Allow early detection of potential performance problems Investigate alternatives Software designs Hardware configurations Approaches Rate Monotonic Analysis (RMA) Event sequence analysis Combined RMA and Event sequence analysis

Software Modeling for RT Embedded Systems

- 1 Develop RT Software Requirements Model
 - Develop Use Case Model
- 2 Develop RT Software Analysis Model
 - Develop state machines for state dependent objects
 - Structure software system into objects
 - Develop object interaction diagrams for each use case
- 3 Develop RT Software Design Model
 - Design of Software Architecture for RT Embedded Systems
 - Apply RT Software Architectural Design Patterns
 - Design of Component-Based RT Software Architecture
 - Design Concurrent RT Tasks
 - Develop Detailed RT Software Design
 - Analyze Performance of Real-Time Software Designs

Copyright 2016 H.Gomaa